Eberlein- _ Smulian Theorem

dc.contributor.advisorGoa, Mengistu (PhD)
dc.contributor.authorDemessie, Eshetu
dc.date.accessioned2018-07-13T06:27:20Z
dc.date.accessioned2023-11-04T12:32:09Z
dc.date.available2018-07-13T06:27:20Z
dc.date.available2023-11-04T12:32:09Z
dc.date.issued2013-02
dc.description.abstractA subset A of a Banach space X is called weakly sequentially compact if every sequence in A has a weak cluster point in X. The di_culty implication of the Eberlein- _ Smulian theorem states that such a set is already relatively weakly compact. This implication was proved by W. Eberleinen_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/8410
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectEberlein- _ Smulian Theoremen_US
dc.titleEberlein- _ Smulian Theoremen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Eshetu Demessie.pdf
Size:
310.77 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections