Heat Equation and its Application in Homogeneous Dirichelt Boundary Condition

dc.contributor.advisorBiset, Tesfa (PhD)
dc.contributor.authorMekonnen, Bezuneh
dc.date.accessioned2019-10-01T08:35:24Z
dc.date.accessioned2023-11-04T12:30:55Z
dc.date.available2019-10-01T08:35:24Z
dc.date.available2023-11-04T12:30:55Z
dc.date.issued2018-09-01
dc.description.abstractIn this paper, heat equation is derived using Fourier’s law of heat conduction and conservation of energy. In addition to this two laws Greens and divergence Theorem are used to change or transform line integral in to surface integral and volume integral in to surface integral respectively while deriving heat equation. The solution of heat equation is also investigated using separation of variables by considering homogenous Dirchelt boundary condition. The application of heat equation is also included.en_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/19250
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectHeat Equationen_US
dc.subjectApplicationen_US
dc.subjectHomogeneousen_US
dc.subjectDirichelt Boundary Conditionen_US
dc.titleHeat Equation and its Application in Homogeneous Dirichelt Boundary Conditionen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Bezuneh Mekonnen 2018.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections