Anaerobic Co-Digestion of Slaughterhouse Wastewater with Water Hyacinth (Ecchornia Crassipes) For Biogas Production Using Rumen Fluid as Inoculum: Characterization and Parametric Optimization

No Thumbnail Available



Journal Title

Journal ISSN

Volume Title


Addis Ababa University


The purpose of the present study was to characterize and optimize the co-digestion of Slaughterhouse wastewater with Water Hyacinth (WH) for biogas production using rumen fluid as inoculum. The slaughterhouse wastewater and water hyacinth were first characterized to determine their potential for biogas production. Water Hyacinth reducing sugar content was determined (11.94 g/L) using dinitrosalicylic acid (DNSA). Co-digestions were carried out in batch reactors. The effects of substrate composition (ratio of WH to SWW), hydraulic retention time and pH on methane production and COD removal efficiency were investigated and optimized using RSM-Optimal (custom) design. Accordingly, the optimum methane production and COD removal efficiency were found to be 76.2% and 59.1%, respectively at HRT of 40 days, a substrate composition of 50%SWW: 50%WH and a pH of 7. Furthermore, the bio-digestate was investigated for fertilizer potential. Results show its nutrient values were below the FAO suggested values. FAO suggests a minimum of 5% sum (N+P+S) for an organic fertilizer. Results show that co-digestion of SWW with WH is promising way for producing biogas and simultaneously to control the spread of WH. In addition, it is suggested to blend the bio-digestate with organic manure for enhancement of fertilizer potential.



Anaerobic Co-digestion, Slaughterhouse waste water, Water hyacinth, Rumen fluid