Effect Of Fiber Orientation & Volume Fraction On The Mechanical and Thermal Properties Of Bamboo Fiber Reinforced Epoxy Composite For Laptop Case Application

No Thumbnail Available

Date

2023-03

Journal Title

Journal ISSN

Volume Title

Publisher

Addis Ababa University

Abstract

Protecting one‟s laptop is an undeniable thing because of its massive personal data stocking, it being one‟s working media (tool) and its expensiveness to replace it if it got physically damaged by any means. This work aims to investigate the effect of fiber volume fraction and orientation on mechanical (tensile, flexural, and impact) strength, thermal resistance and water absorption properties of bamboo fiber reinforced epoxy composites experimentally. It aims to explore its applicability as a protective casing for personal computers. Bamboo fibers were treated with 6% NaOH for 2 hours and 1600c temperature for 3 hours. Laminates were fabricated by hand lay-up technique in a mold and cured under light pressure at room temperature followed by curing for two days. Bamboo laminates were prepared by varying three orientations (0/450, 0/300 & 0/900) of fiber and four fiber volume fractions from 20%, 30%, 40%, and 50%. Specimen preparation and testing were carried out as per ASTM standards. The highest tensile, flexural and impact strength were obtained from composite with 30% fiber 70% epoxy matrix composition at 00/900 orientation having 48.85MPa, 38.17MPa and 170.57 J/m2 respectively. The lowest water absorption percentage was obtained from treated composite with 20% fiber 80% epoxy matrix composition at 00/900 orientation having 1.71% of absorption. Evidently 30% bamboo fiber reinforced epoxy composite has very high thermal resistivity almost equal with wood, which makes it non-conductive material. Based on the results and analysis, the selected bamboo fiber -epoxy composite has the potential to be further developed as protective case for laptops.

Description

Keywords

Bamboo fiber, Epoxy, composite characterization, fiber orientation, fiber volume fraction, mechanical, thermal strength laptop casing

Citation