Abubeker Yimam (PhD)Temesgen Demissie2024-05-022024-05-022023-06https://etd.aau.edu.et/handle/123456789/2953Upgrading low grade Sekota iron ore to reduce the unwanted minerals and improve the quality is necessary to address these issues, in order to produce an acceptable feed for a steel production facility. The primary aim was to use reverse flotation as a beneficiation method for Sekota iron ore, in order to get a last flotation that meets the desired specifications. This process was divided into three stages: crushing, grinding, and flotation. For each of these stages, such as grinding, dosage of collectors, flotation duration, and procedures were determined. In the laboratory, where the samples were obtained, the ore was ground in a size of -0.074mm, using 250 grams of ore, with varying amounts of anionic oleic acid as the collector, 5mg/ton of activator and 5mg/ton of depressant, and floated with 2.0 g/ton of ethanol frother. The slurry was maintained at 10.5 using NaOH throughout the process. Before conducting any optimization tests on the iron ore flotation process, a laboratory procedure was developed to carry out the reverse flotation of the iron ore. The results showed that following these parameters, the flotation process achieved a final concentrate with a grade of 39.16% iron and an iron recovery of 41.29%. In this study, with varying duration of flotation, the iron grade ranged from 40-45% with an iron recovery of approximately 42%.en-USReverse FlotationSekota Iron OreBeneficiationReverse Flotation as a Method for Beneficiation of Sekota Iron OreThesis