Maximum Modulus Theorem of Hocomorphic Function
dc.contributor.advisor | Mohammed, Sied (Associate Professor) | |
dc.contributor.author | Zigta, Binyam | |
dc.date.accessioned | 2021-12-13T12:37:12Z | |
dc.date.accessioned | 2023-11-04T12:31:29Z | |
dc.date.available | 2021-12-13T12:37:12Z | |
dc.date.available | 2023-11-04T12:31:29Z | |
dc.date.issued | 2011-01 | |
dc.description.abstract | I he pur thi. pr)j , 't i ... to lind 'r t,II1U un an.l1\ I' th' lu imum II dulu ' I h' r'm lie la, imum Prin 'ipl') \\hl 'h ho".., thaI a lun ' lIl n \\hi 'h i anul~1I In a 'lmpa I m In D a' 'ume ' it · a, Imum lotllllll Oil th' luntiar) . In !! neral. II \\e 'on Id'r lb un 'd d main:, th' th ' r'm n I longer hold I'm' ampl', 1(%) = e/. I anal) ti ' an lb und d in the ri ght hall' plun ' d 'spit' the Im:t that on th ' boundar. e/.I = le'YI = 1 c crthel . gl n ccn'lin re tri ' til n. on th' gro\\ th 01 the run 'lit n. \\. 'an 'on 'Iud Ih t it tain it , aXlmum dulu ' n the boundar) , I h' 111 )st natllraillch . n iti n i - Ihat Ih n ti n r main ' b und 'd lhn lIgh( ut f) and \\ ' \\ 111 di'icu " it · appli ation, l. \N \i ill dis 'U ' 0111' of' the applicJtlon an I r 'Iat 'd LIn I'r!) ing r'ull or h' aximum M ulu ' l'hl.:or'm . U 'h U~ Ih' \:h\\JIt' l'l11l1KI. the I'hrill!1ll 'n -I intl 'lor I h 'or III hi -h , t'ne! th' . a.\imum \1 ouulus I'rin ' I( I ' llI' 'olllll ' .1Il.tl) I an I th' IladJIl1Jru' I hr" Ir I 'Theol' m and \\e \\ ill see SI 111 'e Jll1pk ... l 11 Ih' ,th 'or 'Ill . | en_US |
dc.identifier.uri | http://etd.aau.edu.et/handle/123456789/29261 | |
dc.language.iso | en | en_US |
dc.publisher | Addis Ababa | en_US |
dc.subject | Maximum Modulus Theorem | en_US |
dc.title | Maximum Modulus Theorem of Hocomorphic Function | en_US |
dc.type | Thesis | en_US |