Parking Functions and Complete Bipartite Graphs

dc.contributor.advisorAsefa, Samuel (PhD)
dc.contributor.authorSuleiman, Medina
dc.date.accessioned2021-02-24T06:16:00Z
dc.date.accessioned2023-11-04T12:31:15Z
dc.date.available2021-02-24T06:16:00Z
dc.date.available2023-11-04T12:31:15Z
dc.date.issued2020-11-26
dc.description.abstractA Parking function is a sequence of positive integers (a1; a2; : : : ; an) such that its non-decreasing rearrangement (b1; b2; : : : ; bn), satis es bi i, for all index i. In this thesis we will see about parking functions and their interrelation with other combinatorial objects; namely non-crossing partitions and labelled trees. We also discuss on the generalization of parking functions namely; G- parking functions and establish a new relationship between parking functions and spanning trees of complete bipartite graphs.en_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/25213
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectParking Functionsen_US
dc.subjectComplete Bipartiteen_US
dc.subjectGraphsen_US
dc.titleParking Functions and Complete Bipartite Graphsen_US
dc.typeThesisen_US

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections