Browsing by Author "Adisu Mersha"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Landslide Hazard Zonation by Using Geospatial Based Multi-Criteria Decision Analysis Techniques: The Case of Worra Jarso District, Central Ethiopia(Addis Ababa University, 2024-02) Adisu Mersha; Hamere Yohannes (PhD)The present study area is located in the Northern Shewa Zone of the Oromia Region, Worra Jarso District, Central Ethiopia, which is far 186km from Addis Ababa. Landslide is among mega geo-hazard that pose a significant damage to civil infrastructure, property, and loss of life. It can be induced by natural phenomena like heavy rainfall, earthquakes and volcanoes. As well, by human action such as deep excavation for mining, road network, building, urbanization, deforestation, unscientific slope cutting and improper agricultural practice. Therefore, the main aim of this study was to delineate landslide hazard-zones using Geospatial based Multi-Criteria Decision Analysis methods. To achieve the stated objective, the eight causative factors were identified namely; elevation, slope, aspect, curvature, soil type, lithology, land use/land cover and drainage density. These factors were identified and the weights were assigned based on the Expert opinion, literature review and nature of the study area. Accordingly, the assigned weights were computed using pair wise comparison matrix of Analytic Hierarchy Process (AHP) method. The spatial distribution of landslide was mainly influenced by slope angle >450, limestone lithological unit, high drainage density, shallowness of leptosoil, expansion of agricultural land on steep slope, falling of elevation class in between 1575m-2100m, concave slope curvature and northwest facing of slope aspect. Later, the landslide hazard zone map was produced by using Analytic Hierarchy Process and Weighted Linear Combination in Geographic Information System (GIS) weighted overlay analysis environment. The produced landslide Hazard Zone map shows that 0.001% (0.014km2)area fall within low hazard zone, 46.66% (555.25km2) of the area fall within moderate hazard zone, 50.02% (595.13km2) and 3.32% (39.48km2) of the area falls into high hazard and very high hazard zones respectively. Moreover, validation of landslide hazard zone map with 49 past landslide inventory data reveals that 85.7% of the known landslide events were falls in very high hazard and high hazard zone. Thus, the landslide hazard map produced by Geospatial based Multi-Criteria Decision Analysis Approaches with careful identified factors proved to be valuable tool for providing fundamental information about hazard assessment, land use planning, infrastructure development and disaster preparedness of the area.