Biochemical Engineering
Permanent URI for this collection
Browse
Browsing Biochemical Engineering by Author "Cespedes, Eduardo Ojito (Prof.)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Determine the Potency of Caffeine Degradation Microbes and Process Optimization(Addis Ababa University, 2019-06) Zeynu, Shamil; Cespedes, Eduardo Ojito (Prof.)Bioremediation being a problem solver for many different environmental and other major hazards, they play an important and cost effective role in the decaffeination process. Form collected environmental sample coffee husk. From CH caffeine can be eliminated. With this experimental work take two spp of microorganism that were bacillus subtilis and rhizobium from Ethiopia bio diversity institute, that can be capability of improving soil fertility. Could grow on the medium supplemented with 2.5g/L caffeine and could effectively degrade 2.5 g/L of caffeine in the liquid media as a sole source of carbon and nitrogen. Morphological and biochemical characteristics were maintained for re-affirmation the organism as bacillus subtilis and rhizobium. The degradation of caffeine capability was authenticated by growth curve. The next task were that those authenticated caffeine degrading bacteria applicable for conserving soil fertility by means of N-fix and p- solubilized potential then propagation and growth of those selective caffeine degrading bacteria was maintained by selective medium with and without supplement of 2.5g/l caffeine then optimized the factors that affecting cell growth with prepared broth with and without supplement of caffeine and determined interaction of each factor from experiment design software 6.0.8) the result would be temp; 35 o c, pH 7.07 incubation time 36hr from those optimal condition obtained maximum cell growth in number was 3.41995E+008 and 5.0707E+008 with and without caffeine respectively for bacillus subtilis and temp 34 o c, pH 6.6 and incubation time 28hrs optimum condition maximum cell growth 3.51146E+008 and 4.09131E+008 was obtained for rhizobium sp. of organism. That viable cell grown microorganism ready for applicable of as liquid bio fertilizer those were easiest way of production, handle, cost effective and keep soil health care method of production.Item Treatment of Waste Water Effluent from Coffee Industry using Anaerobic Mixed Culture Pseudomonas Florescence and Escherichia Coli Bacteria and with Gypsum: A Case in Dilla- Ethiopia(Addis Ababa University, 2019-06) Fitsum, Ashenafi; Cespedes, Eduardo Ojito (Prof.)Coffee processing industries generate huge amount of wastewater. The effluent is characterized by a lot of sludge, high amount of organic load and acidic nature due to fermentation process. Due to this, it contains high value of COD, BOD, TS and other contaminants. This effluent when disposed in natural water, it contaminates aquatic animals and plants environment. So, care has to be taken to ensure the quality of the releasing waters should be reduced below the prescribed standards. There are many physical and chemical treatment methods available for the removal of pollutants but all these methods have problems associated with secondary effluent, hazardous and harmful end products, high energy consuming, non-economic etc. These problems can be overcome by the use of biological treatment methods which are simple, eco-friendly and efficient where complete removal of the pollutants is possible. Cognizant of this, the researcher was initiated to study the treatment of wastewater effluent from coffee industry in the specific area by using anaerobic Pseudomonas florescence and Escherichia coli bacteria as mixed culture and with gypsum (CaSO4.2H2O). In this study, the wastewater value of BOD5, COD, TS and neutralization of the PH reduction was achieved. The results show that the treatment reduced BOD5, COD and TS from its initial concentration of 320.26 mg/l, 1261 mg/l, and 3545 mg/l to 35.66 mg/l, 97 mg/l and 68 mg/l respectively. The treatment in the study shows 87.74% reduced of BOD5 load, 92.02% reduced of COD and 98.01% reduced of TS from the initial load using optimization of the treatment method. Therefore, it can be concluded that mixed culture bacteria of Pseudomonas florescence and Escherichia coli in combination with gypsum as a new effective treatment having potential for BOD5, COD and TS reduce from the effluent treated. The mixed culture of microorganisms is capable to reduce the contaminants that made the approach cost effective, time saving compared with other results found by other authors without mixed culture. The microorganisms included in the study can be applied for the treatment of effluents containing the multiple contaminants.