Design, Modeling and Analysis of Roof Top Photo v oltaic System for Ethio Djibouti Railway Passenger Trains
No Thumbnail Available
Date
2024-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Addis Ababa University
Abstract
The growing demand
for electric railway transportation worldwide has led to a rise in power
consumption by the transportation system . Hence, providing sufficient, cleaner, and less
expensive energy to the transportation system is important to cope with the increasing energy
demand. In Ethiopia, the Ethio Djibouti railway trains consume huge amounts of energy from the
national grid for their propulsion and auxiliary services. As the demand for this energy continues
to rise, it is crucial to research and explore innovative solutions to meet the increasing energy
needs. One potential solution is harnessing solar energy from train rooftops, which can
supplement the energy requirements and reduce the stress on the national grid. By adopting this
approach, we can alleviate the burden on the grid and enhance the reliability of the power supply.
This
research presents a new design and model of a rooftop photovoltaic system for Ethio
Djibouti railway passenger trains. To fulfill the research objective, the solar irradiance function
of the train travel schedule across the train route is collected from the European U nion weather
forecasting web . Following that, the train rooftop PV capacity in contrast with the electrical load
demand of the trains w as analyzed. Based on the load and PV capacity available, the PV system
is optimally sized with an appropriate energy control strategy Additionally, the PV panels'
weight and efficiency are considered during the design phase to improve the practicality and
feasibility of the system. Finally , the designed system is modeled and simulated using MATLAB
to validate the performance level of the PV system.
Th
e research findings reveal that the designed train rooftop p hoto voltaic system can produce up
to 393.6 kW However, energy output is influenced by the train's departure time and location.
T he designed rooftop PV system can contribute up to 21.318GWh of electric power to E thio
Djibouti railway passenger trains and yield a net profit of 247,607 USD in its lifetime .
Additionally, the return on investment value of the PV system is 3 49 %%.
Description
Keywords
A uxiliary P ower S upply S ystem, Photovoltaic and Energy Storage System Solar train