Stochastic Optimization

dc.contributor.advisorMitiku, Semu (PhD)
dc.contributor.authorZerfu, Solomon
dc.date.accessioned2018-07-18T07:13:23Z
dc.date.accessioned2023-11-04T12:30:35Z
dc.date.available2018-07-18T07:13:23Z
dc.date.available2023-11-04T12:30:35Z
dc.date.issued2014-02
dc.description.abstractStochastic optimization is a leading approach to model optimization problems in which there is uncertainty in the input data, whether from measurement noise or an inability to know the future. This paper focuses on types of Stochastic optimization such as Stochastic optimization problems with recourse and Chance constrained optimization problems as well as how to change one Stochastic optimization problems to deterministic equivalent form. Keywords: Probability, Random Variable, Expected value, Measure, Convex, Stochastic Optimization, Recourse, Chance Constraineden_US
dc.identifier.urihttp://etd.aau.edu.et/handle/123456789/9148
dc.language.isoenen_US
dc.publisherAddis Ababa Universityen_US
dc.subjectProbabilityen_US
dc.subjectRandom Variableen_US
dc.subjectExpected valueen_US
dc.subjectMeasureen_US
dc.subjectConvexen_US
dc.subjectStochastic Optimizationen_US
dc.subjectRecourseen_US
dc.subjectChance Constraineden_US
dc.titleStochastic Optimizationen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Solomon Zerfu.pdf
Size:
529.64 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections