Interior Dirichlet Problem and Existence of Results

dc.contributor.advisorAbdi Tadesse (PhD)
dc.contributor.authorShigute Wodefit
dc.date.accessioned2018-07-19T07:11:53Z
dc.date.accessioned2023-11-04T12:30:42Z
dc.date.available2018-07-19T07:11:53Z
dc.date.available2023-11-04T12:30:42Z
dc.date.issued2014-08
dc.description.abstractIn this project paper we investigated solution for interior Dirichlet problem as main parts. First, we showed uniqueness and continuity of Dirichlet problem in bounded region using maximum and minimum principle. Next, we transform the Laplace equation in two dimensional Cartesian coordinate to Laplace equation in two dimensional polar coordinate. Finally, the Dirichlet problem in bounded domain using separation of variable and Fourier series by appealing to annular region, rectangular region, heat equation and potential theory were discusseden_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/9363
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectInterior Dirichlet Problemen_US
dc.subjectExistence of Resultsen_US
dc.titleInterior Dirichlet Problem and Existence of Resultsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Wodefit Shigute.pdf
Size:
373.15 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections