Greens Functions and Boundary Value Problems
dc.contributor.advisor | Abdi Tadesse (PhD) | |
dc.contributor.author | Eshetu Assaye | |
dc.date.accessioned | 2018-07-11T12:30:38Z | |
dc.date.accessioned | 2023-11-04T12:32:06Z | |
dc.date.available | 2018-07-11T12:30:38Z | |
dc.date.available | 2023-11-04T12:32:06Z | |
dc.date.issued | 2014-08 | |
dc.description.abstract | In this paper, we investigate some boundary value problems for two dimensional harmonic functions. That is basic introduce new tools for solving Dirichlet problems, Poisson’s equations and Neumann problems with Green’s function G( x; y; x0 y0) =1/2in( x –y0)2+( x – y0)2) + h (x ,y, x,0 y0) Where h is harmonic on the region and h(x, y, x0 , y0 ) =-1/2in ( x – x0)2 + y - y 0)2)on the boundary . Roughly speaking Green’s function for a given region Ω and that can be used to solve any Dirichlet problems or Poisson problems on Ω. In the same way that the Poisson’s kernel on the real line can be used to solve Dirichlet problems in the upper half plane | en_US |
dc.identifier.uri | http://etd.aau.edu.et/handle/123456789/8079 | |
dc.language.iso | en | en_US |
dc.publisher | Addis Ababa University | en_US |
dc.subject | Greens Functions and Boundary Value Problems | en_US |
dc.title | Greens Functions and Boundary Value Problems | en_US |
dc.type | Thesis | en_US |