On the length of D-modules over Hyperplane Arrangements in Space

dc.contributor.advisorAbabaw Tilahun (PhD)
dc.contributor.authorDemelash Smegnsh
dc.date.accessioned2018-07-18T06:39:29Z
dc.date.accessioned2023-11-04T12:32:32Z
dc.date.available2018-07-18T06:39:29Z
dc.date.available2023-11-04T12:32:32Z
dc.date.issued2016-07
dc.description.abstractA D-module is a module over a ring of Di_erential Operators. The major interest of such D-modules is as an approach to the theory of linear partial di_erential equations. Algebraic D-modules are modules over the Weyl algebra An over the _eld C of complex numbers. The main purpose of this thesis to work on the A3=module C[x;y;z]_; where _ is the product of linear forms. In this thesis we computed the decomposition factors and hence the length of A3 -module C[x; y; z]_ using the method of partial fractions of rational functionsen_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/9120
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectOn the length of D-modules overen_US
dc.titleOn the length of D-modules over Hyperplane Arrangements in Spaceen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Smegnsh Demelash.pdf
Size:
285.6 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections