On Decomposition of D-modules and Bernstein-Sato polynomials for Hyperplane Arrangements

dc.contributor.advisorAbebaw Tilahun (PhD)
dc.contributor.authorAtikaw Sebsibew
dc.date.accessioned2018-07-17T13:26:10Z
dc.date.accessioned2023-11-04T12:30:35Z
dc.date.available2018-07-17T13:26:10Z
dc.date.available2023-11-04T12:30:35Z
dc.date.issued2016-06
dc.description.abstract. This thesis discusses the relationship between Bernstein-Sato ideals of = xy(a3x + y):::(amx + y); ai 2 C; ai 6= aj ;m _ 3 and the decomposition of the D2-module M_ Chx; y; @x; @yi___ over the Weyl algebra Chx; y; @x; @yi, where for each i 2 f1; 2; :::;mg, m ; _i 2 C and _1 := x; _2 = y; _i := aix + y; (3 _ i _ m) are linear forms on C2. The thesis starts by summarizing the de_nition, properties and the results on the number of decomposition factors of M_ Then it continues with the de_nition and basic properties of univariate Bernstein-Sato polynomials, and collects what is known of Bernstein-Sato polynomials for hyperplane arrangements. A variation of the idea are the multivariate Bernstein-Sato polynomials and ideals. Main new results in the thesis are on the description of di_erent types of Bernstein- Sato ideals of = xy Qm i=3(aix + y) (in chapter 4) and on the use of these ideals in the decomposition of the D2-module M_ (in chapteren_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/9071
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectOn Decomposition of D-modulesen_US
dc.subjectand Bernstein-Satoen_US
dc.titleOn Decomposition of D-modules and Bernstein-Sato polynomials for Hyperplane Arrangementsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sebsibew Atikaw.pdf
Size:
428.96 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections