Existence of Periodic Solutions for a Class of Second Order Odes With Periodic Data

dc.contributor.advisorAbdi Tadesse (PhD)
dc.contributor.authorWeldemichael Sahle
dc.date.accessioned2018-07-17T13:12:52Z
dc.date.accessioned2023-11-04T12:32:17Z
dc.date.available2018-07-17T13:12:52Z
dc.date.available2023-11-04T12:32:17Z
dc.date.issued2014-03
dc.description.abstractIn this project we will see the existence of periodic solution(s) to the second order ODE of the form: x00(t) + a(t)x0(t) = g(t; x) =f(t; x(t); x0(t)) by means of Schauders Fixed Point Theorem where a is a continuous !- periodic function , g(t; u), f(t; u; v) are !-periodic functions in t for u = x(t), v = x0(t) and ! > 0. The method of proof is composed of two steps, the _rst step is to transform the original equation into integrodi _erential equation through a linear integral operator and the second step is an application of the Schauder's Fixed Point Theorem. Keywords: Periodic solution; Schauder's _xed point theorem; Fundamental matrixen_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/9061
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectPeriodic Solutionen_US
dc.subjectSchauder's _Xed Point Theoremen_US
dc.subjectFundamental Matrixen_US
dc.titleExistence of Periodic Solutions for a Class of Second Order Odes With Periodic Dataen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sahle Weldemichael.pdf
Size:
402.66 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections