Center of Materials Engineering (CME) Enhancing the Cracks-resistant Behavior of Concrete Materials: Combined Effects of TiO2 Nanoparticles and Waste Plastics Fiber

No Thumbnail Available

Date

2020-06

Journal Title

Journal ISSN

Volume Title

Publisher

Addis Ababa University

Abstract

Experimental investigation of the combined effects of TiO2 Nanoparticles (TNP) and Waste Plastic Fiber (WPF) for the modifications of concrete materials has been conducted. The TNP partially substituted cement by the wt. % of (0, 0.5, 1.0, and 1.5) and WPF partially substituted sand by the wt. % of (0, 0.2 and 0.4) in C-25 grade concrete. The strength for modified and unmodified concrete after 3, 7, and 28 days of curing has been tested. The results showed that the maximum strength and durability were achieved by combined effects in comparison to all other concretes for all the curing days. The SEM analysis of concrete modified with both WPF and TNP showed a densified and well-compacted microstructure than unmodified and also only TNP modified concrete. The XRD analysis of concrete modified with both WPF and TNP showed the existence of more phases, which are responsible for strength modification than only TNP modified and unmodified concrete. Furthermore, the thermal analysis of the samples was conducted with DSC-TGA (Differential Scanning Calorimetry-Thermo-Gravimetric Analysis). The maximum weight loss was recorded for unmodified concrete at lower temperatures than modified concrete. The problems associated with conventional concrete materials with respect to a maximum load resistance, compressive strength and splitting tensile strength, and crack-resistant behavior has been modified. Achieving high strength, gaining high quality, and long term serviceability were critical issues to Ethiopian construction sectors and in other countries as well. In this study, the combined effects of TNP and WPF addressed the challenges of concrete cracking and durability properties.

Description

Keywords

Nanomaterials, TiO2 Nano-particles, Cracks-Resistant Behavior, Durability, Mechanical-Strength

Citation