Trust Region Newton With Dogleg Method

dc.contributor.advisorGuta, Berhanu (PhD)
dc.contributor.authorYeshitla, Abaye
dc.date.accessioned2019-05-22T08:13:55Z
dc.date.accessioned2023-11-09T11:25:55Z
dc.date.available2019-05-22T08:13:55Z
dc.date.available2023-11-09T11:25:55Z
dc.date.issued2018-05-02
dc.description.abstractIn this project, we propose a trust region dogleg method algorithms to solve a trust region subproblems arising form unconstrained optimization. The method can deal with by constricting a dogleg paths. The case when the Hessian B of quadratic models is positive de nite. The philosophy and fundamental ideas of trust region algorithms are discussed and proved that the method is globally convergent and has a supper linear convergence rate. And then the nal algorithm is programmed in MATLAB and implemented by taking appropriate test problem.en_US
dc.identifier.urihttp://10.90.10.223:4000/handle/123456789/18286
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectTrust Regionen_US
dc.subjectDogleg Pathen_US
dc.subjectDogleg Methoden_US
dc.subjectConvergenceen_US
dc.titleTrust Region Newton With Dogleg Methoden_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Abaye Yeshitla 2018.pdf
Size:
837.3 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections