Dynamic Analysis of Liquid Containing Cylinderical Tanks

No Thumbnail Available

Date

2005-10

Journal Title

Journal ISSN

Volume Title

Publisher

Addis Ababa University

Abstract

Liquid containing cylindrical containers are one of those sensitive structures affected by dynamic loads. These liquid containing structures are affected not only by the inertia xi effect of the shell alone but also by the impulsive as well as convective pressures that are developed by the liquid they contain. There are a number of analysis methods; among them the Housner approximate method is widely used. In order to study the behavior of ground supported cylindrical tanks caused by dynamic loading a finite element method was undertaken. Using the FEM the flexibility of the shell wall and the liquid properties can be included. Due to the complex nature of theoretical approaches especially when considering the dynamic nature of structure, the use of software becomes very important. To model this system the ANSYS finite element software was used. Different parameters were considered, and the liquid was idealized as a displacement based element. For the analysis the three dimensional as well as two dimensional approaches have been used. And the fluid property such as sloshing and development of hydrodynamic effect were included in these elements. Ground supported cylindrical tanks having variable height, radius and thickness were analyzed. The results showed that the sloshing frequencies of the Housner approximate method and the FEM are comparable. The two dimensional FEM produced coupled frequencies of the system which have higher frequencies than the sloshing frequencies. As compared to Housner’s simplified method the shear for shallow and slender tanks obtained using the FEM are generally larger, while the bending moments obtained using FEM for slender tanks were smaller. The axial force of FEM was also found out to be significant. The vertical displacement of the free surface obtained using FEM for sloshing and coupled mode were very small as compared to Housner’s method. Key words: Cylindrical tanks; Sloshing; Fluid-Structure interaction xii

Description

Keywords

Cylindrical Tanks; Sloshing; Fluid-Structure Interaction

Citation