Greens Functions and Boundary Value Problems

dc.contributor.advisorAbdi Tadesse (PhD)
dc.contributor.authorEshetu Assaye
dc.date.accessioned2018-07-11T12:30:38Z
dc.date.accessioned2023-11-04T12:32:06Z
dc.date.available2018-07-11T12:30:38Z
dc.date.available2023-11-04T12:32:06Z
dc.date.issued2014-08
dc.description.abstractIn this paper, we investigate some boundary value problems for two dimensional harmonic functions. That is basic introduce new tools for solving Dirichlet problems, Poisson’s equations and Neumann problems with Green’s function G( x; y; x0 y0) =1/2in( x –y0)2+( x – y0)2) + h (x ,y, x,0 y0) Where h is harmonic on the region and h(x, y, x0 , y0 ) =-1/2in ( x – x0)2 + y - y 0)2)on the boundary  . Roughly speaking Green’s function for a given region Ω and that can be used to solve any Dirichlet problems or Poisson problems on Ω. In the same way that the Poisson’s kernel on the real line can be used to solve Dirichlet problems in the upper half planeen_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/8079
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectGreens Functions and Boundary Value Problemsen_US
dc.titleGreens Functions and Boundary Value Problemsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Assaye Eshetu.pdf
Size:
368.27 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections