Machine Learning for Improved Root Cause Analysis of LTE Network Accessibility and Integrity Degradation

No Thumbnail Available

Date

2023-09

Journal Title

Journal ISSN

Volume Title

Publisher

Addis Ababa University

Abstract

Long Term Evolution (LTE) networks are essential for enabling high-speed, reliable communication and data transmission. However, the accessibility and integrity of LTE networks can degrade due to a variety of factors, such as congestion, coverage, and configuration problems. Root cause analysis (RCA) is a process for identifying the underlying causes of degradation. However, RCA can be time-consuming and labor-intensive. Machine learning can be used to enhance RCA by identifying patterns and trends in data that can be used to identify the root causes of problems. Limited work exists on machine learning-enabled RCA for LTE networks. This thesis proposes a machine learning-enabled approach, specifically Convolutional Neural Network (CNN) and SHapley Additive exPlanations (SHAP), for RCA of LTE network performance degradation. The approach was evaluated using key performance indicators (KPIs) and counters data collected from LTE network of ethio telecom, a major operator in Ethiopia. The main causes of reduced network accessibility are failure caused by the Mobility Management Entity (MME), the average number of users, and handover failures. Similarly, the underlying causes of degraded accessibility at the cell level are failure caused by MME, control channel element (CCE) utilization, and paging utilization. For network integrity, which is measured by user throughput, the main causes of degradation are the high number of active users, high downlink Physical Resource Block (PRB) utilization, poor Channel Quality Indicator (CQI), and coverage issues. At the cell level, the main factors are downlink PRB utilization, unfavorable CQI values, and high downlink block error rate. For the given data, the model’s sensitivity for network accessibility and integrity at the cell level is 82.8% and 95.5%, respectively. These results demonstrate the potential of the proposed approach to accurately identify degradation instances. The proposed approach using deep learning and SHAP offers reusability, high-dimensionality support, geographic scalability, and time resolution for improved performance analysis in networks of all sizes. Network operators can improve network performance by identifying and addressing the root causes of degradation.

Description

Keywords

Accessibility, CNN, Integrity, LTE, Root Cause Analysis, SHAP

Citation