Analysis of Direct Segregated Boundary- Domain Integral Equations for Variable-Coefficient Mixed Bvps in Exterior Domains

dc.contributor.advisorGedif, Tsegaye (PhD)
dc.contributor.authorGeremew, Shiferaw
dc.date.accessioned2018-07-18T06:11:47Z
dc.date.accessioned2023-11-04T12:32:08Z
dc.date.available2018-07-18T06:11:47Z
dc.date.available2023-11-04T12:32:08Z
dc.date.issued2012-02
dc.description.abstractDirect segregated systems of boundary-domain integral equations are formulated from the mixed (Dirichlet-Neumann) boundary value problems for a scalar second order divergent elliptic partial differential equation with a variable coefficient in an exterior three-dimensional domain. The boundary-domain integral equation system equivalence to the original boundary value problems and the Fredholm properties and invertibility of the corresponding boundary-domain integral operators are analyzed in weighted Sobolev spaces suitable for infinite domains. This analysis is based on the corresponding properties of the BVPs in Weighted Sobolev spaces that are proved as well. Key words: Partial Differential Equation; Variable coefficient; Mixed problem; Parametrix; Levi function; Boundary-domain integral equations: Unbounded domain; Weighted Sobolev spaces.en_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/9095
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectPartial Differential Equationen_US
dc.subjectVariable Coefficienten_US
dc.subjectMixed Problemen_US
dc.subjectParametrixen_US
dc.subjectLevi Functionen_US
dc.subjectBoundary-Domain Integral Equationsen_US
dc.subjectUnbounded Domainen_US
dc.subjectWeighted Sobolev Spacesen_US
dc.titleAnalysis of Direct Segregated Boundary- Domain Integral Equations for Variable-Coefficient Mixed Bvps in Exterior Domainsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Shiferaw Geremew.pdf
Size:
391.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections