Derivative free optimization methods

dc.contributor.advisorMitiku, Semu (PhD)
dc.contributor.authorYohannes, Flagot
dc.date.accessioned2018-07-13T07:29:06Z
dc.date.accessioned2023-11-04T12:32:32Z
dc.date.available2018-07-13T07:29:06Z
dc.date.available2023-11-04T12:32:32Z
dc.date.issued2012-01
dc.description.abstractLet be a continuous function on, and suppose is a smooth nonlinear function. Such functions arise in many applications, and very often minimizers are points at whichis not differentiable. Of particular interest is the case where the gradient and the Hessian cannot be computed for any . I present a practical, robust algorithm to locally minimize such functions, based on model sampling or search. No derivatives information is required by the algorithmen_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/8495
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectDerivative free optimization methodsen_US
dc.titleDerivative free optimization methodsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Flagot Yohannes.pdf
Size:
576.77 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections