Passenger Ride Comfort Analysis of a Rail Vehicle Running with Polygonized Wheel Using Dynamic Simulations (A case study of Addis Ababa Light Rail Transit)

No Thumbnail Available

Date

2023-07

Journal Title

Journal ISSN

Volume Title

Publisher

Addis Ababa University

Abstract

The railway transportation system is currently undergoing a significant expansion. As a result, train lines are upgraded, and the technical condition of the rail vehicles that use them is also taken into consideration. However, under certain circumstances, wheels on rail vehicles may sustain damage while in use. Then, depending on the kind and degree of flaws, the profile of the wheels is no longer circular but rather changes. The passenger's ride comfort is diminished when a rail vehicle with a damaged wheel is in operation. The research considered one type of railway wheel damage, which is wheel polygonization, and focused on analyzing the ride comfort for passengers based on results obtained from multibody dynamic analyses. Simulations and calculations were done in numerical and dynamic multibody software. The findings demonstrate that the wheel polygonization of 0.3 mm has a greater impact on ride comfort compared to the other amplitudes (0.1mm and 0.2mm). This implies that with an increase in polygonization amplitude, the ride index will also increase. However, running an overloaded carrying capacity vehicle has minimal comfort compared to an empty and rated carrying capacity vehicle when the wheel has a polygonization defect. Moreover, it found that with increasing vehicle speed, the ride index also increases, which means that at high speeds, the ride comfort will be diminished. Furthermore, it found that the orders of wheel polygonization have an effect on ride comfort. With the increasing order of polygonization, the ride index also increases. According to the findings, this study has a significant impact on the maintenance planning for wheels and rails as well as operation management.

Description

Keywords

Rail vehicle, Ride comfort, Flexible wheelsets, Wheel polygonization, Finite element analysis, Multibody dynamic simulations

Citation