Process Engineering
Permanent URI for this collection
Browse
Browsing Process Engineering by Author "Abebe, Enkuahone"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Biodiesel production from vernonia galamensis oil using ethanol with alkali catalyst(Addis Ababa University, 2012-11) Abebe, Enkuahone; Shiferaw, Gizachew (Eng)This work was done with the aim of producing biodiesel from vernonia galamensis oil by using ethanol with alkali catalyst, sodium hydroxide. Additionally it was investigated the effects of catalyst amount from 0.25 %( w/w) to 2 %( w/w) of weight of oil, molar ratio of ethanol to oil from 6:1 to 12:1 and reaction temperature from 35 oC to 75 oC on biodiesel yield. Vernonia galamensis oil was extracted using solvent extraction and mechanical pressing. The extracted oil was purified through degumming, neutralization, washing and drying sequentially. Acid value, amount of free fatty acid, saponification value and flash point of the extracted oil were determined. Biodiesel was produced from vernonia galamensis oil using anhydrous ethanol 99.5% (w/w) and sodium hydroxide catalyst 97% (w/w). The experimental design was done by using the Design Expert 7.0.0 software three levels; three factor Central Composite Design with full type in the optimization study, requiring 20 experiments. To determine the effect of temperature, amount of catalyst and molar ratio of alcohol to oil experiments were done in the ranges of 35oC to 75oC, 0.25% to 2.0% (w/w) and 6:1 to 12:1 subsequently. The maximum biodiesel yield was 87 % (w/w) at 55oC, 9:1 molar ratio of alcohol to oil and 1.125% (w/w) sodium hydroxide catalyst amount. In contrast, the minimum biodiesel yield was 52% (w/w) at 75oC, 12:1 molar ratio and 2% (w/w) catalyst amount. The viscosity, density, flash point, acid value, saponification value, moisture content and ash content of the produced biodiesel were determined. These properties were matched with ASTM specifications. Based on the preliminary economic analysis evaluation, the suggested project is feasible.