

ADDIS ABABA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

ADDIS ABABA INSTITUTE OF TECHNOLOGY

School of Civil and Environmental Engineering

Development of a Finite Element Software for Computing Stresses
and Deformations in Layered Soils

By

Hiruy Dagnew

B.Sc. in Civil Engineering

Addis Ababa University, 2006

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the
Requirement for Degree of Master of Science in Geotechnical Engineering

Advisor

Prof. Alemayehu Teferra

July 2014
Addis Ababa

Ethiopia

ADDIS ABABA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

ADDIS ABABA INSTITUTE OF TECHNOLOGY

School of Civil and Environmental Engineering

Development of a Finite Element Software for Computing Stresses
and Deformations in Layered Soils

By

Hiruy Dagnew

B.Sc. in Civil Engineering

Addis Ababa University, 2006

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the
Requirement for Degree of Master of Science in Geotechnical Engineering

Approved by Board of Examiners:

Prof. Alemayehu Teferra _______________ _______________
 Advisor Signature Date

___________________ _______________ _______________
External Examiner Signature Date

___________________ _______________ _______________
Internal Examiner Signature Date

___________________ _______________ _______________
Chair Person Signature Date

DECLARATION

I, the undersigned, declare that this thesis is my original work performed under the
supervision of my research advisor Prof. Alemayehu Teferra and has not been
presented as a thesis for a degree in any other university. All sources of materials used
for this thesis have also been duly acknowledged.

Name Hiruy Dagnew

Signature _______________________

Place Addis Ababa Institute of Technology,

 Addis Ababa University,

 Addis Ababa

Date: July 2014

i

 ACKNOWLEDGEMENTS

Compilation of this thesis has taken me through a journey longer than I expected at
first. Thanks to the Lord it has now made it to the final stages. Through the course of
my undertaking, I have been receiving the assistance and encouragement of many
people. A special gratitude goes to my advisor Professor Alemayehu Teferra. His
guidelines and suggestions have added huge value to my work and directed it into a
more practical track. Similarly, other faculty members at the Civil Engineering
Department have contributed to my work at various occasions. Friends, colleagues
and classmates have all been providing much needed encouragement throughout my
postgraduate sessions. Well, nothing else would have been enough if I didn’t have the
support of a loving family.

In addition to the above, I shouldn’t leave without mentioning the significant role
played by availability of online references to my work. I would like to express my
appreciation to all who are contributing their part in promoting free transfer of
knowledge.

ii

Table of Contents

ACKNOWLEDGEMENTS .. i

ABSTRACT .. iv

LIST OF COMMONLY USED SYMBOLS AND ABBREVIATIONS ... v

1. INTRODUCTION.. 1

1.1 Background ... 1

1.2 Statement of the Problem ... 2

1.3 Aim and Objectives ... 2

1.4 Scope of Study ... 3

1.5 Presentation of the Thesis... 3

2. LITERATURE REVIEW ... 5

 2.1.General .. 5

 2.2.Derivation of the Finite Element Method Equations .. 6

 2.2.1.Derivation of Equations for Plane Strain Problems ... 6

 2.2.1.1. Selecting the Type of Element ... 8

 2.2.1.2. Selecting Displacement Functions ... 9

 2.2.1.3. Defining the Strain-Displacement and Stress-Strain Relationships 12

 2.2.1.4. Derivation of the Elemental Stiffness Matrix Using the Total Potential

Energy Approach .. 15

 2.2.2.Considerations for Axisymmetric Problems .. 17

 2.2.3.Summary of Useful Equations .. 19

3. FEM Software Development ... 20

3.1. Program Flow Chart ... 20

3.2. Program Modules Incorporated in the Software ... 22

3.2.1. The SOIL DATA ENTRY Program Module .. 22

3.2.2. The LOADING DATA ENTRY Program Module .. 22

3.2.3. The GENERATE MESH Program Module .. 22

3.2.4. The RUN ANALYSIS Program Module ... 23

 3.3. User Interfaces and Application Example ... 28

4. ANALYSIS AND COMPARISON ... 36

4.1. Introduction ... 36

iii

4.2. Comparison of Analysis Results Against Available Equations and Other Software .. 37

 4.2.1. Single Layer (Elastic Isotropic Half-Space) ... 37

 4.2.1.1. Surface Loads ... 37

 4.2.1.1.1. Point Load .. 37

 4.2.1.1.2. Line Load .. 40

 4.2.1.1.3. Uniform Strip Load ... 43

 4.2.1.1.4. Uniform Load of Circular Plan Area 46

 4.2.1.2. Loads in Half-Space .. 49

 4.2.1.2.1. Point Load .. 49

 4.2.1.2.2. Line Load .. 52

 4.2.1.2.3. Uniform Strip Load ... 55

 4.2.1.2.4. Uniform Load of Circular Plan Area 58

 4.2.2. Two Layers- Surface Loads ... 61

 4.2.2.1.1. Point Load .. 61

 4.2.2.1.2. Line Load .. 64

 4.2.2.1.3. Uniform Strip Load .. 67

 4.2.2.1.4. Uniform Load of Circular Plan Area 70

 4.2.3. Three Layers- Surface Loads ... 73

 4.2.3.1. Point Load ... 73

 4.2.3.2. Line Load ... 76

 4.2.3.3. Uniform Strip Load .. 79

 4.2.3.4. Uniform Load of Circular Plan Area .. 82

5. CONCLUSION AND RECOMMENDATIONS ... 85

 5.1. Conclusion ... 85

 5.2. Recommendations ... 86

6. REFERENCES ... 87

ANNEXES ... 88

ANNEX 1: Codes Used for the Development of the Software... 89

iv

ABSTRACT

Stress and deformation are the two most basic parameters that a geotechnical engineer
deals with while analyzing or recommending foundations for any type of structure.
The two correlated parameters express the reaction a soil medium exhibits upon
application of loading. In the design stage, these parameters need to be estimated
accurately and be checked that they lie within acceptable limits as stated in design
standard codes so that the structure to be built will be able to serve its intended
purpose in a safe and serviceable manner.

A number of equations have been provided to compute stresses and deformations of
foundation soils. These equations provide stress and deformation values as a function
of the load being applied, the elastic properties of the soil, and the location of the point
where it is required to find out the stress and deformation values. While computation
of the unknowns is relatively easy for homogeneous soils, the problem gets more
complicated for multiple-layered foundation soils. In cases of such multiple-layered
occurrences, very limited equations are available and hence a geotechnical engineer is
usually forced to use less accurate approximation techniques such as averaging the
characteristics of the various layers into a single value. The finite element technique
provides an alternative approach whereby analysis is conducted through numerical
methods which give results that are comparable to the closed form solutions. In
addition to its accuracy, the finite element technique has an advantage in enabling the
analysis of a wide range of problem types because of its more generalized approach.

This research is an applied type of research where a finite element software that
enables computation of the stress and deformation values for multi-layered soils has
been developed. The analysis considers linearly elastic material model for each layer.
The software uses linear displacement functions and can analyze the two dimensional
problems of plane strain and axisymmetric conditions. The output of the software has
been compared against results of closed form solutions where available and also
against output of a commercially available software. The comparison has shown that,
with proper modeling and data entry, the finite element software can generate an
output of very good accuracy.

 The role of the computer software will be limited to collecting the input parameters in
a user friendly interface, solving the large number of simultaneous equations that are
generated in the finite element procedure and displaying the output in a number of
handy alternatives. For the whole process, the user will be expected to have a
thorough knowledge of geotechnical engineering concepts and the steps being
followed by the software.

v

LIST OF COMMONLY USED SYMBOLS AND ABBREVIATIONS

A - Area of an element in a finite element mesh

[B] - B-Matrix (Strain-Deformation Matrix)

 - Engineering Shear Strain in the x-z Plane

 - Engineering Shear Strain in the r-z Plane of Cylindrical Coordinate System

[D] - Stress-Strain Matrix

{d} - Displacement Vector/Matrix

DOF - Degree of Freedom

E - Young’s Modulus of Elasticity

εx , εy , εz - Normal Strains in Cartesian Coordinate System

εr , εθ , εz -Normal Strains in Cylindrical Coordinate System (for Axisymmetric problems)

εxz - Pure Shear Strain in the x-z Plane

εrz - Pure Shear Strain in the r-z Plane of the Cylindrical Coordinate System

{f} - Force Vector/Matrix

FEM - Finite Element Method

G - Shear Modulus

i, j, m - The three nodes of a triangular element

[k] - Elemental Stiffness Matrix

[K] - Global Stiffness Matrix

Ni , Nj , Nm - Shape functions

P - Total Potential Energy

σx , σy , σz - Normal Stresses in the x, y and z directions

σr , σθ , σz - Normal Stresses in Cylindrical Coordinate System

 - Shear Stress in the x-z Plane

 - Shear Stress in the r-z Plane of Cylindrical Coordinate System

U - Strain Energy
u,v - Displacements in the horizontal and vertical directions, respectively

 - Poisson’s Ratio

i - Displacement function

 - Potential energies of the body, concentrated and distributed forces, respectively

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 1

1. INTRODUCTION

1.1 Background

Various equations have been proposed to estimate immediate settlement, a basic
concern in the process of foundations’ design. While most equations are applicable to
homogenous soil cases, some methods have been recommended to be used for
analyzing the case of two layers.

An equation has been provided by H.F. Winterkorn/H. Fans to estimate settlement of
the center of a uniformly loaded area on an elastic layer underlain by a rigid base.
Another equation by Burmister(1965) estimates elastic settlement of a stiff layer of
finite thickness underlain by a soft layer of great depth. [5]

As can be inferred from above, the available equations can be used for a very limited
variation of problems. Apparently, it is not manageable to come up with a closed form
generalized solution for computation of elastic settlement in multilayered soils.

In this thesis, it has been attempted to provide a numerical solution to the stress and
strain analysis of multi-layered soils using the finite element technique which is a
numerical method that has been gaining popularity in recent years. This method
simplifies the solution procedure as it does not try to come up with a closed form
equation but rather involves discretizing the soil domain into fine elements and to
express the problem in terms of what is referred to as global stiffness equation which
can be solved to give the unknown force and displacement values. The current
advancement in computation capacity has made it possible to handle the large memory
and processing requirements of this technique thereby making it a more attractive
alternative than the closed form solutions for such problems.

A few Finite Element software (such as PLAXIS and GeoStudio) are available for use
in the global market. But the prices of this software are very high and the industry is
known to make use of cracked versions of the software in the country. Such practice is
known to pose a great hazard in the engineering world. The output from a
cracked/manipulated software could be highly erroneous, to say the least. Through
this research work, a Finite Element Software that will be affordable, user friendly
(interactive), and open sourced is being provided and made available to answer one of
the basic needs of the local geotechnical engineering professional community.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 2

1.2 Statement of the Problem

Foundation soils are usually found in a stratified arrangement. This is attributed to
geological processes such as volcanic action, erosion/sedimentation and weathering.
Limited techniques are available for estimating the stress and deformation parameters
in such multi-layered systems. It is apparent that closed form equations will not be
practical for analyzing such systems due to an extremely wide range of problem
combinations that could possibly be encountered when one starts trying to handle non
homogeneous cases. Hence, the remaining option is looking into the finite element
technique and develop an application that fulfills the following qualities.

The application should be able to accept the necessary inputs (elastic properties and
loading magnitude) and compute the stress and deformation values for the given
model problem.

Accuracy of the finite element technique is related with the subdivisions (meshing
arrangement) that are applied to the modeled problem. Hence, after developing the
software, a number of trial runs should be conducted to compare outputs of the
program against known results and recommendation will be given concerning what
kind of meshing arrangement gives the most accurate result.

The software should be user friendly and the user should be able to get computational
output at each step so that the analysis may be checked independently.

1.3 Aim and Objectives

This study is aimed at developing an application software that can determine stresses
and deformation parameters for single-layered and multi-layered soils. The following
objectives are set forth in order to reach the aim of the study:

1. To gain deeper understanding of the basic principles in the theory of elasticity
that govern stress and deformation parameters

2. To model the process using the Finite Element Method (FEM) and to apply the
model into a computer application software.

3. To develop the application software in such a manner that it can analyze
problems involving various types of loading, various types of boundary
conditions, and various types of foundation material arrangements.

4. To analyze and compare the results of the software output against closed form
equations (for cases where available) and against other software.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 3

1.4 Scope of Study

This study is limited to developing a Finite Element Method based application that
can estimate stresses and deformations (strains and displacements) applicable within
the elastic rage of geotechnical problems. Hence, estimations of long term settlements,
i.e. consolidation and creep settlements, will not be covered here.

The software is being prepared to analyze two dimensional problems. In geotechnical
engineering, two dimensional analyses are practically applicable for problems of
plane-strain and axisymmetric conditions where the problem is simplified due to the
fact that a number of the strain components are zero in these two cases.

While bound by the above listed conditions, the software shall undertake the analysis
of various types of loading and stratification arrangements as follows.

i. Application of any numbers of or combinations of point loads, continuous
line loads, circular loads and uniform strip loads;

ii. Application of any number of layers that can be represented by the elastic
properties Young’s modulus of Elasticity and Poisson’s ratio.

The types of loading arrangements that can be analyzed by the software are shown in
Figure 1.1.

1.5 Presentation of the Thesis

This thesis work comprises of five Chapters. The first Chapter introduces the main issue
that will be covered by this paper. The basic objectives and the scope of the research are
also presented here.

The second Chapter is dedicated to literature review. In this portion, highlights are given
concerning previous works conducted under the topic of stress and deformation
computations. Also in this Chapter, the derivation of the basic finite element equations
will be discussed.

The third Chapter is dedicated to discussion of the software development procedures
taken. Here, the basic programming modules incorporated in the software and flowchart
of the solution process will be covered. Also in this Chapter an example problem will be
solved in order to display the software’s usage.

The analysis and comparison section consists of the forth Chapter. Here, output of the
finite element software is compared with output from other software and also with results
of closed form solutions where available.

On the final Chapter, conclusion and recommendation are forwarded based on lessons
taken from the research work.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 4

C.L

C.L

C.L

C.L

C.L

C.L

Embeded Loads Multiple Layers

Point Load

Line Load

Uniform Strip
 Load

Circular Load

Surface Loads

Figure 1.1: Types of Loads that can be Analyzed by the FEM Software

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 5

2. LITERATURE REVIEW

2.1. General

The basic question of how an elastic medium will react to a load has been motivating
various professional to work on what are referred to as fundamental solutions of
elasticity.

Earlier, solutions for the case of a homogeneous elastic material being acted on by
either a concentrated load or distributed load have been discussed by Boussinesq,
Flament, Kelvin, Cerrutti, and Mindlin. The works of these individuals are solutions
bound by governing equations of constitutive law, conservation of energy, and
continuity (compatibility) conditions. The solutions provided by each of the
professionals have been developed for different sets of problems as follows. [3][7]

 Joseph Boussinesq provided equations to respond to the problem of a point

load acting normal to the surface of an elastic half space.

 Alfred Flamant used Boussinesq’s solution to answer the question of how the
continuum would react if a line load was applied normal to the surface of an
elastic half-space.

 Willam Thompson (Lord Kelvin) solved the problem of a point load acting
within an infinite elastic continuum.

 Cerrutti Solved the problem of a horizontal point load acting along the surface
of elastic half-space.

 Raymond Mindlin solved problems of a point load acting vertically and
horizontally within an elastic half space.

While the solutions provided by each of the above scientists are suited for the cases of
a homogeneous material extending indefinitely at least in depth and width, their use
for geotechnical engineering has been rather limited due to their applicability to only
ideal scenarios. Nevertheless, these solutions have laid the foundation for further
manipulation to develop solutions to the cases of non homogeneous problems.

The equation provided by H.F. Winterkorn/H. Fans involves a shape factor J’ to
estimate settlement of the center of a uniformly loaded area on an elastic layer
underlain by a rigid base. [5]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 6

Alternatively, the equation of Burmister estimates elastic settlement of a stiff layer of
finite thickness underlain by a soft layer of great depth. [5]

While the earlier attempts have been focusing on providing mathematical solutions to
estimate stress and deformation distribution for a series of cases, all the closed form
solutions remain bound to very limited combination of loads and arrangement of
elastic media. The finite element technique provides an alternative numerical
approach to solving such geotechnical problems. This technique which has been
gaining popularity in recent years with the advent of high performance computers has
a number of advantages over the closed form type solutions. Its main advantage lies in
its implementation of a generalized set of procedures in solving problems with any
type of loading condition and geometrical arrangement. [6]

2.2. Derivation of the Finite Element Method Equations

2.2.1. Derivation of Equations for Plane Strain Problems

The stiffness approach is used in developing a solution strategy for the finite element
software. The stiffness approach is a robust means of computing for unknown forces
and displacement values in matrix equation format. [1][6]

The stiffness equation: {F}=[K]{d} (2.1)

 where {F} = global external forces vector

[K] = global stiffness matrix

{d} = structural displacement vector

All displacements and forces are associated with the nodes of a finite element mesh.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 7

Figure 2.1: Nodal Forces on a Finite Element Mesh

The stiffness equation attributes forces induced at each node as a reaction to the
combined action of displacements occurring at the node itself and every other node in
the system.

{F} = [K] {d} (2.1)

F1 = K11d1 + K12d2 + K13d3 + …. + K1ndn

Fn = Kn1d1 + Kn2d2 + Kn3d3 + …. + Knndn

=> Force induced at a node= sum of the products of displacement values of each node
with a respective coefficient

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 8

The global stiffness matrix, [K], holds coefficients equivalent to the force induced at a
node as a consequence of a unit displacement acting at each respective node of the
system

Developing the stiffness matrix involves the following steps

- Selecting the type of element used to discretize the system (in this case a
triangle)

- Selecting the displacement function (linear displacement function is used here)

- Defining the Strain-Displacement and Stress-Strain Relationship

- Deriving the elemental stiffness matrix and equations using the Total Potential
Energy approach

2.2.1.1. Selecting the Type of Element

The two dimensional soil matrix is discretized into sets of triangular elements. Each
element has three nodes denoted i, j, and m. Each node has 2 DOFs (displacement in x
and z directions).

3.

Figure 2.2: A Triangular Element in a Finite Element Mesh

Triangular elements have been chosen because triangles are the basic two dimensional
shapes and also because the finite element expressions related to triangular element
are simple.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 9

Let ui and vi represent the displacement components of node i in the x and z
directions, respectively.
The nodal displacements for an element with nodes i, j, and m are:

 where

Therefore: (2.2)

2.2.1.2. Selecting Displacement Functions

In order to compute the deformation parameters such as the normal and shear strains,
the distribution of displacements throughout the element should get represented by a
displacement function. Here, a linear displacement function is allocated for each
triangular element, defined as [1]

 (2.3)

A linear displacement function ensures that the displacements along each edge of the
element and the nodes shared by adjacent elements are equal.

To obtain the values for the “a”s, the coordinates of the nodal points are substituted
into the above equations.

ui=a1 + a2xi + a3zi vi=a4 + a5xi + a6zi (2.4)

uj=a1 + a2xj + a3zj vj=a4 + a5xj + a6zj

um=a1 + a2xm + a3zm vm=a4 + a5xm + a6zm

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 10

Solving for the “a”s and writing the results in matrix form gives:

= => {a}=[x]-1{u} (2.5)

The inverse of the [x] matrix is:

 (2.6)

Where

 is the determinant of [x]

2A = xi (zj - zm) + xj (zm- zi) + xm (zi - zj)

Where A is the area of the triangle and

– – – (2.7)

– – –

– – –

The values of {a} may be written in matrix form as:

 and (2.8)

then, deriving the displacement function in terms of the coordinates x and z gives;

{u} = [1 x z]

Substituting the values for “a” into the above equation gives:

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 11

{u} = [1 x z]

{u} = [1 x z]

Performing the matrix multiplication gives;

u(x,z) =

a similar expression can be obtained for the z displacement

v(x,z) =

the displacements can be written in a more convenient form as:

u(x,z) = Niui + Njuj + Nmum v(x,z) = Nivi + Njvj + Nmvm (2.9)

where

Ni = Nj = Nm =

The elemental displacements can be summarized as;

 (2.10)

In another form the above equations are;

{Ψ} = [N]{d} where

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 12

2.2.1.3. Defining the Strain-Displacement and Stress-Strain

Relationships

Elemental Strains: - For Plane Strain problems, the non-zero strain components are εx,
εz and xz. These strain components are defined as;

(2.11)

Substituting the approximation for the displacement gives;

the derivatives of the interpolation functions are;

Ni,x = (2.12)

therefore,

 (2.13)

In a similar manner, the remaining strain terms can be expressed as;

 (2.14)

 (2.15)

One can write the strains in matrix form as

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 13

 (2.16)

For axisymmetric analysis, the εθ strain component which is analogous to the εy of
plane strain problems is non-zero. To keep a general format for both kinds of
problems the εy component can be incorporated as follows;

 (2.17)

These equations can be written in matrix form as;

 (2.18)

where

Stress-Strain Relationship:

The generalized Hooke’s law for isotropic materials is expressed in matrix form as
follows: [10]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 14

considering that

 and  =2ε …for the shear strains;

the above set of equations could be rearranged into

For Plane strain, the strains εy , xy , and yz are equal to zero

The above equation could be simplified and rearranged into;

or;

 (2.19)

Where,

 ; Stress-strain matrix

 …(2.20)

In short, stresses can be related to strains by the equation;

 (2.21)

Note: Though the y is not necessarily zero for plane strain cases, references
generally skip this component and express the D matrix in a three by three format to
display components of the equation within a single plane. In this presentation,
however, the y component is maintained and the D matrix is provided in a four by
four format which is analogous to the case of axi-symmetric cases.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 15

2.2.1.4. Derivation of the Elemental Stiffness Matrix Using the

Total Potential Energy Approach

The aim of this subchapter is to derive the stiffness matrix which is a component of
the stiffness equation given by;

{F}=[K]{d} (2.1)

 where {F} = external forces vector

 [K] = stiffness matrix

 {d} = displacements vector

The derivation will be carried out using the total potential energy approach.[1]

The total potential energy is defined as the sum of the internal strain energy U and the
potential energy of the external forces :

 (2.22)

Where the strain energy is ;

 => (2.23)

The potential energy of the body force term is;

 (2.24)

Where is the general displacement function, and is the body weight per unit
volume.

Where the potential energy of the concentrated forces is ;

 (2.25)

Where {P} are the concentrated forces, and {d} are the nodal displacements.

The potential energy of the distributed loads is;

 (2.26)

Where is the general displacement function, and are the surface tractions.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 16

Then the total potential energy expression becomes:

The nodal displacements {d} are independent of the general x-z coordinates, therefore

The last three terms can be defined as:

Therefore:
 (2.27)

Stability occurs when the system’s potential energy is at its minimum. At the minimum
potential energy the first derivate should be equal to zero.

Minimization of with respect to each nodal displacement requires that;

The above relationship requires;

The stiffness matrix can be defined as:

For a two dimensional element, it is convenient to use a thickness of one unit, the above
integral reduces to;

For the case of linear interpolation functions, the integrand in the above equation is not a
function of x or z (global coordinates); therefore, the integration reduces to:

 (2.28)

Where “A” is the area of the triangular element.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 17

2.2.2. Considerations for Axisymmetric Problems

Axisymmetric problems involve conditions that are symmetrical about a central-
vertical axis. The mathematical problems presented are similar to those of plane strain
due to the fact that both conditions are two dimensional. One basic difference is that in
axisymmetric problems one deals with cylindrical coordinate system and hence
applies the r-z coordinate system rather than the x-z coordinate system. Consequently,
the terminologies used for the non-zero strain and stress components are;

 and , respectively. (2.29)

Furthermore, unlike its plane strain counterpart, the εθ strain component is not
necessarily zero. For the axisymmetric case, the strain components are [4]

 (2.30)

from and following similar steps to that of the plane strain case;

[

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 18

[(2.31)

With the B matrix now involving the variable coordinates r and z, the strains are no
longer constant within an element as in the plane strain case. In order to overcome the
complications involved in the subsequent volume integral evaluation, r and z can be
substituted by the centroidal coordinates and .

The D matrix remains the same as the in the case of plane strain problems;

 (2.20)

The stiffness matrix of the element can now be computed following similar steps as in
the case of plane strain. Remembering that the volume integral has to be taken over
the whole ring of material gives;

The integration cannot be performed as simply as in the plane strain case due to
involvement of the non constant r and z variables. A concise and accurate enough
simplification involves substituting the centroidal coordinates in place of the variable
ones.

with the above simplification,

 (2.32)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 19

2.2.3. Summary of Useful Equations

The stiffness equation (the force-displacement relationship)
{F}=[K]{d}

Where,

For two dimensional elements with linear displacement functions;

 for plane strain problems (2.28)

 for axisymmetric problems (2.32)

The strain-displacement relationship

 (2.18)

The stress-strain relationship
 (2.21)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 20

3. FEM Software Development

3.1. Program Flow Chart

The finite element software developed implements the following flow chart.

Inputting Dimensions, Material Properties and
Problem Type (Plane Strain/ Axisymmetric)

Entering Load Data: Numbers, Magnitudes and Locations

Determination of Critical Points (loads, layer lines, etc…)

Generation of Coarse Mesh based on Critical Points

Subdividing the Coarse Mesh into Fine Mesh Based on
Maximum Element size specified

Subdividing the Orthogonal Grid into Triangular Units

Generating the Nodal Coordinates Matrix

Generating the Element-Node Connectivity Matrix

I. Data Entry Stage

II. Mesh Generation

Stage

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 21

Figure 3.1: Flowchart of the Finite Element Software

III. Analysis Stage

IV. Output Stage

Generating Output

Graphical Output
Coloring scheme is used to show the relative magnitude of stresses

& Strains of each element with respect to the full Soil Matrix

Numeric Output
Displacement, stress and strain values are presented in tabular format

Report Generation (Optional)
All basic steps followed by the finite element solution process are

saved into text file format

Calculation of Elemental B and D Matrices

Calculation of Elemental Stiffness Matrix

Adding the Incremental Contribution of the Elemental
Stiffness Matrix to the Global Stiffness Matrix

Preparing the Partitioned Global Stiffness & Forces Matrix

Solving the Stiffness Equation for unknown
displacement values using Gauss Elimination

Copying the Global Displacement Values into Local
Displacement Values for Every Element

Calculating Elemental Strains

Calculating Elemental Stresses

Loop for
all

elements

Loop for
all

elements

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 22

3.2. Program Modules Incorporated in the Software

3.2.1. The SOIL DATA ENTRY Program Module

Data Entry is the first step taken by the finite element software. Here, the program
prompts the user to enter

- dimensions of the soil matrix to be used for analysis,
- total number of soil layers in the problem, and
- thickness and elastic properties (E and ) of each layer

Here, the user specifies whether the problem type is plane strain or axisymmetric. In
this stage there is also an option of selecting between two types of boundary
conditions. In either case the boundaries are fixed against lateral movement (x or r
directions for plane strain and axi-symmetric cases, respectively) while it is possible
to either fix or release the left & right boundaries in the vertical (z) direction. For the
default case, the program considers laterally and vertically restrained boundaries.

After the various data are entered, the values are stored in respective variables.

3.2.2. The LOADING DATA ENTRY Program Module

Loading Data Entry is the second step taken by the finite element software. Here, the
program prompts the user to enter

- number of concentrated loads to be applied,
- magnitude and location of each concentrated load,
- number of distributed loads to be applied, and
- magnitude and location of each distributed load

After the various data are entered, the values are stored in respective variables.

3.2.3. The GENERATE MESH Program Module

The third step taken by the software is mesh generation. Here, the following set of
procedures is executed.

 Critical points such as location of loads and layer lines are identified.
 A coarse mesh is generated based on the critical points identified.
 The minimum dimension between girds of the coarse mesh is identified.
 The coarse mesh is further subdivided into fine mesh based on either the

maximum element size specified by the user or the minimum dimension
identified between any two critical points (coarse mesh), whichever is smaller.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 23

While the default maximum mesh dimension is the largest aspect divided by
40, the used has the option of specifying a smaller mesh dimension.

 The forces matrix is generated based on the concentrated and distributed loads
applied. The distributed loads are converted to equivalent point loads that are
applied at the nearest nodes.

 The fine orthogonal mesh generated in previous steps is further subdivided into
triangular elements. Following, the nodal coordinates list is generated.

 A list of the unconstrained degrees of freedom is generated to be used later for
partitioning the stiffness and forces matrices.

Figure 3.2: Sample Case of Discretized Soil Matrix

3.2.4. The RUN ANALYSIS Program Module

The Analysis program executes the main finite element method procedures. This
involves the following three steps.

Step 1. Calculation of Elemental Stiffness Matrices and Assembly of the Global
Stiffness matrix.

This step involves a loop that calculates the stiffness matrix of each element. Here the
elemental B matrix is calculated using the Equations (2.18) & (2.31):

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 24

and

[

 for plane strain and axisymmetric problems, respectively.

Then the elemental D matrix is calculated using Equation (2.20):-

When there is more than one layer, elements within different layers will have different
D matrix values. Otherwise, the D matrix will be the same for all elements.

Following, the elemental stiffness matrix, k, is calculated using the equations:-

 for plane strain problems and

 for axisymmetric problems

With every loop, the incremental contribution of the elemental stiffness matrix is
added to the global stiffness matrix, K, to give the final assembled global stiffness
matrix upon completion of the looping procedure.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 25

Element i

Element j

Figure 3.3: Summation of Stiffness Coefficients for Common Nodes

Step 2. Solving the Stiffness Equation for the Unknown Displacement Values

The next step involves generating the partitioned global stiffness and forces matrices. The
partitioned matrices involve only the components of the unrestrained DOFs. Since it is
only at the unrestrained DOFs that the displacement values are not known, it is sufficient
to express the stiffness equation in terms of the unrestrained DOFs. The program collects
elements that correspond to unrestrained DOFs from the stiffness and forces matrices to
construct the partitioned stiffness and forces matrices.

Figure 3.4: Partitioning the Stiffness Equation

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 26

Taking the partitioned matrices leaves an equation of the form;

{f}known=[k]{d}unknown

Following, the stiffness equation is solved by using gauss elimination procedure.
Since most components of the stiffness matrix are zero, the Gauss elimination
provides a convenient procedure for solving the matrix equation and determining the
unknown displacements matrix, d.

Step 3. Calculating Elemental Strains and Stresses

In order to calculate the elemental stresses and strains, the local displacement value of
each element’s DOFs should be referred from the global displacement matrix. A
looping procedure copies values of local displacements, calculates the elemental
strains and then calculates the elemental stresses for each element.

The elemental strains are calculated using the equation:-

 (2.18)

The elemental stresses are calculated using the equation:-

 (2.19)

3.2.5. The OUTPUT Program Module

The OUPUT program module presents the calculation output of the analysis stage to
the user. Output is provided in graphical, numeric and text report formats. In the
graphical presentation, the maximum stress and strain values are determined and a
color scheme is used to show the relative magnitudes of stresses and strains of each
element with respect to the full soil matrix. To this effect, the module identifies the
maximum stress or strain and categorizes the remaining elements into six groups as
follows.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 27

Group Color Code Description

I. >75% of the maximum stress/strain

II. between 50% and 75% of the maximum stress/strain

III. between 25% and 50% of the maximum stress/strain

IV. between 0% and 25% of the maximum stress/strain

V. Stress/strain equals zero

VI.
Stress/strain is less than zero

(applied to normal stresses and strains only)

Table 3.1: Color Code of the Finite Element Software Graphic Output

Along with the graphical output, a numeric output is presented in tabular format
displaying values of displacement, stresses and strains. Furthermore, the user can get
settlement, stress and strain output for any location on the soil matrix model just by
pointing the computer mouse at the desired location.

In addition, the user has an option of getting a text report generated regarding the
analysis conducted. The report, generated in text file format, displays the value of
each variable at each calculation step of the analysis stage.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 28

3.3. User Interfaces and Application Example

In this sub chapter, the usage of the finite element software will be demonstrated
through an example problem. The problem involves a strip load acting upon the surface
of a triple layered soil system as shown in the figure below.

It is required to know the settlement, stress and strain distributions through the foundation
soil.

C.L

E= 2,500 kN/m2

= 0.4
h = 5m

E= 8,000 kN/m2

= 0.3
h = 5m

E= 12,000 kN/m2

= 0.2

P = 100 kN/m²

Figure 3.5: A Strip Load Acting on a Three Layered System Problem

Prior to beginning analysis, the user should have the software copied on a computer.
There is no installation procedure for the software as it is sufficient to copy the folder
containing the executable software file and other associated files to any desired directory.
However, in order to run the executable file, the computer should have the support
component, .NET framework 4, or a more recent version installed on the computer. This
support component is provided along the FEM software and can be installed by double
clicking its icon. Once the .NET framework is installed, the FEM software could be run
as many times as needed without having to reinstall the support component.

To begin analysis of the problem, the user starts the finite element software by double
clicking the FEM software icon. Upon execution, the home screen of the user interface
appears as shown in Figure 3.6

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 29

Figure 3.6: The Home Screen of the FEM Software

The home screen of the finite element software consists of the menu bar, the four
basic application buttons and the graphical display area. The four buttons are the
“Enter Soil Data” button, the “Enter Loading Data” button, the “Generate Mesh”
button and the “Run Analysis” button. The buttons are prepared to let a user make a
simple use of the application with default setting of the software. A user who intends
to manipulate more advanced features of the software can access them through the
menu bar. As an initial step, the user begins by clicking the “Enter Soil Data Button”.
Following the button click, the soil data entry interface appears.

This interface has been prepared to let the user provide parameters regarding size of
soil matrix to be used for analysis and material properties for each layer. The
dimensions of soil matrix should be large enough that the stresses in the boundaries
will be much lower than maximum stress expected to occur on elements closest to the
load. On the other hand, if one takes very large dimensions, it won’t be possible to get
output data in close intervals. For this specific problem, a width of 20m and a total
depth of 15 meters will be used. Here, though the depth of the bottom layer is
supposed to extend indefinitely, a depth of 5m will be assigned to the program. The
total depth taken by the model is many times larger than the width of the load and
hence the output is not expected to be significantly affected by allocation of a finite
depth to the problem.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 30

After entering the given information from the problem and keeping the default Plane
Strain Setting of the software, the Soil Date Entry interface will look like the one
shown in Figure 3.7.

Figure 3.7: The Soil Data Entry Interface of the FEM Software

Following soil data entry, the user clicks the apply button and gets returned to the
home screen. After the soil data entry, the user clicks the ENTER LOADING DATA
button which initiates the loading date entry interface to appear. On this interface, the
user provides the magnitude and location of loads. The strip load of the example
problem falls under the distributed load category and it is most convenient to apply the
load at the center of the soil matrix model. After entry of the required information, the
interface looks like the one shown in Figure 3.8.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 31

Figure 3.8: The Loading Data Entry Interface of the FEM Software

Following, the user clicks the apply button which leads back to the home screen of the
software. Here it is possible to see that the layer lines have been marked and the load
has been drawn as shown in Figure 3.9.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 32

Figure 3.9: The Home Screen after Soil Data and Loading Data Entry

Next the user clicks the Generate Mesh button. For the default case, the software will
generate a mesh with elements of maximum size equal to the largest dimension of the
model divided by 40. Alternatively, the user can click on the “Mesh” menu item and
select the “Edit Mesh Size” option to modify maximum mesh dimension prior to
generating the mesh.

After the mesh generation, the home screen will look like the one shown in Figure
3.10.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 33

Figure 3.10: The Home Screen after Mesh Generation

At this stage, the software has collected all the necessary information and is ready to
conduct the finite element analysis. Clicking the RUN ANALYSIS button will start
the solution procedure. When the program finishes, the output interface appears by
displaying the deformed mesh and the numeric output of the nodal deformations as
shown in Figure 3.11.

Alternatively, the user could have any of the stress and strain outputs displayed. As a
sample, the vertical stress output and the vertical strain output are displayed in Figures
3.12 and 3.13.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 34

Figure 3.11: The Output Interface Displaying Deformed Mesh and Output Data at the
Mouse Pointer

Figure 3.12: The Output Interface Displaying Stress in the z direction

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 35

Figure 3.13: The Output Interface Displaying z-Strain Distribution

Furthermore, the user could request for an analysis report to be generated by the
software. This is achieved by clicking the output options menu item and selecting the
GENERATE REPORT option. Upon receiving this command, the software will
generate a report of the calculations taken. The report displays the value of the finite
element equation variables at each calculation step and other relevant information
such as the nodal coordinates and the element-node connectivity matrix.

A comparison of this software’s output against the output of the software GeoStudio
2007 has been conducted for this problem along with other problems in Chapter 4.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 36

4. ANALYSIS AND COMPARISON

4.1. Introduction

In this chapter the output of the Finite element software is compared with output from
other software and solutions of closed form equations where available. Comparison is
performed for sample problems involving point loads, line loads and uniform strip
loads. Comparison is conducted for cases of one, two and three layers. For the case of
one layer, in addition to surface loads, loads embedded within the soil medium are
also considered. The output parameters used for comparison are;

 Vertical displacement,
 Vertical stress,
 Vertical strain, and
 Shear Stress

The commercially available software, GeoStudio 2007, is used for comparing the
analysis results. While the SIGMA/W module of GeoStudio 2007 can compute stress
and deformation values of geotechnical problems, the application is currently
available in student licenses and is limited to using a maximum of 500 elements only.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 37

4.2. Comparison of Analysis Results Against Available Equations and Other Software

4.2.1. Single Layer (Elastic Isotropic Half-Space)

4.2.1.1. Surface Loads

4.2.1.1.1. Point Load

Sample problem 1: Point Load Acting on the Surface of a Single Layer

P = 50 kN

E= 2500 kN/m2

= 0.3

Figure 4.1

For the problem of a point load acting on the surface of a single layer system, finite
element analysis has been carried out using the software developed herewith and using
the software GeoStudio 2007 (student license version). Furthermore, the output results for
vertical and shear stresses are compared with available equations. Except for the shear
stress distribution, all other parameters are computed along the axis of loading. For the
shear stress distribution, comparison of results is performed for a plane at a radial
distance of 1.5m from the point load.

Equations of Gray [2] for a point load acting on the surface of an elastic half space are given;

P

x

y

z

y

x

yr
R

r

O

y

 m=Poisson’s number

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 38

Figure 4.2: Distribution of Vertical Displacement along the Axis of a Point Load
Acting on the Surface of a Single Layered System

Figure 4.3: Distribution of Vertical Stress along the Axis of a Point Load Acting on
the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Equation of Gray

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 39

Figure 4.4: Distribution of Vertical Strain along the Axis of a Point Load Acting on
the Surface of a Single Layered System

Figure 4.5: Distribution of Shear Stress along a Plane at a radial distance of 1.5m
from a Point Load Acting on the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.02 0.04 0.06 0.08 0.1 0.12

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Equation of Gray

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 40

4.2.1.1.2. Line Load

Sample problem 2: Line Load Acting on the Surface of a Single Layer

P = 50 kN/m

E= 2500 kN/m2

= 0.3

Figure 4.6

For the problem of a line load acting on the surface of a single layered system, finite
element analysis has been carried out using the software developed herewith and using
the software GeoStudio 2007 (student license version). Furthermore, the output results
for vertical and shear stresses are compared with available equations. Except for the
shear stress distribution, all other parameters are computed along the axis of loading.
For the shear stress distribution, comparison of result is performed for an axis parallel
to the plane of loading at a distance of 1.5 meters.

Equations of Gray [2] for a line load acting on the surface of an elastic half space are given;

-x +x

z

x

zR

(x,y,z)

P

 m=Poisson’s number

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 41

Figure 4.7: Distribution of Vertical Displacement along the Axis of Line Load Acting
on the Surface of a Single Layered System

Figure 4.8: Distribution of Vertical Stress along the Axis of a Line Load Acting on
the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04 0.05 0.06

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Output

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 50 100 150 200

D
e

p
th

 (
m

)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Equation of Gray

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 42

Figure 4.9: Distribution of Vertical Strain along the Axis of a Line Load Acting on
the Surface of a Single Layered System

Figure 4.10: Distribution of Shear Stress along an Axis 1.5m Offset from a Line Load
Acting on the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04 0.05

D
ep

th
 (

m
)

Vertical Strain

FEM

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Equation of Gray

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 43

4.2.1.1.3. Uniform Strip Load

Sample problem 3: Strip Load Acting on the Surface of a Single Layer

P = 100 kN/m²

E= 2500 kN/m2

= 0.3

C.L

Figure 4.11

For the problem of a uniformly distributed strip load acting on the surface of a single
layered system, finite element analysis has been carried out using the software developed
herewith and using the software GeoStudio 2007 (student license version). Furthermore,
the output results for vertical and shear stresses are compared with available equations.
Except for the shear stress distribution, all other parameters are computed along the axis
of loading. For the shear stress distribution, comparison of result is performed for an axis
passing through the edge of strip loading.

Equations of Gray [2] for a strip load acting on the surface of an elastic half space;

-x +x

z
(x,y,z)

P

m=Poisson’s number

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 44

Figure 4.12: Distribution of Vertical Displacement along the Centerline of a
Uniformly Distributed Strip Load Acting on the Surface of a Single Layered System

Figure 4.13: Distribution of Vertical Stress along the Centerline of a Uniformly
Distributed Strip Load Acting on the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Equation of Gray

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 45

Figure 4.14: Distribution of Vertical Strain along the Centerline of a Uniformly
Distributed Strip Load Acting on the Surface of a Single Layered System

Figure 4.15: Distribution of Shear Stress along the Edge of a Uniformly Distributed
Strip Load Acting on the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

D
ep

th
 (

m
)

Absolute Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Equation of Gray

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 46

4.2.1.1.4. Uniform Load of Circular Plan Area

Sample problem 4: Uniform Load of Circular Plan Area Acting on the Surface of a
Single Layer

E= 2500 kN/m²
= 0.3

C.L
P = 100 kN/m²

Diameter = 2m

Figure 4.16

For the problem of a uniform load of circular plan area acting on the surface of a single
layered system, finite element analysis has been carried out using the software developed
herewith and using the software GeoStudio 2007 (student license version). Except for the
shear stress distribution, all other parameters are computed along the axis of loading. For
the shear stress distribution, comparison of result is performed for an axis passing through
the edge of the circular loading.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 47

Figure 4.17: Distribution of Vertical Displacement along the Centerline of a Uniform
Load of Circular Plan Area Acting on the Surface of a Single Layered System

Figure 4.18: Distribution of Vertical Stress along the Centerline of a Uniform Load of
Circular Plan Area Acting on the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

D
ep

th
 (

m
)

Vertical Displacement (m)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

D
ep

th
 (

m
)

Vertical Stress (m)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 48

Figure 4.19: Distribution of Vertical Strain along the Centerline of a Uniform Load of
Circular Plan Area Acting on the Surface of a Single Layered System

Figure 4.20: Distribution of Shear Stress along the Edge of a Uniform Load of
Circular Plan Area Acting on the Surface of a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

D
ep

th
 (

m
)

Absolute Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 49

4.2.1.2. Loads in Half-Space

4.2.1.2.1. Point Load

Sample problem 5: Point Load Acting within a Single Layer

P = 50 kN

E= 2500 kN/m2

= 0.3

Figure 4.21

For the problem of a point load acting within a single layered system, finite element

analysis has been carried out using the software developed herewith and using the

software GeoStudio 2007 (student license version). Except for the shear stress

distribution, all other parameters are computed along the axis of loading. For the shear

stress distribution, comparison of results is performed for a plane at a radial distance

of 1m from the point load.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 50

Figure 4.22: Distribution of Vertical Displacement along the Axis of a Point Load
Acting within a Single Layered System

Figure 4.23: Distribution of Vertical Stress along the Axis of a Point Load Acting
within a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

D
e

p
th

 (
m

)
Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

-200 -150 -100 -50 0 50 100 150 200

D
e

p
th

 (
m

)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 51

Figure 4.24: Distribution of Vertical Strain along the Axis of a Point Load Acting
within a Single Layered System

Figure 4.25: Distribution of Shear Stress at a Plane of 1m Radial Distance from a
Point Load Acting within a Single Layered System

0

2

4

6

8

10

12

14

16

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00 2.50E+00 3.00E+00 3.50E+00

D
ep

th
 (

m
)

Shear Stress (kN/m2)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 52

4.2.1.2.2. Line Load

Sample problem 6: Line Load Acting within a Single Layer

P = 50 kN/m

E= 2500 kN/m2

= 0.3

Figure 4.26

For the problem of a line load acting within a single layered system, finite element

analysis has been carried out using the software developed herewith and using the

software GeoStudio 2007 (student license version). Except for the shear stress

distribution, all other parameters are computed along the axis of loading. For the shear

stress distribution, comparison of result is performed for an axis parallel to the plane

of loading at a distance of 1m.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 53

Figure 4.27: Distribution of Vertical Displacement along the Axis of a Line Load

Acting within a Single Layered System

Figure 4.28: Distribution of Vertical Stress along the Axis of a Line Load Acting
within a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

-80 -60 -40 -20 0 20 40 60 80

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 54

Figure 4.29: Distribution of Vertical Strain along the Axis of a Line Load Acting
within a Single Layered System

Figure 4.30: Distribution of Shear Stress at an Axis 1m Offset from a Line Load
Acting within a Single Layered System

0

2

4

6

8

10

12

14

16

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0.00E+00 1.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00 6.00E+00

D
ep

th
 (

m
)

Shear Stress (kN/m2)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 55

4.2.1.2.3. Uniform Strip Load

Sample problem 7: Strip Load Acting within a Single Layer

E= 2500 kN/m2

= 0.3

P = 100 kN/m²

Figure 4.31

For the problem of a uniformly distributed strip load acting within a single layered
system, finite element analysis has been carried out using the software developed
herewith and using the software GeoStudio 2007 (student license version). Furthermore,
the output results for vertical and shear stresses are compared with available equations.
Except for the shear stress distribution, all other parameters are computed along the axis
of loading. For the shear stress distribution, comparison of result is performed for an axis
passing through the edge of strip loading.

Equations of Kezdi for a strip load acting on the surface of an elastic half space;

-x +x

z

P

b/2b/2

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 56

Figure 4.32: Distribution of Vertical Displacement along the Centerline of a
Uniformly Distributed Strip Load Acting within a Single Layered System

Figure 4.33: Distribution of Vertical Stress along the Centerline of a Uniformly
Distributed Strip Load Acting within a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.02 0.04 0.06 0.08 0.1

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

-300 -200 -100 0 100 200 300

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Equation by Kezdi

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 57

Figure 4.34: Distribution of Vertical Strain along the Centerline of a Uniformly
Distributed Strip Load Acting within a Single Layered System

Figure 4.35: Distribution of Shear Stress along the Edge of a Uniformly Distributed
Strip Load Acting within a Single Layered System

0

2

4

6

8

10

12

14

16

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 58

4.2.1.2.4. Uniform Load of Circular Plan Area

Sample problem 8: Uniform Load of Circular Plan Area Acting within a Single Layer

E= 2500 kN/m²
= 0.3

C.L

P = 100 kN/m²
Diameter = 2m

Figure 4.36

For the problem of a uniform load of circular plan area acting within a single layered
system, finite element analysis has been carried out using the software developed
herewith and using the software GeoStudio 2007 (student license version). Except for the
shear stress distribution, all other parameters are computed along the axis of loading. For
the shear stress distribution, comparison of result is performed for an axis passing through
the edge of the circular loading.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 59

Figure 4.37: Distribution of Vertical Displacement along the Centerline of a Uniform
Load of Circular Plan Area Acting within a Single Layered System

Figure 4.38: Distribution of Vertical Stress along the Centerline of a Uniform Load of
Circular Plan Area Acting within a Single Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

-60 -40 -20 0 20 40 60

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 60

Figure 4.39: Distribution of Vertical Strain along the Centerline of a Uniform Load of
Circular Plan Area Acting within a Single Layered System

Figure 4.40: Distribution of Shear Stress along the Edge of a Uniform Load of
Circular Plan Area Acting within a Single Layered System

0

2

4

6

8

10

12

14

16

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 61

4.2.2. Two Layers- Surface Loads

4.2.2.1.1. Point Load

Sample problem 9: Point Load Acting on the Surface of a Double Layered System

E= 12,000 kN/m2

= 0.25
h = 5m

E= 8,000 kN/m 2

= 0.4

P = 50 kN

Figure 4.41

For the problem of a point load acting on the surface of a two layered system, finite

element analysis has been carried out using the software developed herewith and using

the software GeoStudio 2007 (student license version). Except for the shear stress

distribution, all other parameters are computed along the axis of loading. For the shear

stress distribution, comparison of result is performed for a plane at a radial distance of

1m.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 62

Figure 4.42: Distribution of Vertical Displacement along the Axis of a Point Load
Acting on the Surface of a Two-Layered System

Figure 4.43: Distribution of Vertical Stress along the Axis of a Point Load Acting on
the Surface of a Two-Layered System

0

2

4

6

8

10

12

14

16

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

D
e

p
th

 (
m

)
Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 63

Figure 4.44: Distribution of Vertical Strain along the Axis of a Point Load Acting on
the Surface of a Two-Layered System

Figure 4.45: Distribution of Shear Stress along a Plane at 1m Offset from a Point
Load Acting on the Surface of a Two-Layered System

0

2

4

6

8

10

12

14

16

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Sudent License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 64

4.2.2.1.2. Line Load

Sample problem 10: Line Load Acting on the Surface of a Double Layered System

P = 50 kN/m

E= 12,000 kN/m2

= 0.25
h = 5m

E= 8,000 kN/m 2

= 0.4

Figure 4.46

For the problem of a continuous line load acting on the surface of a two layered

system, finite element analysis has been carried out using the software developed

herewith and using the software GeoStudio 2007 (student license version). Except for

the shear stress distribution, all other parameters are computed along the axis of

loading. For the shear stress distribution, comparison of result is performed for an axis

parallel to the plane of loading at a distance of 1m.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 65

Figure 4.47: Distribution of Vertical Displacement along the Axis of a Continuous
Line Load Acting on the Surface of a Two-Layered System

Figure 4.48: Distribution of Vertical Stress along the Axis of a Continuous Line Load
Acting on the Surface of a Two-Layered System

0

2

4

6

8

10

12

14

16

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 66

Figure 4.49: Distribution of Vertical Strain along the Axis of a Continuous Line Load
Acting on the Surface of a Two-Layered System

Figure 4.50: Distribution of Shear Stress at an Axis 1m Offset from a Continuous
Line Load Acting on the Surface of a Two-Layered System

0

2

4

6

8

10

12

14

16

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Sudent License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 67

4.2.2.1.3. Uniform Strip Load

Sample problem 11: Strip Load Acting on the Surface of a Double Layered System

C.L

E= 12,000 kN/m2

= 0.25
h = 5m

E= 8,000 kN/m 2

= 0.4

P = 100 kN/m²

Figure 4.51

For the problem of a uniformly distributed strip load acting on the surface of a two

layered system, finite element analysis has been carried out using the software

developed herewith and using the software GeoStudio 2007 (student license version).

Except for the shear stress distribution, all other parameters are computed along the

centerline of loading. For the shear stress distribution, comparison of result is

performed at the edge of loading.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 68

Figure 4.52: Distribution of Vertical Displacement along the Centerline of a Uniformly
Distributed Strip Load Acting on the Surface of a Two-Layered System

Figure 4.53: Distribution of Vertical Stress along the Centerline of a Uniformly
Distributed Strip Load Acting on the Surface of a Two-Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 69

Figure 4.54: Distribution of Vertical Strain along the Centerline of a Uniformly
Distributed Strip Load Acting on the Surface of a Two-Layered System

Figure 4.55: Distribution of Shear Stress along the Edge of a Uniformly Distributed
Strip Load Acting on the Surface of a Two-Layered System

0

2

4

6

8

10

12

14

16

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

D
ep

th
 (

m
)

Absolute Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 70

4.2.2.1.4. Uniform Load of Circular Plan Area

Sample problem 12: Uniform Load of Circular Plan Area Acting on the Surface of a
Double Layered System

E= 12000 kN/m²
= 0.25

C.L
P = 100 kN/m²

Diameter = 2m

h = 5m

E= 8000 kN/m²
= 0.4

Figure 4.56

For the problem of a uniform load of circular plan area acting on the surface of a double
layered system, finite element analysis has been carried out using the software developed
herewith and using the software GeoStudio 2007 (student license version). Except for the
shear stress distribution, all other parameters are computed along the centerline of
loading. For the shear stress distribution, comparison of result is performed for an axis
passing through the edge of circular loading.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 71

Figure 4.57: Distribution of Vertical Displacement along the Centerline of a Uniform
Load of Circular Plan Area Acting on a Double Layered System

Figure 4.58: Distribution of Vertical Stress along the Centerline of a Uniform Load of
Circular Plan Area Acting on a Double Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02

D
ep

th
 (

m
)

Vertical Displacement (m)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

D
ep

th
 (

m
)

Vertical Stress (m)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 72

Figure 4.59: Distribution of Vertical Strain along the Centerline of a Uniform Load of
Circular Plan Area Acting on a Double Layered System

Figure 4.60: Distribution of Shear Stress along the Centerline of a Uniform Load of
Circular Plan Area Acting on a Double Layered System

0

2

4

6

8

10

12

14

16

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

D
ep

th
 (

m
)

Absolute Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 73

4.2.3. Three Layers- Surface Loads

4.2.3.1. Point Load

Sample problem 13: Point Load Acting on the Surface of a Triple Layered System

P = 50 kN

E= 2,500 kN/m²
= 0.4

h = 5m

E= 8,000 kN/m²
= 0.3

h = 5m

E= 12,000 kN/m²
= 0.2

Figure 4.61

For the problem of a point load acting on the surface of a three layered system, finite

element analysis has been carried out using the software developed herewith and using

the software GeoStudio 2007 (student license version). Except for the shear stress

distribution, all other parameters are computed along the axis of loading. For the shear

stress distribution, comparison of result is performed along a plane at a 1m radial

distance from the point load.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 74

Figure 4.62: Distribution of Vertical Displacement along the Axis of a Point Load
Acting on the Surface of a Three-Layered System

Figure 4.63: Distribution of Vertical Stress along the Axis of a Point Load Acting on
the Surface of a Three-Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 75

Figure 4.64: Distribution of Vertical Strain along the Axis of a Point Load Acting on
the Surface of a Three-Layered System

Figure 4.65: Distribution of Shear Stress along the Axis of a Point Load Acting on the
Surface of a Three-Layered System

0

2

4

6

8

10

12

14

16

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 76

4.2.3.2. Line Load

Sample problem 14: Line Load Acting on the Surface of a Triple Layered System

P = 50 kN/m

E= 2,500 kN/m 2

= 0.4
h = 5m

E= 8,000 kN/m 2

= 0.3
h = 5m

E= 12,000 kN/m2

= 0.2

Figure 4.66

For the problem of a continuous line load acting on the surface of a three layered

system, finite element analysis has been carried out using the software developed

herewith and using the software GeoStudio 2007 (student license version). Except for

the shear stress distribution, all other parameters are computed along the axis of

loading. For the shear stress distribution, comparison of result is performed for an axis

parallel to the plane of loading at a distance of 1m.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 77

Figure 4.67: Distribution of Vertical Displacement along the Axis of a Continuous
Line Load Acting on the Surface of a Three-Layered System

Figure 4.68: Distribution of Vertical Stress along the Axis of a Continuous Line Load
Acting on the Surface of a Three-Layered System

0

2

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04 0.05

D
ep

th
 (

m
)

Vertical Displacement (m, downwards)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 78

Figure 4.69: Distribution of Vertical Strain along the Axis of a Continuous Line Load
Acting on the Surface of a Three-Layered System

Figure 4.70: Distribution of Shear Stress at an Axis 1m Offset from a Continuous
Line Load Acting on the Surface of a Three-Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10

D
ep

th
 (

m
)

Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 79

4.2.3.3. Uniform Strip Load

Sample problem 15: Strip Load Acting on the Surface of a Triple Layered System

C.L

E= 2,500 kN/m 2

= 0.4
h = 5m

E= 8,000 kN/m 2

= 0.3
h = 5m

E= 12,000 kN/m2

= 0.2

P = 100 kN/m²

Figure 4.71

For the problem of a uniformly distributed strip load acting on the surface of a three

layered system, finite element analysis has been carried out using the software

developed herewith and using the software GeoStudio 2007 (student license version).

Except for the shear stress distribution, all other parameters are computed along the

axis of loading. For the shear stress distribution, comparison of result is performed at

the edge of the uniform strip load.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 80

Figure 4.72: Distribution of Vertical Displacement along the Centerline of a Uniformly
Distributed Strip Load Acting on the Surface of a Three-Layered System

Figure 4.73: Distribution of Vertical Stress along the Centerline of a Uniformly
Distributed Strip Load Acting on the Surface of a Three -Layered System

0

2

4

6

8

10

12

14

16

0 0.02 0.04 0.06 0.08 0.1 0.12

D
e

p
th

 (
m

)
Vertical Displacement (m)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

D
ep

th
 (

m
)

Vertical Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 81

Figure 4.74: Distribution of Vertical Strain along the Centerline of a Uniformly Distributed
Strip Load Acting on the Surface of a Three -Layered System

Figure 4.75: Distribution of Shear Stress at the Edge of a Uniformly Distributed Strip
Load Acting on the Surface of a Three -Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

D
ep

th
 (

m
)

Absolute Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 82

4.2.3.4. Uniform Load of Circular Plan Area

Sample problem 16: Uniform Load of Circular Plan Area Acting on the Surface of a
Triple Layered System

E= 2,500 kN/m²
= 0.4

C.L
P = 100 kN/m²

Diameter = 2m

h = 5m

E= 12000 kN/m²
= 0.2

E= 8,000 kN/m²
= 0.3

h = 5m

Figure 4.76

For the problem of a uniform load of circular plan area acting on a triple layered system,
finite element analysis has been carried out using the software developed herewith and
using the software GeoStudio 2007 (student license version). Except for the shear stress
distribution, all other parameters are computed along the axis of loading. For the shear
stress distribution, comparison of result is performed for an axis passing through the edge
of circular loading.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 83

Figure 4.77: Distribution of Vertical Displacement along the Centerline of a Uniform
Load of Circular Plan Area Acting on the Surface of a Triple Layered System

Figure 4.78: Distribution of Vertical Stress along the Centerline of a Uniform Load of
Circular Plan Area Acting on the Surface of a Triple Layered System

0

2

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

D
ep

th
 (

m
)

Vertical Displacement (m)

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

D
ep

th
 (

m
)

Vertical Stress (m)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 84

Figure 4.79: Distribution of Vertical Strain along the Centerline of a Uniform Load of
Circular Plan Area Acting on the Surface of a Triple Layered System

Figure 4.80: Distribution of Shear Stress along the Edge of a Uniform Load of
Circular Plan Area Acting on the Surface of a Triple Layered System

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02 0.025 0.03

D
ep

th
 (

m
)

Vertical Strain

FEM Software

GeoStudio 2007
[Student License]

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

D
ep

th
 (

m
)

Absolute Shear Stress (kN/m²)

FEM Software

GeoStudio 2007
[Student License]

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 85

5. CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

So far, the basic steps used in the development of this finite element software for
computing stress and deformation have been presented along with comparison of the
software’s output against other software and available equations. Based on the
observations made in due course of this research, the following conclusions are drawn.

1. Through utilization of the proper finite element procedures, it is possible to
compute, to an acceptable degree of accuracy, stress and deformation values
for a wide range of geotechnical problems.

2. The accuracy of a finite element solution is highly dependent on the number of
elements used for analysis. Some of the output by the student license version of
the software GeoStudio 2007 is certainly less accurate than that of the software
developed herewith (please refer Figures 4.9, 4.33, 4.63, 4.64, and 4.68). This
is due to the fact that the student license version of GeoStudio 2007 is limited
to usage of 500 elements only. This has forced larger elements to be used for
covering the model area and hence has resulted in less accurate results.

3. The Finite Element software developed in this research uses linear functions to
interpolate displacement values. Using liner displacement functions simplifies
the derivation of the finite element equations. However, the stress and strain
values computed through such mechanism will be constant within an element.
Hence, higher order interpolation functions are required to display variation of
stress and strain within an element.

4. Usage of commercially available software is limited due to high cost involved
in their procurement. Trial versions which are available for free or at lower
costs are usually limited in processing capacity. Hence, the software developed
herewith provides an opportunity to make use of the Finite Element technique
at a much convenient and economical manner.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 86

5.2. Recommendations

The Finite Element Technique provides an opportunity to perform analysis over a

wide range of geotechnical problems as well as in many other streams. The

application developed herewith has taken an initial step in making use of available

computational capacity and finite element concepts to enable analysis of stresses

and deformations for two dimensional geotechnical problems. Either by upgrading

this application or developing a similar application with additional features, it is

possible to expand the application’s use for almost all geotechnical problems.

Among areas of possible expansion, the following are the major ones.

 Application of higher order interpolation functions to get a more detailed and

accurate output;

 Analysis of three dimensional problems;

 Analysis of primary (consolidation) and creep settlements; and

 Various analyses of more complicated problems such as dynamic analysis.

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 87

6. REFERENCES

[1] Punurai,W. - 2D Finite Elements
Faculty of Engineering, Mahidol University

www.egmu.net/civil/wonsiri/fe6.pdf

[2] Alemayehu Teferra and
Edgar Schultz

- Formulae, Charts and Tables Soil
Mechanics and Foundation Engineering,
Stresses in Soils

A.A. Balkema, Rotterdam 1988

[3] Zietsman, Christiaan
Abraham

- A Hierarchical Linear Elastic Boundary
Element Solver for Lenticular Ore Bodies

University of Stellenbosch 2007
http://scholar.sun.ac.za/handle/10019.1/1686

[4] O.C. Zienkiewiez,
R.L. Taylor

- The Finite Element Method; Fifth Edition;
Volume 1: The Basis

Butterworth-Heinemann 2000

[5] Alemayehu Teferra - Lecture Notes, Advanced Soil Mechanics
 (2010)

[6] Hadush Seged - Lecture Notes, Advanced Computational
Methods in Geotechnical Engineering (2011)

[7] H.G. Poulos
E.H. Davis

- Elastic Solutions for Soil and Rock
Mechanics
John Wiley & Sons Inc. 1974 USA

[8] Michael Halvorson - Visual Basic 2010 Step by Step

Microsoft Press, 2010

[9] Tim Patrick - ADO.NET 4 Step by Step

[10] Hadush Seged - Lecture Notes, Theory of Elasticity in
Geotechnical Engineering (2009)

Software Used

GeoStudio 2007 (Student License)

Visual Basic 2010

http://scholar.sun.ac.za/handle/10019.1/1686

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 88

ANNEXES

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 89

ANNEX 1: Codes Used for the Development of the Software

Following is a presentation of the complete programming codes used for developing
the software in the Visual Basic 2010 Application Development Environment.

Note:

1. Statements that begin with a double asterisk (**) are descriptions of the code
and not parts of the code.

2. Some of the lines within the codes have been wrapped to the next line to fit the
width of the page in this presentation.

**Codes Used for Declaring Frequently Used Variables

Imports System.IO
Imports System.Data
Module Calculation_Module

 Public ScaledDeformationMatrix() As Single
 'Public StressMatrix(3) As Single
 Public WidthW, DepthD As Single
 Public LargestDeformation As Single

 Public LayerThicknesses(,) As Single
 Public PoissonsRatio(,) As Single
 Public ElasticModulus(,) As Single

 Public NodalCoordinates(,) As Single
 Public ScaledDeformedCoordinates(,) As Single
 Public ElementNodes(,) As UInteger
 Public ElementCentroids(,) As Single

 Public BMatrix3D(,,), BTranspose(,,) As Single
 Public DMatrix(,,) As Double

 Public ShortStiffness(,) As Double
 Public ShortStiffnessCopy(,) As Single
 Public Shortforces() As Double
 Public ShortforcesCopy() As Double
 Public GlobalStiffnessMatrix(,)

 Public GlobalDisplacements() As Double
 Public FixityStatus() As Byte
 Public UnknownDOFList() As UInteger
 Public DOF As UInteger

 Public TestFixity As String

 Public UDLMatrix(,), PointLoadMatrix(,) As Single
 Public LoadingDataEntered As Boolean = False

 Public VerticalGridMatrix(,), HorizontalGridMatrix() As Single

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 90

 Public TempVGridMatrix(,), TempHGridMatrix() As Single
 Public ForcesMatrix() As Single
 Public NumberSoilLayers, NumberPointLoads, NumberUniformLoads As UInteger

 Public VerticalStress(), HorizontalStress(), StressY() As Double
 Public ShearStress(), AbsoluteShearStress() As Double

 Public VerticalStrain(), HorizontalStrain(), StrainY() As Double
 Public ShearStrain(), AbsoluteShearStrain() As Double

 Public MaxVerticalStress, MaxHorizontalStress, MaxYstress, MaxShearStress As
Double
 Public MaxVerticalStrain, MaxHorizontalStrain, MaxYStrain, MaxShearStrain As
Double

 Public Reducer As Decimal

 'Public MaxGraphicsWidth As UInteger = 500
 'Public MaxGraphicsDepth As UInteger = 300

 Public MaximumMeshDimension As Single
 Public DefaultMeshOn As Boolean = True
 'Public DefaultMeshDimension As Boolean = False
 Public ElasticProperties As String

 Public ProjectDataSet As New DataSet("FiniteElementSoftwareDataSet")
 Public BasicProjectDataTable As New DataTable("BasicProjectDataTable")
 Public SoilPropertiesTable As New DataTable("SoilPropertiesTable")
 Public PointLoadTable As New DataTable("PointLoadTable")
 Public UniformLoadTable As New DataTable("UniformLoadTable")
 Public VerticalGridMatrixTable As New DataTable("VerticalGridMatrixTable")
 Public HorizontalGridMatrixTable As New DataTable("HorizontalGridMatrixTable")
 Public ElementNodesTable As New DataTable("ElementNodesTable")
 Public NodalCoordinatesAndLoadsTable As New
DataTable("NodalCoordinatesAndLoadsTable")
 Public FixityStatusTable As New DataTable("FixityStatusTable")
 Public BasicProjectDataRow As DataRow

 'Dim table As DataTable = New DataTable("ParentTable")

 Public LeftEndVerticallyRestrained As Boolean = True
 Public RightEndVerticallyRestrained As Boolean = True
 Public PlaneStrainAnalysis As Boolean = True

 Public OutputReportText As String
 Public ReportStreamToWrite As StreamWriter

 Public AnalysisBegin, AnalysisEnd, ReportBegin, ReportEnd As String

 Public SaveFileDialog1 As New SaveFileDialog

 Public DecimalTest As Decimal
 Public IntegerTest As Integer

 Public SoilPropetiesEntered As Boolean = False
 Public LoadsApplied As Boolean = False
 Public MeshGenerated As Boolean = False
 Public AnalysisRun As Boolean = False
End Module

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 91

**Codes Used for Managing the Functions on the Home Screen (Data Entry, Mesh
Generation and Analysis Execution)

Imports System.Math
Imports System.IO
Imports System.Data
Imports System.Drawing.Printing

Public Class MainForm
 Dim MeshVisibility As Boolean = False
 Dim SoilDataEntered As Boolean = False

 Private PrintPageSettings As New PageSettings
 Dim memoryImage As Bitmap

 Dim NumberVerticalGrid As UInteger
 Dim NumberHorizontalGrid As UInteger
 Dim MeshGraphicPoints As Point()
 Dim GraphicsScale As Single
 Dim GraphicsWidth As UInteger
 Dim GraphicsDepth As UInteger
 Dim OriginX As UInteger = 300 + 100
 Dim OriginY As UInteger = 90 + 50
 Dim ElementalElasticModulus, ElementalPoissonsRatio, ElementArea As Single

 Dim BMatrix2D(2, 5) As Single

 Dim SimpleSaveEnabled As Boolean = False
 Dim SavedFileName As String

 Dim MaxGraphicsWidth As UInteger = 500
 Dim MaxGraphicsDepth As UInteger = 300

 Private Sub Form1_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles Me.Paint
 Dim i As Short
 Dim j As UShort

 Try

 If Me.Size.Width > 380 Then

 'adjusting graphics scale
 MaxGraphicsWidth = Me.Size.Width * (1 - 0.1) - 300 - 70
 MaxGraphicsDepth = Me.Size.Height * (1 - 0.2) - 75 - 50

 'setting the width & Depth
 Try
 WidthW = BasicProjectDataRow.Item("Width")
 DepthD = BasicProjectDataRow.Item("Depth")
 Catch ex As Exception
 WidthW = 10
 DepthD = 6
 End Try

 'Selecting Governing Scale from WidthScale & DepthScale
 If WidthW / DepthD > MaxGraphicsWidth / MaxGraphicsDepth Then
 GraphicsScale = MaxGraphicsWidth / WidthW
 Else
 GraphicsScale = MaxGraphicsDepth / DepthD

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 92

 End If
 GraphicsDepth = DepthD * GraphicsScale
 GraphicsWidth = WidthW * GraphicsScale
 OriginX = 300 + 75 + 0.5 * (MaxGraphicsWidth - GraphicsWidth)
 OriginY = 90 + 50 + 0.5 * (MaxGraphicsDepth - GraphicsDepth)

 'Arranging Graphics for Soil Mesh
 Dim counter As Integer = 0
 Dim MeshDirection As Byte = 1
 Dim MeshGraphics As Graphics
 MeshGraphics = Me.CreateGraphics
 Dim MeshPen As New Pen(Color.Gray)

 If MeshVisibility = True Then

 ''Drawing mesh step by step for every element
 'Dim Element As UInteger
 'For Element = 0 To UBound(ElementNodes)
'100 * NodalCoordinates(ElementNodes(Element, 0), 0), 100 *
NodalCoordinates(ElementNodes(Element, 0), 1)
 'MeshGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 1), OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 1))
 'MeshGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 1), OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 1))
 'MeshGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 1), OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 1))
 'Next

 'Preparing Mesh Coordinates for drawlines command (avoinds
redundant lines)
 MeshGraphicPoints = {New Point(OriginX, OriginY)} 'Preparing the
coordinates for multi line
 For j = 0 To UBound(VerticalGridMatrix, 2) - 1 'Loop along
the horizontal (X-direction)
 For i = 1 To UBound(HorizontalGridMatrix) 'Loop along
the vertical (Y-direction)
 counter = counter + 1
 ReDim Preserve MeshGraphicPoints(counter)
 MeshGraphicPoints(counter) = New Point(OriginX +
GraphicsScale * VerticalGridMatrix(0, j + MeshDirection), OriginY + GraphicsScale *
HorizontalGridMatrix(i))
 MeshDirection = Abs(MeshDirection - 1)
 Next
 For i = UBound(HorizontalGridMatrix) To 0 Step -1 'Y-
coordinates- upwards
 counter = counter + 1
 ReDim Preserve MeshGraphicPoints(counter)
 MeshGraphicPoints(counter) = New Point(OriginX +
GraphicsScale * VerticalGridMatrix(0, j + MeshDirection), OriginY + GraphicsScale *
HorizontalGridMatrix(i))
 MeshDirection = Abs(MeshDirection - 1)
 Next
 MeshDirection = Abs(MeshDirection - 1)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 93

 Next
 End If

 'Soil graphics paint procedure
 Dim SoilGraphics As Graphics
 SoilGraphics = Me.CreateGraphics
 Dim SoilColor As New SolidBrush(Color.BurlyWood)
 SoilGraphics.FillRectangle(SoilColor, OriginX, OriginY, GraphicsWidth,
GraphicsDepth)

 If MeshVisibility = True Then
 'Drawing the mesh lines
 For j = 1 To UBound(VerticalGridMatrix, 2) - 1 'Draw vertical
grid lines
 MeshGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
VerticalGridMatrix(0, j), OriginY, OriginX + GraphicsScale * VerticalGridMatrix(0, j),
OriginY + GraphicsScale * DepthD)
 Next
 For i = 0 To UBound(HorizontalGridMatrix) - 1 'Draw
horizontal grid lines
 MeshGraphics.DrawLine(MeshPen, OriginX, OriginY +
GraphicsScale * HorizontalGridMatrix(i), OriginX + GraphicsScale * WidthW, OriginY +
GraphicsScale * HorizontalGridMatrix(i))
 Next
 MeshGraphics.DrawLines(MeshPen, MeshGraphicPoints) 'draws the non
orthogonal mesh lines
 End If

 'Graphics for Soil Boundary
 Dim SoilBoundaryPen As New Pen(Color.Black, 1)

 'Drawing Soil Matrix Boundary
 SoilGraphics.DrawLine(SoilBoundaryPen, OriginX, OriginY, OriginX,
OriginY + GraphicsDepth) 'Left
 SoilGraphics.DrawLine(SoilBoundaryPen, OriginX, OriginY +
GraphicsDepth, OriginX + GraphicsWidth, OriginY + GraphicsDepth) 'Bottom
 SoilGraphics.DrawLine(SoilBoundaryPen, OriginX + GraphicsWidth,
OriginY + GraphicsDepth, OriginX + GraphicsWidth, OriginY) 'Right

 Dim EndConditionPen As New Pen(Color.Black)
 'End conditions left
 SoilGraphics.DrawLine(EndConditionPen, OriginX - 10, OriginY +
CInt(GraphicsDepth / 3) - 30, OriginX - 10, OriginY + CInt(GraphicsDepth / 3) + 30)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + 10, OriginY +
CInt(GraphicsDepth / 3) - 30, OriginX + 10, OriginY + CInt(GraphicsDepth / 3) + 30)
 If LeftEndVerticallyRestrained Then
 SoilGraphics.DrawLine(EndConditionPen, OriginX - 10, OriginY +
CInt(GraphicsDepth / 3) - 10, OriginX + 10, OriginY + CInt(GraphicsDepth / 3) + 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX - 10, OriginY +
CInt(GraphicsDepth / 3) + 10, OriginX + 10, OriginY + CInt(GraphicsDepth / 3) - 10)
 End If

 SoilGraphics.DrawLine(EndConditionPen, OriginX - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) - 30, OriginX - 10, OriginY + CInt(GraphicsDepth * 2 / 3)
+ 30)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + 10, OriginY +
CInt(GraphicsDepth * 2 / 3) - 30, OriginX + 10, OriginY + CInt(GraphicsDepth * 2 / 3)
+ 30)
 If LeftEndVerticallyRestrained Then
 SoilGraphics.DrawLine(EndConditionPen, OriginX - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) - 10, OriginX + 10, OriginY + CInt(GraphicsDepth * 2 / 3)
+ 10)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 94

 SoilGraphics.DrawLine(EndConditionPen, OriginX - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) + 10, OriginX + 10, OriginY + CInt(GraphicsDepth * 2 / 3)
- 10)
 End If

 'End Condition Bottom with crossing
 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth /
3) - 40, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth / 3) + 40, OriginY
+ GraphicsDepth - 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth /
3) - 40, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth / 3) + 40, OriginY
+ GraphicsDepth + 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth /
3) - 20, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth / 3) + 20, OriginY
+ GraphicsDepth + 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth /
3) - 20, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth / 3) + 20, OriginY
+ GraphicsDepth - 10)

 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth *
2 / 3) - 40, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 40,
OriginY + GraphicsDepth - 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth *
2 / 3) - 40, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 40,
OriginY + GraphicsDepth + 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth *
2 / 3) - 20, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 20,
OriginY + GraphicsDepth + 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + CInt(GraphicsWidth *
2 / 3) - 20, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 20,
OriginY + GraphicsDepth - 10)

 'End Condition Right
 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth / 3) - 30, OriginX + GraphicsWidth - 10, OriginY +
CInt(GraphicsDepth / 3) + 30)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth + 10,
OriginY + CInt(GraphicsDepth / 3) - 30, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth / 3) + 30)
 If RightEndVerticallyRestrained = True Then
 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth -
10, OriginY + CInt(GraphicsDepth / 3) - 10, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth / 3) + 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth -
10, OriginY + CInt(GraphicsDepth / 3) + 10, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth / 3) - 10)
 End If

 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth * 2 / 3) - 30, OriginX + GraphicsWidth - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) + 30)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth + 10,
OriginY + CInt(GraphicsDepth * 2 / 3) - 30, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth * 2 / 3) + 30)
 If RightEndVerticallyRestrained = True Then
 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth -
10, OriginY + CInt(GraphicsDepth * 2 / 3) - 10, OriginX + GraphicsWidth + 10, OriginY
+ CInt(GraphicsDepth * 2 / 3) + 10)
 SoilGraphics.DrawLine(EndConditionPen, OriginX + GraphicsWidth -
10, OriginY + CInt(GraphicsDepth * 2 / 3) + 10, OriginX + GraphicsWidth + 10, OriginY
+ CInt(GraphicsDepth * 2 / 3) - 10)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 95

 End If

 'Graphics for Layer Lines
 Dim PenForLayers As New Pen(Color.Black, 2)
 Dim CumulativeThickness As Single = 0
 'The row LayerThickness(1,_) holds cumulative layer thicknesses
 For i = 1 To NumberSoilLayers - 1
 SoilGraphics.DrawLine(PenForLayers, OriginX, OriginY +
GraphicsScale * LayerThicknesses(1, i - 1), OriginX + GraphicsWidth, OriginY +
GraphicsScale * LayerThicknesses(1, i - 1))
 Next

 'Drawign Load Arrows
 If LoadingDataEntered = True Then
 Dim PenForUDL As New Pen(Color.Red, 2)
 'Dim BackgroudBlank As New SolidBrush(Color.White)

 If NumberUniformLoads <> 0 Then
 For j = 0 To NumberUniformLoads - 1
 If UDLMatrix(j, 0) <> 0 Then
 'SoilGraphics.FillRectangle(BackgroudBlank, OriginX +
GraphicsScale * UDLMatrix(j, 1) - 10, OriginY + GraphicsScale * UDLMatrix(j, 3) - 35,
GraphicsScale * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) + 20, 35)
 SoilGraphics.DrawLine(PenForUDL, OriginX +
GraphicsScale * UDLMatrix(j, 1), OriginY + GraphicsScale * UDLMatrix(j, 3) - 30,
OriginX + GraphicsScale * UDLMatrix(j, 2), OriginY + GraphicsScale * UDLMatrix(j, 3) -
30)
 For i = 0 To 5
 SoilGraphics.DrawLine(PenForUDL, OriginX +
GraphicsScale * UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j,
1)) / 5, OriginY + GraphicsScale * UDLMatrix(j, 3) - 30, OriginX + GraphicsScale *
UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) / 5, OriginY
+ GraphicsScale * UDLMatrix(j, 3))
 SoilGraphics.DrawLine(PenForUDL, OriginX +
GraphicsScale * UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j,
1)) / 5 - 10, OriginY + GraphicsScale * UDLMatrix(j, 3) - 10, OriginX + GraphicsScale
* UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) / 5,
OriginY + GraphicsScale * UDLMatrix(j, 3))
 SoilGraphics.DrawLine(PenForUDL, OriginX +
GraphicsScale * UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j,
1)) / 5 + 10, OriginY + GraphicsScale * UDLMatrix(j, 3) - 10, OriginX + GraphicsScale
* UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) / 5,
OriginY + GraphicsScale * UDLMatrix(j, 3))
 Next
 End If
 Next
 End If

 Dim PointLoadsPen As New Pen(Color.Red, 2)
 If NumberPointLoads <> 0 Then
 For j = 0 To NumberPointLoads - 1 Step 1
 If PointLoadMatrix(j, 0) <> 0 Then
 SoilGraphics.DrawLine(PointLoadsPen, OriginX +
GraphicsScale * PointLoadMatrix(j, 1), OriginY + GraphicsScale * PointLoadMatrix(j, 2)
- 50, OriginX + GraphicsScale * PointLoadMatrix(j, 1), OriginY + GraphicsScale *
PointLoadMatrix(j, 2))
 SoilGraphics.DrawLine(PointLoadsPen, OriginX +
GraphicsScale * PointLoadMatrix(j, 1) - 10, OriginY + GraphicsScale *
PointLoadMatrix(j, 2) - 15, OriginX + GraphicsScale * PointLoadMatrix(j, 1), OriginY +
GraphicsScale * PointLoadMatrix(j, 2))
 SoilGraphics.DrawLine(PointLoadsPen, OriginX +
GraphicsScale * PointLoadMatrix(j, 1) + 10, OriginY + GraphicsScale *

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 96

PointLoadMatrix(j, 2) - 15, OriginX + GraphicsScale * PointLoadMatrix(j, 1), OriginY +
GraphicsScale * PointLoadMatrix(j, 2))
 End If
 Next
 End If
 End If

 'Drawing Coordinate Axes and Directional Arrows
 Dim CoordinatesPen As New Pen(Color.Purple, 3)
 Dim AxisPen As New Pen(Color.Gray, 1)
 Dim font As New Font(Height, 14)
 Dim OriginFont As New Font(Height, 10)
 Dim brush As Brush = Brushes.Black
 Dim format As New StringFormat(StringFormatFlags.NoClip)
 Dim Centralformat As New StringFormat(StringFormatFlags.NoClip)
 Dim RightAlignFormat As New StringFormat(LeftRightAlignment.Right)

 SoilGraphics.DrawLine(CoordinatesPen, OriginX + GraphicsWidth + 5,
OriginY, OriginX + GraphicsWidth + 40, OriginY)
 SoilGraphics.DrawLine(CoordinatesPen, OriginX + GraphicsWidth + 30,
OriginY - 5, OriginX + GraphicsWidth + 40, OriginY)
 SoilGraphics.DrawLine(CoordinatesPen, OriginX + GraphicsWidth + 30,
OriginY + 5, OriginX + GraphicsWidth + 40, OriginY)
 If PlaneStrainAnalysis Then
 SoilGraphics.DrawString("x", font, brush, OriginX + GraphicsWidth
+ 40, OriginY - 28, format)
 Else
 SoilGraphics.DrawString("r", font, brush, OriginX + GraphicsWidth
+ 40, OriginY - 28, format)
 End If

 SoilGraphics.DrawLine(CoordinatesPen, OriginX, OriginY + GraphicsDepth
+ 5, OriginX, OriginY + GraphicsDepth + 40)
 SoilGraphics.DrawLine(CoordinatesPen, OriginX - 5, OriginY +
GraphicsDepth + 30, OriginX, OriginY + GraphicsDepth + 40)
 SoilGraphics.DrawLine(CoordinatesPen, OriginX + 5, OriginY +
GraphicsDepth + 30, OriginX, OriginY + GraphicsDepth + 40)
 SoilGraphics.DrawString("z", font, brush, OriginX - 27, OriginY +
GraphicsDepth + 25, format)

 SoilGraphics.DrawString("(0,0)", OriginFont, brush, OriginX - 35,
OriginY - 40 + 25, format)

 SoilGraphics.DrawLine(AxisPen, OriginX - 75, OriginY - 75, OriginX +
GraphicsWidth, OriginY - 75)
 SoilGraphics.DrawLine(AxisPen, OriginX - 75, OriginY - 75, OriginX -
75, OriginY + GraphicsDepth)

 Dim Marker As Single
 i = 1
 Do While Marker <= WidthW
 SoilGraphics.DrawLine(AxisPen, OriginX + CInt(GraphicsScale *
Marker), OriginY - 80, OriginX + CInt(GraphicsScale * Marker), OriginY - 70)
 Marker = i * Max(WidthW, DepthD) / 10
 i += 1
 Loop
 Marker = 0
 i = 1
 Do While Marker <= DepthD
 SoilGraphics.DrawLine(AxisPen, OriginX - 80, OriginY +
CInt(GraphicsScale * Marker), OriginX - 70, OriginY + CInt(GraphicsScale * Marker))
 Marker = i * Max(WidthW, DepthD) / 10

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 97

 i += 1
 Loop
 Marker = 0
 Do While Marker <= WidthW
 SoilGraphics.DrawString(Marker, OriginFont, brush, OriginX +
GraphicsScale * Marker - 7, OriginY - 100, Centralformat)
 Marker += (Max(DepthD, WidthW) / 5)
 Loop
 Marker = 0
 Do While Marker <= DepthD
 SoilGraphics.DrawString(Marker, OriginFont, brush, OriginX - 85,
OriginY + GraphicsScale * Marker - 10, RightAlignFormat)
 Marker += (Max(DepthD, WidthW) / 5)
 Loop

 End If
 Catch ex As Exception

 End Try

 End Sub

 Private Sub EnterSoilData_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SoilDataButton.Click

 My.Forms.InputForm.ShowDialog()
 If InputForm.DialogResult = DialogResult.OK Then
 Refresh() 'without the refresh command, clicking of button doesnt erase
previous graphics
 LoadingDataButton.Enabled = True
 EnterLoadingDataToolStripMenuItem.Enabled = True
 MeshSizeToolStripMenuItem.Enabled = True
 SoilDataEntered = True
 BasicProjectDataRow.Item("ProgramStage") = 1
 End If

 End Sub

 Private Sub EnterLoadingData_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LoadingDataButton.Click

 My.Forms.Loading_Data_Input.ShowDialog()
 If Loading_Data_Input.DialogResult = DialogResult.OK Then
 My.Forms.InputForm.ApplySoilDataButton.Enabled = False
 MeshVisibility = False
 GenerateMeshButton.Enabled = True
 RunAnalysisButton.Enabled = False
 RunAnalysisToolStripMenueItem.Enabled = False
 GenerateMeshToolStripMenuItem.Enabled = True
 BasicProjectDataRow.Item("ProgramStage") = 2
 End If
 End Sub

 Private Sub GenerateMesh_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles GenerateMeshButton.Click

 Dim MinimumWidth As Single
 Dim MinimumThickness As Single

 Dim NumberFineGrid() As UInteger
 Dim TotalVerticalGrids As UInteger = 0

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 98

 Dim Counter As UInteger = 1
 Dim a, b, c, d, f As UInteger
 Dim NumberHorizSubgrid As UInteger
 Dim ThicknessHorizSubgrid As Single
 Dim LayerCounter As UInteger

 Dim i As UShort
 Dim j As UShort
 Dim k As Short

 Dim GridUnavailableCheck As Boolean
 Dim NumberVerticalGrid As UShort
 Dim NumberHorizontalGrid As UShort

 Dim SortRank(,) As UInteger
 Dim SortCount As UInteger

 If BasicProjectDataRow.Item("MeshDefaultOn") Then
 If WidthW > DepthD Then
 MaximumMeshDimension = WidthW / 40
 Else
 MaximumMeshDimension = DepthD / 40
 End If
 Else
 MaximumMeshDimension = BasicProjectDataRow.Item("MaximumMeshSize")
 End If

 Try
 'Generating the Major Vertical & Horizontal Grids
 ReDim VerticalGridMatrix(1, 1 + 2 * NumberUniformLoads + NumberPointLoads)
 ReDim HorizontalGridMatrix(NumberSoilLayers + NumberPointLoads +
NumberUniformLoads)

 'Generating Horizontal Grid at Interfaces (further grid to be added on
Loading)
 For i = 1 To NumberSoilLayers
 HorizontalGridMatrix(i) = HorizontalGridMatrix(i - 1) +
LayerThicknesses(0, i - 1)
 Next
 'HorizontalGridMatrix(NumberSoilLayers) = DepthD
 'MsgBox(DepthD)
 NumberHorizontalGrid = NumberSoilLayers

 'Generating Major Vertical & Horizontal Grids(on critical points such as
soil edges & Loading Points)
 VerticalGridMatrix(0, 1) = WidthW
 NumberVerticalGrid = 1

 If NumberUniformLoads > 0 Then
 For k = 0 To NumberUniformLoads - 1 '1. for every uniform load
case
 For i = 1 To 2 'for the beginning & end locations
of the uniform load
 j = 0 'For every member of the
vertical grid(starting from 0)
 GridUnavailableCheck = True
 While GridUnavailableCheck = True And j <= NumberVerticalGrid
 If UDLMatrix(k, i) = VerticalGridMatrix(0, j) Then
 GridUnavailableCheck = False
 'vertical grid has already been created on the
location
 End If

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 99

 j = j + 1
 End While
 If GridUnavailableCheck = True Then
 NumberVerticalGrid = NumberVerticalGrid + 1
 VerticalGridMatrix(0, NumberVerticalGrid) = UDLMatrix(k,
i)

 End If
 Next

 j = 0 'For every member of the horizontal
grid(starting from 0)
 GridUnavailableCheck = True
 While GridUnavailableCheck = True And j <= NumberHorizontalGrid
 If UDLMatrix(k, 3) = HorizontalGridMatrix(j) Then
 GridUnavailableCheck = False 'vertical grid has already
been created on the location
 End If
 j = j + 1
 End While
 If GridUnavailableCheck = True Then
 NumberHorizontalGrid = NumberHorizontalGrid + 1
 HorizontalGridMatrix(NumberHorizontalGrid) = UDLMatrix(k, 3)

 End If
 Next
 End If

 If NumberPointLoads > 0 Then
 For i = 0 To NumberPointLoads - 1 '2. For every point load
 j = 0 'For every member of the vertical
grid(starting from 0)
 GridUnavailableCheck = True
 While GridUnavailableCheck = True And j <= NumberVerticalGrid
 If PointLoadMatrix(i, 1) = VerticalGridMatrix(0, j) Then
 GridUnavailableCheck = False
 VerticalGridMatrix(1, j) = VerticalGridMatrix(1, j) +
PointLoadMatrix(i, 0)
 End If
 j = j + 1
 End While
 If GridUnavailableCheck = True Then
 NumberVerticalGrid = NumberVerticalGrid + 1
 VerticalGridMatrix(0, NumberVerticalGrid) = PointLoadMatrix(i,
1)
 VerticalGridMatrix(1, j) = VerticalGridMatrix(1, j) +
PointLoadMatrix(i, 0)
 End If

 j = 0 'For every member of the
horizontal grid(starting from 0)
 GridUnavailableCheck = True
 While GridUnavailableCheck = True And j <= NumberHorizontalGrid

 If PointLoadMatrix(i, 2) = HorizontalGridMatrix(j) Then
 GridUnavailableCheck = False
 'VerticalGridMatrix(1, j) = VerticalGridMatrix(1, j) +
PointLoadMatrix(i, 0)
 End If
 j = j + 1
 End While

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 100

 If GridUnavailableCheck = True Then
 NumberHorizontalGrid = NumberHorizontalGrid + 1
 HorizontalGridMatrix(NumberHorizontalGrid) =
PointLoadMatrix(i, 2)
 'MsgBox("Point Load")
 'MsgBox(PointLoadMatrix(i, 2))
 'VerticalGridMatrix(1, j) = VerticalGridMatrix(1, j) +
PointLoadMatrix(i, 0)
 End If
 Next
 End If

 ReDim Preserve VerticalGridMatrix(1, NumberVerticalGrid)
 ReDim Preserve HorizontalGridMatrix(NumberHorizontalGrid)

 'Sorting the major vertical Grid locations in ascending order
 ReDim SortRank(2, NumberVerticalGrid) 'row-0:rank, row-1:number of
subgrids
 ReDim TempVGridMatrix(3, NumberVerticalGrid) 'row-0:location, row-
1:force magnitude, row-2:WIDTH, row-3:fine widths
 For i = 0 To NumberVerticalGrid
 SortCount = 0
 For j = 0 To NumberVerticalGrid
 If VerticalGridMatrix(0, i) > VerticalGridMatrix(0, j) Or
(VerticalGridMatrix(0, i) = VerticalGridMatrix(0, j) And i < j) Then
 SortCount = SortCount + 1
 End If
 Next
 SortRank(0, i) = SortCount
 Next
 For i = 0 To NumberVerticalGrid
 TempVGridMatrix(0, SortRank(0, i)) = VerticalGridMatrix(0, i)
 TempVGridMatrix(1, SortRank(0, i)) = VerticalGridMatrix(1, i)
 Next

 'Sorting the major horizontal Grid locations in ascending order
 ReDim SortRank(1, NumberHorizontalGrid) 'row-0:rank, row-1:number of
subgrids
 ReDim TempHGridMatrix(NumberHorizontalGrid)
 For i = 0 To NumberHorizontalGrid
 SortCount = 0
 For j = 0 To NumberHorizontalGrid
 If HorizontalGridMatrix(i) > HorizontalGridMatrix(j) Or
(HorizontalGridMatrix(i) = HorizontalGridMatrix(j) And i < j) Then
 SortCount = SortCount + 1
 End If
 Next
 SortRank(0, i) = SortCount
 Next
 For i = 0 To NumberHorizontalGrid
 TempHGridMatrix(SortRank(0, i)) = HorizontalGridMatrix(i)
 'TempVGridMatrix(1, SortRank(0, i)) = VerticalGridMatrix(1, i)
 Next

 'My.Forms.Loading_Data_Input.Button1.Enabled = False
 NumberVerticalGrid = UBound(TempVGridMatrix, 2)
 NumberHorizontalGrid = UBound(TempHGridMatrix)
 ReDim NumberFineGrid(NumberVerticalGrid - 1)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 101

 'Determining minimum width and Minimum Thickness To Determine Minimum Mesh
Dimension
 MinimumWidth = WidthW
 For i = 0 To NumberVerticalGrid - 1
 TempVGridMatrix(2, i) = TempVGridMatrix(0, i + 1) - TempVGridMatrix(0,
i)
 'MsgBox("widths" & TempVGridMatrix(2, i))
 If TempVGridMatrix(2, i) < MinimumWidth Then
 MinimumWidth = TempVGridMatrix(2, i)
 End If
 Next

 If MinimumWidth < MaximumMeshDimension Then
 MaximumMeshDimension = MinimumWidth
 End If

 MinimumThickness = DepthD
 For i = 0 To NumberHorizontalGrid - 1
 If TempHGridMatrix(i + 1) - TempHGridMatrix(i) < MinimumThickness Then
 MinimumThickness = TempHGridMatrix(i + 1) - TempHGridMatrix(i)
 End If
 Next

 If MinimumThickness < MaximumMeshDimension Then
 MaximumMeshDimension = MinimumThickness
 End If

 'Determining number of fine grids for each segment (Vertical)
 For i = 0 To NumberVerticalGrid - 1
 NumberFineGrid(i) = CInt(TempVGridMatrix(2, i) / MaximumMeshDimension)

 TempVGridMatrix(3, i) = TempVGridMatrix(2, i) / NumberFineGrid(i)
 TotalVerticalGrids = TotalVerticalGrids + NumberFineGrid(i)
 Next
 ReDim VerticalGridMatrix(0, TotalVerticalGrids)

 'Generating the complete vetical grid data
 VerticalGridMatrix(0, 0) = TempVGridMatrix(0, 0) 'setting the
coordinate of leftoutermost point
 'ForcesMatrix(1) = TempVGridMatrix(1, 0) 'setting the y
component of the force on the leftoutermost point
 For i = 0 To NumberVerticalGrid - 1
 For j = 1 To NumberFineGrid(i) - 1
 VerticalGridMatrix(0, Counter) = TempVGridMatrix(0, i) + j *
TempVGridMatrix(3, i)
 'MsgBox("Gridmatrix(" & Counter & ")= " & VerticalGridMatrix(0,
Counter))
 Counter = Counter + 1
 Next
 VerticalGridMatrix(0, Counter) = TempVGridMatrix(0, i + 1)
 'MsgBox("Gridmatrix(" & Counter & ")= " & VerticalGridMatrix(0,
Counter))
 'ForcesMatrix(2 * Counter + 1) = TempVGridMatrix(1, i + 1) (We dont
use row 1 of TempVGridMatrix to carry forces any more)
 Counter = Counter + 1
 Next

 'Generating the horizontal grid data
 ReDim HorizontalGridMatrix(0)
 HorizontalGridMatrix(0) = 0
 Counter = 1
 LayerCounter = 0

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 102

 NumberHorizontalGrid = 0
 For i = 0 To UBound(TempHGridMatrix) - 1
 NumberHorizSubgrid = CInt((TempHGridMatrix(i + 1) -
TempHGridMatrix(i)) / MaximumMeshDimension) 'number of subgrids
 ThicknessHorizSubgrid = (TempHGridMatrix(i + 1) - TempHGridMatrix(i))
/ NumberHorizSubgrid 'Thickness of Subgrids
 NumberHorizontalGrid = NumberHorizontalGrid + NumberHorizSubgrid
 ReDim Preserve HorizontalGridMatrix(NumberHorizontalGrid)
 For j = 1 To NumberHorizSubgrid - 1
 HorizontalGridMatrix(Counter) = TempHGridMatrix(i) + j *
ThicknessHorizSubgrid
 Counter = Counter + 1
 Next
 HorizontalGridMatrix(Counter) = TempHGridMatrix(i + 1)
 'MsgBox("H Grid Matrix(" & Counter & ")= " &
HorizontalGridMatrix(Counter))
 Counter = Counter + 1
 If HorizontalGridMatrix(Counter - 1) = LayerThicknesses(1,
LayerCounter) And LayerCounter <> NumberSoilLayers - 1 Then
 LayerCounter = LayerCounter + 1
 ElasticModulus(LayerCounter, 1) = 4 * NumberHorizontalGrid *
TotalVerticalGrids
 PoissonsRatio(LayerCounter, 1) = 4 * NumberHorizontalGrid *
TotalVerticalGrids
 End If
 Next

 ReDim ForcesMatrix((2 * NumberHorizontalGrid + 1) * (2 *
TotalVerticalGrids + 1))

 'applying loads due to UDL on the respective nodes
 Dim R1 As Single
 Dim R2 As Single
 If NumberUniformLoads <> 0 Then
 For i = 0 To UBound(UDLMatrix)
 For k = 0 To NumberHorizontalGrid
 If UDLMatrix(i, 3) = HorizontalGridMatrix(k) Then
 For j = 0 To TotalVerticalGrids - 1
 If UDLMatrix(i, 1) <= VerticalGridMatrix(0, j) And
VerticalGridMatrix(0, j) < UDLMatrix(i, 2) Then
 If PlaneStrainAnalysis Then
 ForcesMatrix(2 * k * (2 * TotalVerticalGrids +
1) + 2 * j + 1) = ForcesMatrix(2 * k * (2 * TotalVerticalGrids + 1) + 2 * j + 1) +
UDLMatrix(i, 0) * (VerticalGridMatrix(0, j + 1) - VerticalGridMatrix(0, j)) / 2
 ForcesMatrix(2 * k * (2 * TotalVerticalGrids +
1) + 2 * j + 3) = ForcesMatrix(2 * k * (2 * TotalVerticalGrids + 1) + 2 * j + 3) +
UDLMatrix(i, 0) * (VerticalGridMatrix(0, j + 1) - VerticalGridMatrix(0, j)) / 2
 Else
 R1 = VerticalGridMatrix(0, j)
 R2 = VerticalGridMatrix(0, j + 1)
 ForcesMatrix(2 * k * (2 * TotalVerticalGrids +
1) + 2 * j + 1) = ForcesMatrix(2 * k * (2 * TotalVerticalGrids + 1) + 2 * j + 1) + PI
/ 3 * UDLMatrix(i, 0) * (R2 - R1) * (2 * R1 + R2)
 ForcesMatrix(2 * k * (2 * TotalVerticalGrids +
1) + 2 * j + 3) = ForcesMatrix(2 * k * (2 * TotalVerticalGrids + 1) + 2 * j + 3) + PI
/ 3 * UDLMatrix(i, 0) * (R2 - R1) * (R1 + 2 * R2)
 End If
 End If
 Next
 'MsgBox("Force Matrix" & ForcesMatrix(2 * j + 1) & "," &
ForcesMatrix(2 * j + 3))
 End If

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 103

 Next
 Next
 End If

 'applying loads due to Point Loads on the respective nodes
 If NumberPointLoads <> 0 Then
 For i = 0 To UBound(PointLoadMatrix, 1)
 For k = 0 To NumberHorizontalGrid
 If PointLoadMatrix(i, 2) = HorizontalGridMatrix(k) Then
 For j = 0 To TotalVerticalGrids
 If PointLoadMatrix(i, 1) = VerticalGridMatrix(0, j)
Then
 If PlaneStrainAnalysis Or PointLoadMatrix(i, 1) =
0 Then
 ForcesMatrix(2 * k * (2 * TotalVerticalGrids +
1) + 2 * j + 1) = ForcesMatrix(2 * k * (2 * TotalVerticalGrids + 1) + 2 * j + 1) +
PointLoadMatrix(i, 0)
 Else
 ForcesMatrix(2 * k * (2 * TotalVerticalGrids +
1) + 2 * j + 1) = ForcesMatrix(2 * k * (2 * TotalVerticalGrids + 1) + 2 * j + 1) +
PointLoadMatrix(i, 0) * 2 * PI * PointLoadMatrix(i, 1)
 End If
 End If
 Next
 'MsgBox("Force Matrix" & ForcesMatrix(2 * j + 1) & "," &
ForcesMatrix(2 * j + 3))
 End If
 Next
 Next
 End If

 'Generating Nodal Coordinates
 NumberVerticalGrid = UBound(VerticalGridMatrix, 2)
 ReDim NodalCoordinates(NumberHorizontalGrid * NumberVerticalGrid + (1 +
NumberHorizontalGrid) * (1 + NumberVerticalGrid) - 1, 1) '****got to check this

 Counter = 0
 For i = 0 To NumberHorizontalGrid
 For j = 0 To NumberVerticalGrid
 NodalCoordinates(Counter, 0) = VerticalGridMatrix(0, j)
 NodalCoordinates(Counter, 1) = HorizontalGridMatrix(i)
 'MsgBox(Counter & "," & NodalCoordinates(Counter, 0) & "," &
NodalCoordinates(Counter, 1))
 Counter = Counter + 1
 Next

 For j = 0 To NumberVerticalGrid - 1
 If i <> NumberHorizontalGrid Then
 'MsgBox("counter= " & Counter)
 NodalCoordinates(Counter, 0) = 0.5 * (VerticalGridMatrix(0, j)
+ VerticalGridMatrix(0, j + 1))
 NodalCoordinates(Counter, 1) = 0.5 * (HorizontalGridMatrix(i)
+ HorizontalGridMatrix(i + 1))
 'MsgBox(Counter & "," & NodalCoordinates(Counter, 0) & "," &
NodalCoordinates(Counter, 1))
 Counter = Counter + 1
 End If
 Next
 Next

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 104

 'Generating the Element-Node Connectivity Matrix
 ReDim ElementNodes(4 * NumberHorizontalGrid * NumberVerticalGrid - 1, 2)

 Counter = 0
 For i = 0 To NumberHorizontalGrid - 1
 For j = 0 To NumberVerticalGrid - 1

 a = i * (2 * NumberVerticalGrid + 1) + j
'Top Left Node
 b = i * (2 * NumberVerticalGrid + 1) + j + 1
'Top Right Node
 c = i * (2 * NumberVerticalGrid + 1) + j + 2 * NumberVerticalGrid
+ 2 'Bottom Right Node
 d = i * (2 * NumberVerticalGrid + 1) + j + 2 * NumberVerticalGrid
+ 1 'Bottom Left Node
 f = i * (2 * NumberVerticalGrid + 1) + j + NumberVerticalGrid + 1
'Central Node

 ElementNodes(Counter, 0) = a
 ElementNodes(Counter, 1) = b
 ElementNodes(Counter, 2) = f
 'MsgBox("a,b,f= " & a & "," & b & "," & f)

 ElementNodes(Counter + 1, 0) = a
 ElementNodes(Counter + 1, 1) = f
 ElementNodes(Counter + 1, 2) = d
 'MsgBox("b,f,c= " & b & "," & f & "," & c)

 ElementNodes(Counter + 2, 0) = f
 ElementNodes(Counter + 2, 1) = c
 ElementNodes(Counter + 2, 2) = d
 'MsgBox("f,d,c= " & f & "," & d & "," & c)

 ElementNodes(Counter + 3, 0) = b
 ElementNodes(Counter + 3, 1) = c
 ElementNodes(Counter + 3, 2) = f
 'MsgBox("a,f,d= " & a & "," & f & "," & d)

 Counter = Counter + 4
 Next
 Next

 ReDim FixityStatus(2 * UBound(NodalCoordinates) + 1)
 'MsgBox("#fixity status=" & UBound(NodalCoordinates) + 1)

 'Introducing vertical fix for Left and right side support
 For i = 0 To 2 * NumberHorizontalGrid * (2 * NumberVerticalGrid + 1) + 1
Step 2 * (2 * NumberVerticalGrid + 1)
 FixityStatus(i) = 1
 FixityStatus(i + 2 * NumberVerticalGrid) = 1

 If LeftEndVerticallyRestrained = True Then
 FixityStatus(i + 1) = 1
 End If
 If RightEndVerticallyRestrained = True Then
 FixityStatus(i + 2 * NumberVerticalGrid + 1) = 1
 End If
 Next

 For i = 2 * NumberHorizontalGrid * (2 * NumberVerticalGrid + 1) + 1 To 2 *
UBound(NodalCoordinates) + 1 Step 2
 FixityStatus(i) = 1

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 105

 Next

 For i = 2 * NumberHorizontalGrid * (2 * NumberVerticalGrid + 1) + 2 To 2 *
UBound(NodalCoordinates) - 2 Step 2
 FixityStatus(i) = 1
 Next

 Catch ex As OutOfMemoryException
 MsgBox("System is out of memory because too many elements are beign
generated." & vbCrLf & _
 "Please check the input parameters and the Maximum Mesh Size
specified")
 Exit Sub
 Catch ex As Exception
 MsgBox("Mesh could not be generated, please check the input parameters")
 Exit Sub
 End Try

 MeshVisibility = True
 RunAnalysisButton.Enabled = True
 RunAnalysisToolStripMenueItem.Enabled = True
 BasicProjectDataRow("ProgramStage") = 3
 Refresh()
 End Sub

 Private Sub RunAnalysis_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RunAnalysisButton.Click

 ReDim GlobalDisplacements(2 * UBound(NodalCoordinates) + 1)
 ReDim ScaledDeformedCoordinates(2 * UBound(NodalCoordinates) + 1, 2 *
UBound(NodalCoordinates) + 1)

 Try
 AnalysisBegin = TimeString

 Dim Element As UInteger
 Dim i, j As UShort
 'Dim k As Short

 Dim LocalDisplacements(5) As Double

 Dim RNodeNumber, CNodeNumber As UInteger
 Dim RDirectionNumber, CDirectionNumber As Byte
 Dim ElementStiffnessMatrix(5, 5) As Double
 ReDim GlobalStiffnessMatrix(UBound(FixityStatus), UBound(FixityStatus))
 Dim ArrayProduct(5, 3) As Single

 ReDim ElementCentroids(UBound(ElementNodes), 1)
 ReDim BMatrix3D(3, 5, UBound(ElementNodes))
 ReDim BTranspose(5, 3, UBound(ElementNodes))
 ReDim DMatrix(3, 3, UBound(ElementNodes))

 For Element = 0 To UBound(ElementNodes)
 ElementCentroids(Element, 0) = (NodalCoordinates(ElementNodes(Element,
0), 0) + NodalCoordinates(ElementNodes(Element, 1), 0) +
NodalCoordinates(ElementNodes(Element, 2), 0)) / 3
 ElementCentroids(Element, 1) = (NodalCoordinates(ElementNodes(Element,
0), 1) + NodalCoordinates(ElementNodes(Element, 1), 1) +
NodalCoordinates(ElementNodes(Element, 2), 1)) / 3

 'calculating B and D matrices(Element)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 106

 Dim AlphaI, AlphaJ, AlphaK As Single
 Dim BetaI, BetaJ, BetaK As Single
 Dim GammaI, GammaJ, GammaK As Single
 Dim LayerNumber As UInteger

 Dim l As Decimal

 ElementArea = 0.5 * Abs((NodalCoordinates(ElementNodes(Element, 0), 0)
* NodalCoordinates(ElementNodes(Element, 1), 1) +
NodalCoordinates(ElementNodes(Element, 1), 0) * NodalCoordinates(ElementNodes(Element,
2), 1) + NodalCoordinates(ElementNodes(Element, 2), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1)) -
(NodalCoordinates(ElementNodes(Element, 1), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1) + NodalCoordinates(ElementNodes(Element,
2), 0) * NodalCoordinates(ElementNodes(Element, 1), 1) +
NodalCoordinates(ElementNodes(Element, 0), 0) * NodalCoordinates(ElementNodes(Element,
2), 1)))

 ElementalElasticModulus = ElasticModulus(0, 0)
 ElementalPoissonsRatio = PoissonsRatio(0, 0)
 For i = 0 To NumberSoilLayers - 1
 If Element >= PoissonsRatio(i, 1) Then
 ElementalElasticModulus = ElasticModulus(i, 0)
 ElementalPoissonsRatio = PoissonsRatio(i, 0)
 LayerNumber = i
 End If
 Next

 l = ElementalElasticModulus / ((1 + ElementalPoissonsRatio) * (1 - 2 *
ElementalPoissonsRatio))

 DMatrix(0, 0, Element) = l * (1 - ElementalPoissonsRatio)
 DMatrix(0, 1, Element) = l * (ElementalPoissonsRatio)
 DMatrix(0, 2, Element) = l * (ElementalPoissonsRatio)
 DMatrix(1, 0, Element) = l * (ElementalPoissonsRatio)
 DMatrix(1, 1, Element) = l * (1 - ElementalPoissonsRatio)
 DMatrix(1, 2, Element) = l * (ElementalPoissonsRatio)
 DMatrix(2, 0, Element) = l * (ElementalPoissonsRatio)
 DMatrix(2, 1, Element) = l * (ElementalPoissonsRatio)
 DMatrix(2, 2, Element) = l * (1 - ElementalPoissonsRatio)
 DMatrix(3, 3, Element) = l * (0.5 - ElementalPoissonsRatio)

 BetaI = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 1), 1) -
NodalCoordinates(ElementNodes(Element, 2), 1))
 BetaJ = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 2), 1) -
NodalCoordinates(ElementNodes(Element, 0), 1))
 BetaK = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 0), 1) -
NodalCoordinates(ElementNodes(Element, 1), 1))

 GammaI = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 2), 0) -
NodalCoordinates(ElementNodes(Element, 1), 0))
 GammaJ = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 0), 0) -
NodalCoordinates(ElementNodes(Element, 2), 0))
 GammaK = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 1), 0) -
NodalCoordinates(ElementNodes(Element, 0), 0))

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 107

 BMatrix2D = {{BetaI, 0, BetaJ, 0, BetaK, 0}, {0, GammaI, 0, GammaJ, 0,
GammaK}, {0, 0, 0, 0, 0, 0}, {GammaI, BetaI, GammaJ, BetaJ, GammaK, BetaK}}
 If PlaneStrainAnalysis = False Then
 AlphaI = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 1), 0) *
NodalCoordinates(ElementNodes(Element, 2), 1) - NodalCoordinates(ElementNodes(Element,
2), 0) * NodalCoordinates(ElementNodes(Element, 1), 1))
 AlphaJ = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 2), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1) - NodalCoordinates(ElementNodes(Element,
0), 0) * NodalCoordinates(ElementNodes(Element, 2), 1))
 AlphaK = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 0), 0) *
NodalCoordinates(ElementNodes(Element, 1), 1) - NodalCoordinates(ElementNodes(Element,
1), 0) * NodalCoordinates(ElementNodes(Element, 0), 1))
 BMatrix2D(2, 0) = AlphaI / ElementCentroids(Element, 0) + BetaI +
GammaI * ElementCentroids(Element, 1) / ElementCentroids(Element, 0)
 BMatrix2D(2, 2) = AlphaJ / ElementCentroids(Element, 0) + BetaJ +
GammaJ * ElementCentroids(Element, 1) / ElementCentroids(Element, 0)
 BMatrix2D(2, 4) = AlphaK / ElementCentroids(Element, 0) + BetaK +
GammaK * ElementCentroids(Element, 1) / ElementCentroids(Element, 0)
 End If

 For i = 0 To 3
 For j = 0 To 5
 BMatrix3D(i, j, Element) = BMatrix2D(i, j)
 BTranspose(j, i, Element) = BMatrix2D(i, j)
 Next
 Next

 'End of B and D calculation

 'calculating [B transpose]*[D]
 For i = 0 To 5
 For j = 0 To 3
 ArrayProduct(i, j) = BTranspose(i, 0, Element) * DMatrix(0, j,
Element) + BTranspose(i, 1, Element) * DMatrix(1, j, Element) + BTranspose(i, 2,
Element) * DMatrix(2, j, Element) + BTranspose(i, 3, Element) * DMatrix(3, j, Element)
 Next
 Next

 'Calculation of Elemental Stiffness [k]
 For i = 0 To 5
 For j = 0 To 5
 ElementStiffnessMatrix(i, j) = ElementArea *
(((ArrayProduct(i, 0)) * (BMatrix3D(0, j, Element))) + ((ArrayProduct(i, 1)) *
(BMatrix3D(1, j, Element))) + ((ArrayProduct(i, 2)) * (BMatrix3D(2, j, Element))) +
((ArrayProduct(i, 3)) * (BMatrix3D(3, j, Element))))
 If PlaneStrainAnalysis = False Then
 ElementStiffnessMatrix(i, j) = ElementStiffnessMatrix(i,
j) * 2 * PI * ElementCentroids(Element, 0)
 End If

 RNodeNumber = i \ 2
 RDirectionNumber = i Mod 2
 CNodeNumber = j \ 2
 CDirectionNumber = j Mod 2

 GlobalStiffnessMatrix(2 * ElementNodes(Element, RNodeNumber) +
RDirectionNumber, 2 * ElementNodes(Element, CNodeNumber) + CDirectionNumber) =

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 108

GlobalStiffnessMatrix(2 * ElementNodes(Element, RNodeNumber) + RDirectionNumber, 2 *
ElementNodes(Element, CNodeNumber) + CDirectionNumber) + ElementStiffnessMatrix(i, j)
 Next
 Next
 Next

 ReDim UnknownDOFList(UBound(FixityStatus))

 DOF = 0
 For i = 0 To UBound(FixityStatus)
 If FixityStatus(i) = 0 Then
 DOF = DOF + 1
 End If
 Next

 ReDim UnknownDOFList(DOF - 1)
 ReDim ShortStiffness(DOF - 1, DOF - 1)
 ReDim ShortStiffnessCopy(DOF - 1, DOF - 1)

 DOF = 0
 For i = 0 To UBound(FixityStatus)
 If FixityStatus(i) = 0 Then
 DOF = DOF + 1
 UnknownDOFList(DOF - 1) = i
 End If
 Next

 'Preparing the partitioned forces and stiffness matrices
 ReDim Shortforces(DOF - 1)
 ReDim ShortforcesCopy(DOF - 1)

 For i = 0 To DOF - 1
 For j = 0 To DOF - 1
 ShortStiffness(i, j) = GlobalStiffnessMatrix(UnknownDOFList(i),
UnknownDOFList(j))
 ShortStiffnessCopy(i, j) = ShortStiffness(i, j)
 Next
 Shortforces(i) = ForcesMatrix(UnknownDOFList(i))
 Next

 'Solving the Matrix Equation
 My.Forms.Gauss_Elimination.ShowDialog()

 If Gauss_Elimination.DialogResult = DialogResult.OK Then
 'calculation of elemental Strain and stresses
 ReDim HorizontalStrain(UBound(ElementNodes))
 ReDim VerticalStrain(UBound(ElementNodes))
 ReDim StrainY(UBound(ElementNodes))
 ReDim ShearStrain(UBound(ElementNodes))
 ReDim AbsoluteShearStrain(UBound(ElementNodes))

 ReDim HorizontalStress(UBound(ElementNodes))
 ReDim VerticalStress(UBound(ElementNodes))
 ReDim StressY(UBound(ElementNodes))
 ReDim ShearStress(UBound(ElementNodes))
 ReDim AbsoluteShearStress(UBound(ElementNodes))

 MaxVerticalStrain = 0
 MaxHorizontalStrain = 0
 MaxShearStrain = 0
 MaxVerticalStress = 0
 MaxHorizontalStress = 0

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 109

 MaxShearStress = 0

 For Element = 0 To UBound(ElementNodes)
 For i = 0 To 2 'for every node
 For j = 0 To 1 'for X direction & Y
direction
 LocalDisplacements(2 * i + j) = GlobalDisplacements(2 *
ElementNodes(Element, i) + j)
 Next
 Next

 'calculateBandDmatrices(Element)

 ' strain=[B]{d}
 For j = 0 To 5
 HorizontalStrain(Element) = HorizontalStrain(Element) -
BMatrix3D(0, j, Element) * LocalDisplacements(j)
 VerticalStrain(Element) = VerticalStrain(Element) -
BMatrix3D(1, j, Element) * LocalDisplacements(j)
 StrainY(Element) = StrainY(Element) - BMatrix3D(2, j, Element)
* LocalDisplacements(j)
 ShearStrain(Element) = ShearStrain(Element) - BMatrix3D(3, j,
Element) * LocalDisplacements(j)
 AbsoluteShearStrain(Element) = Abs(ShearStrain(Element))
 Next

 'Determining the Maximum horizontal and vertical Strains (for
Graphing puropses later)
 If VerticalStrain(Element) > MaxVerticalStrain Then
 MaxVerticalStrain = VerticalStrain(Element)
 End If
 If HorizontalStrain(Element) > MaxHorizontalStrain Then
 MaxHorizontalStrain = HorizontalStrain(Element)
 End If
 If StrainY(Element) > MaxYStrain Then
 MaxYStrain = StrainY(Element)
 End If
 If AbsoluteShearStrain(Element) > MaxShearStrain Then
 MaxShearStrain = AbsoluteShearStrain(Element)
 End If

 ' Stress=[D]{Strain}
 HorizontalStress(Element) = DMatrix(0, 0, Element) *
HorizontalStrain(Element) + DMatrix(0, 1, Element) * VerticalStrain(Element) +
DMatrix(0, 2, Element) * StrainY(Element)
 VerticalStress(Element) = DMatrix(1, 0, Element) *
HorizontalStrain(Element) + DMatrix(1, 1, Element) * VerticalStrain(Element) +
DMatrix(1, 2, Element) * StrainY(Element)
 StressY(Element) = DMatrix(2, 0, Element) *
HorizontalStrain(Element) + DMatrix(2, 1, Element) * VerticalStrain(Element) +
DMatrix(2, 2, Element) * StrainY(Element)
 ShearStress(Element) = DMatrix(3, 3, Element) *
ShearStrain(Element)
 AbsoluteShearStress(Element) = Abs(ShearStress(Element))

 If HorizontalStress(Element) > MaxHorizontalStress Then
 MaxHorizontalStress = HorizontalStress(Element)
 End If
 If VerticalStress(Element) > MaxVerticalStress Then
 MaxVerticalStress = VerticalStress(Element)
 End If
 If StressY(Element) > MaxYstress Then

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 110

 MaxYstress = StressY(Element)
 End If
 If AbsoluteShearStress(Element) > MaxShearStress Then
 MaxShearStress = AbsoluteShearStress(Element)
 End If
 Next

 LargestDeformation = GlobalDisplacements(0)
 For i = 1 To 2 * UBound(NodalCoordinates) + 1 Step 2
 If (Abs(GlobalDisplacements(i))) > Abs(LargestDeformation) Then
 LargestDeformation = GlobalDisplacements(i)
 End If
 Next

 'copying displacement values for Graphing purposes later
 ReDim ScaledDeformationMatrix(2 * UBound(NodalCoordinates) + 1)
 For i = 0 To UBound(ScaledDeformationMatrix)
 ScaledDeformationMatrix(i) = 0.15 * WidthW / 5 *
GlobalDisplacements(i) / Abs(LargestDeformation)
 RNodeNumber = i \ 2
 RDirectionNumber = i Mod 2
 ScaledDeformedCoordinates(RNodeNumber, RDirectionNumber) =
NodalCoordinates(RNodeNumber, RDirectionNumber) + ScaledDeformationMatrix(i)
 Next
 AnalysisEnd = TimeString

 My.Forms.Output.Show()
 End If
 Catch
 MsgBox("Analysis could not be completed, please check the input
parameters.")
 Exit Sub
 End Try
 End Sub

 Private Sub MeshSizeToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MeshSizeToolStripMenuItem.Click
 My.Forms.Max_Mesh_Dim.Show()
 End Sub

 Private Sub ManageBoundaryConditionsToolStripMenuItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ManageBoundaryConditionsToolStripMenuItem.Click
 My.Forms.EndConditionForm.ShowDialog()
 'If EndConditionForm.DialogResult = DialogResult.OK Then
 Refresh() 'without the refresh command, clicking of button doesnt erase
previous graphics
 'End If
 End Sub

 Private Sub EnterSoilDataToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles EnterSoilDataToolStripMenuItem.Click
 SoilDataButton.PerformClick()
 End Sub

 Private Sub EnterLoadingDataToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles EnterLoadingDataToolStripMenuItem.Click
 LoadingDataButton.PerformClick()
 End Sub

 Private Sub GenerateMeshToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GenerateMeshToolStripMenuItem.Click

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 111

 GenerateMeshButton.PerformClick()
 End Sub

 Private Sub RunAnalysisToolStripMenueItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RunAnalysisToolStripMenueItem.Click
 RunAnalysisButton.PerformClick()
 End Sub

 Private Sub CloseToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CloseToolStripMenuItem.Click
 Close()
 End Sub

 Private Sub AboutToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AboutToolStripMenuItem.Click
 MsgBox("Finte Element Software for Computing Stresses and Deformations in
Layered Soils" & vbCrLf & vbCrLf & _
 "A Thesis Submitted to the School of Graduate Studies in Partial
Fullfillment of the" & vbCrLf & _
 "Requirement for Degree of Master of Science in Geotechnical
Engineering" & vbCrLf & _
 vbCrLf & vbTab & vbTab & vbTab & vbTab & vbTab & vbTab &
"hiruyd@yahoo.com" & vbCrLf & _
 vbTab & vbTab & vbTab & vbTab & vbTab & vbTab & vbTab & "July 2014")
 End Sub

 Private Sub RestartToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles RestartToolStripMenuItem.Click
 Application.Restart()
 End Sub

 Private Sub MainForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 Try
 BasicProjectDataTable.Columns.Add("ProgramStage", GetType(Byte))
 BasicProjectDataTable.Columns.Add("PlaneStrainOn", GetType(Boolean))
 BasicProjectDataTable.Columns.Add("LeftEndVerticallyRestrained",
GetType(Boolean))
 BasicProjectDataTable.Columns.Add("RightEndVerticallyRestrained",
GetType(Boolean))
 BasicProjectDataTable.Columns.Add("MeshDefaultOn", GetType(Boolean))

 BasicProjectDataTable.Columns.Add("Width", GetType(Single))
 BasicProjectDataTable.Columns.Add("Depth", GetType(Single))
 BasicProjectDataTable.Columns.Add("numberOFlayers", GetType(UInteger))
 BasicProjectDataTable.Columns.Add("MaximumMeshSize", GetType(Single))

 BasicProjectDataTable.Columns.Add("NumberPointLoads", GetType(UInteger))
 BasicProjectDataTable.Columns.Add("NumberUniformLoads", GetType(UInteger))

 BasicProjectDataTable.Rows.Add({1})
 BasicProjectDataRow = BasicProjectDataTable.Rows(0)

 'The initial(default) conditions
 BasicProjectDataRow.Item("ProgramStage") = 0
 BasicProjectDataRow.Item("PlaneStrainOn") = True
 BasicProjectDataRow.Item("LeftEndVerticallyRestrained") = True
 BasicProjectDataRow.Item("RightEndVerticallyRestrained") = True
 BasicProjectDataRow.Item("MeshDefaultOn") = True

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 112

 Catch ex As Exception

 End Try
 End Sub

 Private Sub SaveAsToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles SaveAsToolStripMenuItem.Click

 SaveFileDialog1.Filter = "xml files(*.xml)|*.xml"

 If SaveFileDialog1.ShowDialog() = DialogResult.OK Then
 SavedFileName = SaveFileDialog1.FileName
 Try
 FileSaveProcedure()
 Catch ex As Exception
 MsgBox("Error! The file could not be saved." & vbCrLf & ex.Message)
 End Try
 SimpleSaveEnabled = True
 End If

 End Sub

 Private Sub OpenToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles OpenToolStripMenuItem.Click
 Dim ScanRow As DataRow
 Dim i As UShort

 OpenFileDialog1.Filter = "xml files (*.xml)|*.xml"
 OpenFileDialog1.ShowDialog()

 If OpenFileDialog1.FileName <> "" Then
 SavedFileName = OpenFileDialog1.FileName
 Try
 ProjectDataSet = New DataSet
 ProjectDataSet.ReadXml(SavedFileName)

 BasicProjectDataTable =
ProjectDataSet.Tables("BasicProjectDataTable").Copy
 BasicProjectDataRow = BasicProjectDataTable.Rows(0)

 'Converting database into program variables

 MeshVisibility = False

 ''Loading the problem type (Plane Strain/Axisymmetric)
 If BasicProjectDataRow.Item("PlaneStrainOn") Then
 PlaneStrainAnalysis = True
 Else
 PlaneStrainAnalysis = False
 End If

 ''Loading Left & Right vertical restraint conditions
 If BasicProjectDataRow.Item("LeftEndVerticallyRestrained") Then
 LeftEndVerticallyRestrained = True
 Else
 LeftEndVerticallyRestrained = False
 End If
 If BasicProjectDataRow.Item("RightEndVerticallyRestrained") Then
 RightEndVerticallyRestrained = True
 Else
 RightEndVerticallyRestrained = False
 End If

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 113

 ''Loading mesh conditions
 If BasicProjectDataRow.Item("MeshDefaultOn") Then
 DefaultMeshOn = True
 Else
 DefaultMeshOn = False
 MaximumMeshDimension = BasicProjectDataRow.Item("MaximumMeshSize")
 End If

 'MsgBox("Basic data entered")
 If BasicProjectDataRow.Item("ProgramStage") = 0 Then
 BasicProjectDataTable.Columns.Add("Width", GetType(Single))
 BasicProjectDataTable.Columns.Add("Depth", GetType(Single))
 BasicProjectDataTable.Columns.Add("numberOFlayers",
GetType(UInteger))
 BasicProjectDataTable.Columns.Add("MaximumMeshSize",
GetType(Single))
 BasicProjectDataTable.Columns.Add("NumberPointLoads",
GetType(UInteger))
 BasicProjectDataTable.Columns.Add("NumberUniformLoads",
GetType(UInteger))
 Exit Try
 End If

 ''Loading the soil properties
 SoilPropertiesTable = New DataTable
 SoilPropertiesTable =
ProjectDataSet.Tables("SoilPropertiesTable").Copy

 WidthW = BasicProjectDataRow.Item("width")
 DepthD = BasicProjectDataRow.Item("depth")
 NumberSoilLayers = BasicProjectDataRow.Item("numberOFlayers")

 ReDim ElasticModulus(NumberSoilLayers - 1, 1)
 ReDim PoissonsRatio(NumberSoilLayers - 1, 1)
 ReDim LayerThicknesses(1, NumberSoilLayers - 1)
 Dim CumulativeThickness As Single

 i = 0
 For Each ScanRow In SoilPropertiesTable.Rows
 'MsgBox(i)
 LayerThicknesses(0, i) = ScanRow.Item(1)
 CumulativeThickness += LayerThicknesses(0, i)
 LayerThicknesses(1, i) = CumulativeThickness

 ElasticModulus(i, 0) = ScanRow.Item(2)
 PoissonsRatio(i, 0) = ScanRow.Item(3)
 i = i + 1
 Next

 LoadingDataButton.Enabled = True
 EnterLoadingDataToolStripMenuItem.Enabled = True
 MeshSizeToolStripMenuItem.Enabled = True
 SoilDataEntered = True

 'MsgBox("Soil Properties Entered")
 If BasicProjectDataRow.Item("ProgramStage") = 1 Then
 BasicProjectDataTable.Columns.Add("NumberPointLoads",
GetType(UInteger))
 BasicProjectDataTable.Columns.Add("NumberUniformLoads",
GetType(UInteger))
 Exit Try

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 114

 End If

 'Loading Point & Uniform Load Datas
 NumberPointLoads = BasicProjectDataRow.Item("NumberPointLoads")
 NumberUniformLoads = BasicProjectDataRow.Item("NumberUniformLoads")

 PointLoadTable = New DataTable
 UniformLoadTable = New DataTable
 If NumberPointLoads <> 0 Then PointLoadTable =
ProjectDataSet.Tables("PointLoadTable").Copy
 If NumberUniformLoads <> 0 Then UniformLoadTable =
ProjectDataSet.Tables("UniformLoadTable").Copy

 ReDim PointLoadMatrix(NumberPointLoads - 1, 2) 'Column-0 =magnitude,
Column-1 =location, Column-2 =depth
 ReDim UDLMatrix(NumberUniformLoads - 1, 3) 'Column-0 =magnitude,
Column-1 =beginning, column-2 =end, Column-3 =depth
 LoadingDataEntered = True

 i = 0
 For Each ScanRow In PointLoadTable.Rows()
 PointLoadMatrix(i, 0) = ScanRow!Magnitude
 PointLoadMatrix(i, 1) = ScanRow!Location
 PointLoadMatrix(i, 2) = ScanRow!Depth
 i = i + 1
 Next

 i = 0
 For Each ScanRow In UniformLoadTable.Rows()
 UDLMatrix(i, 0) = ScanRow!Magnitude
 UDLMatrix(i, 1) = ScanRow!Beginning
 UDLMatrix(i, 2) = ScanRow!End
 UDLMatrix(i, 3) = ScanRow!Depth
 i = i + 1
 Next

 LoadingDataEntered = True

 My.Forms.InputForm.ApplySoilDataButton.Enabled = False
 GenerateMeshButton.Enabled = True
 RunAnalysisButton.Enabled = False
 RunAnalysisToolStripMenueItem.Enabled = False
 GenerateMeshToolStripMenuItem.Enabled = True
 'MsgBox("Loading Data Entered")
 If BasicProjectDataRow.Item("ProgramStage") = 2 Then
 Exit Try
 End If

 VerticalGridMatrixTable = New DataTable
 VerticalGridMatrixTable =
ProjectDataSet.Tables("VerticalGridMatrixTable").Copy
 i = 0
 ReDim VerticalGridMatrix(0,
BasicProjectDataRow.Item("NumberVerticalGrid") - 1)
 For Each ScanRow In VerticalGridMatrixTable.Rows
 VerticalGridMatrix(0, i) = ScanRow.Item(0)
 i += 1
 Next

 HorizontalGridMatrixTable = New DataTable
 HorizontalGridMatrixTable =
ProjectDataSet.Tables("HorizontalGridMatrixTable").Copy

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 115

 i = 0
 ReDim
HorizontalGridMatrix(BasicProjectDataRow.Item("NumberHorizontalGrid") - 1)
 For Each ScanRow In HorizontalGridMatrixTable.Rows
 HorizontalGridMatrix(i) = ScanRow.Item(0)
 i += 1
 Next

 ElementNodesTable = New DataTable
 ElementNodesTable = ProjectDataSet.Tables("ElementNodesTable").Copy
 i = 0
 ReDim ElementNodes(BasicProjectDataRow.Item("numberOFelements") - 1,
2)
 For Each ScanRow In ElementNodesTable.Rows
 ElementNodes(i, 0) = ScanRow.Item(0)
 ElementNodes(i, 1) = ScanRow.Item(1)
 ElementNodes(i, 2) = ScanRow.Item(2)
 i += 1
 Next

 NodalCoordinatesAndLoadsTable = New DataTable
 NodalCoordinatesAndLoadsTable =
ProjectDataSet.Tables("NodalCoordinatesAndLoadsTable").Copy
 i = 0
 ReDim NodalCoordinates(BasicProjectDataRow.Item("numberOFnodes") - 1,
1)
 ReDim ForcesMatrix(2 * BasicProjectDataRow.Item("numberOFnodes") - 1)
 For Each ScanRow In NodalCoordinatesAndLoadsTable.Rows
 NodalCoordinates(i, 0) = ScanRow.Item(0)
 NodalCoordinates(i, 1) = ScanRow.Item(1)
 ForcesMatrix(2 * i + 1) = ScanRow.Item(2)
 i += 1
 Next

 FixityStatusTable = New DataTable
 FixityStatusTable = ProjectDataSet.Tables("FixityStatusTable").Copy
 i = 0
 ReDim FixityStatus(BasicProjectDataRow.Item("DegreesOfFreedom") - 1)
 For Each ScanRow In FixityStatusTable.Rows
 FixityStatus(i) = ScanRow.Item(0)
 i += 1
 Next
 MeshVisibility = True
 RunAnalysisButton.Enabled = True
 RunAnalysisToolStripMenueItem.Enabled = True

 Catch ex As Exception
 MsgBox("Error Opening File!" & vbCrLf & ex.Message)
 End Try
 Refresh()
 SavedFileName = OpenFileDialog1.FileName
 SimpleSaveEnabled = True
 End If
 End Sub

 Private Sub PrintToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PrintToolStripMenuItem.Click
 Try
 CaptureScreen()
 PrintDocument1.Print()
 Catch ex As Exception
 'Display error message

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 116

 MessageBox.Show(ex.Message)
 End Try
 End Sub

 Private Sub CaptureScreen()

 PrintPageSettings.Landscape = True

 Dim myGraphics As Graphics = Me.CreateGraphics()
 Dim s As Size = Me.Size
 s = New Size(120 + GraphicsWidth + 65, 85 + GraphicsDepth + 85)
 memoryImage = New Bitmap(s.Width, s.Height, myGraphics)
 Dim memoryGraphics As Graphics = Graphics.FromImage(memoryImage)
 memoryGraphics.CopyFromScreen(Me.Location.X + OriginX - 120, Me.Location.Y +
OriginY - 85, 0, 0, s)
 End Sub

 Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs) Handles PrintDocument1.PrintPage
 Dim PrintableWidth As Single = e.MarginBounds.Width
 Dim PrintableHeight As Single = e.MarginBounds.Height

 Dim rectDraw As RectangleF

 Try
 '(e.MarginBounds.Left, e.MarginBounds.Top, e.MarginBounds.Width,
e.MarginBounds.Height)

 If PrintableWidth / PrintableHeight > ((GraphicsWidth + 185) /
(GraphicsDepth + 170)) Then
 rectDraw = New RectangleF(e.MarginBounds.Left, e.MarginBounds.Top, _
 GraphicsWidth * e.MarginBounds.Height /
GraphicsDepth, e.MarginBounds.Height)
 Else
 rectDraw = New RectangleF(e.MarginBounds.Left, e.MarginBounds.Top, _
 e.MarginBounds.Width, GraphicsDepth *
e.MarginBounds.Width / GraphicsWidth)
 End If

 e.Graphics.DrawImage(memoryImage, rectDraw)
 'e.Graphics.DrawImage(
 Catch ex As Exception

 End Try

 End Sub

 Private Sub PrintPreviewToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles PrintPreviewToolStripMenuItem.Click
 Try
 CaptureScreen()

 'Specify current page settings
 PrintDocument1.DefaultPageSettings = PrintPageSettings

 PrintPreviewDialog1.Document = PrintDocument1
 PrintPreviewDialog1.ShowDialog()
 Catch ex As Exception
 'Display error message
 MessageBox.Show(ex.Message)
 End Try
 End Sub

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 117

 Private Sub FileSaveProcedure()
 Dim i As UInteger

 'saving mesh data
 VerticalGridMatrixTable = New DataTable("VerticalGridMatrixTable")
 VerticalGridMatrixTable.Columns.Add("LocationX", GetType(Single))

 HorizontalGridMatrixTable = New DataTable("HorizontalGridMatrixTable")
 HorizontalGridMatrixTable.Columns.Add("LocationY", GetType(Single))

 ElementNodesTable = New DataTable("ElementNodesTable")
 ElementNodesTable.Columns.Add("NodeI", GetType(Single))
 ElementNodesTable.Columns.Add("NodeJ", GetType(Single))
 ElementNodesTable.Columns.Add("NodeM", GetType(Single))

 NodalCoordinatesAndLoadsTable = New DataTable("NodalCoordinatesAndLoadsTable")
 NodalCoordinatesAndLoadsTable.Columns.Add("CoordinateX", GetType(Single))
 NodalCoordinatesAndLoadsTable.Columns.Add("CoordinateY", GetType(Single))
 NodalCoordinatesAndLoadsTable.Columns.Add("VerticalLoad", GetType(Single))

 FixityStatusTable = New DataTable("FixityStatusTable")
 FixityStatusTable.Columns.Add("FixityStatus", GetType(UInteger))

 Try
 BasicProjectDataTable.Columns.Add("NumberHorizontalGrid",
GetType(UInteger))
 BasicProjectDataTable.Columns.Add("NumberVerticalGrid", GetType(UInteger))
 BasicProjectDataTable.Columns.Add("numberOFelements", GetType(UInteger))
 BasicProjectDataTable.Columns.Add("numberOFnodes", GetType(UInteger))
 BasicProjectDataTable.Columns.Add("DegreesOfFreedom", GetType(UInteger))
 Catch ex As Exception
 End Try

 If BasicProjectDataRow.Item("ProgramStage") > 2 Then
 'saving the mesh data if mesh has been generated
 For i = 0 To UBound(VerticalGridMatrix, 2)
 VerticalGridMatrixTable.Rows.Add({i})
 VerticalGridMatrixTable.Rows(i).Item(0) = VerticalGridMatrix(0, i)
 Next
 BasicProjectDataRow.Item("NumberVerticalGrid") =
UBound(VerticalGridMatrix, 2) + 1
 For i = 0 To UBound(HorizontalGridMatrix)
 HorizontalGridMatrixTable.Rows.Add({i})
 HorizontalGridMatrixTable.Rows(i).Item(0) = HorizontalGridMatrix(i)
 Next
 BasicProjectDataRow.Item("NumberHorizontalGrid") =
UBound(HorizontalGridMatrix) + 1
 For i = 0 To UBound(ElementNodes)
 ElementNodesTable.Rows.Add({i})
 ElementNodesTable.Rows(i).Item(0) = ElementNodes(i, 0)
 ElementNodesTable.Rows(i).Item(1) = ElementNodes(i, 1)
 ElementNodesTable.Rows(i).Item(2) = ElementNodes(i, 2)
 Next
 BasicProjectDataRow.Item("numberOFelements") = UBound(ElementNodes) + 1
 For i = 0 To UBound(NodalCoordinates)
 NodalCoordinatesAndLoadsTable.Rows.Add({i})
 NodalCoordinatesAndLoadsTable.Rows(i).Item(0) = NodalCoordinates(i, 0)
 NodalCoordinatesAndLoadsTable.Rows(i).Item(1) = NodalCoordinates(i, 1)
 NodalCoordinatesAndLoadsTable.Rows(i).Item(2) = ForcesMatrix(2 * i +
1)
 Next
 BasicProjectDataRow.Item("numberOFnodes") = UBound(NodalCoordinates) + 1

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 118

 For i = 0 To UBound(FixityStatus)
 FixityStatusTable.Rows.Add({i})
 FixityStatusTable.Rows(i).Item(0) = FixityStatus(i)
 Next
 BasicProjectDataRow.Item("DegreesOfFreedom") = UBound(FixityStatus) + 1
 End If

 ProjectDataSet = New DataSet("FiniteElementSoftwareDataSet")
 ProjectDataSet.Tables.Add(BasicProjectDataTable)
 ProjectDataSet.Tables.Add(SoilPropertiesTable)
 ProjectDataSet.Tables.Add(PointLoadTable)
 ProjectDataSet.Tables.Add(UniformLoadTable)
 ProjectDataSet.Tables.Add(VerticalGridMatrixTable)
 ProjectDataSet.Tables.Add(HorizontalGridMatrixTable)
 ProjectDataSet.Tables.Add(ElementNodesTable)
 ProjectDataSet.Tables.Add(NodalCoordinatesAndLoadsTable)
 ProjectDataSet.Tables.Add(FixityStatusTable)
 'MsgBox(SavedFileName)
 ProjectDataSet.WriteXml(SavedFileName)

 ProjectDataSet.Tables.Remove(BasicProjectDataTable)
 ProjectDataSet.Tables.Remove(SoilPropertiesTable)
 ProjectDataSet.Tables.Remove(PointLoadTable)
 ProjectDataSet.Tables.Remove(UniformLoadTable)
 ProjectDataSet.Tables.Remove(VerticalGridMatrixTable)
 ProjectDataSet.Tables.Remove(HorizontalGridMatrixTable)
 ProjectDataSet.Tables.Remove(ElementNodesTable)
 ProjectDataSet.Tables.Remove(NodalCoordinatesAndLoadsTable)
 ProjectDataSet.Tables.Remove(FixityStatusTable)
 End Sub

 Private Sub SaveToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SaveToolStripMenuItem.Click
 If SimpleSaveEnabled Then
 Try
 FileSaveProcedure()
 Catch ex As Exception
 MsgBox("Error! The file could not be saved." & vbCrLf & ex.Message)
 End Try
 Else
 SaveAsToolStripMenuItem.PerformClick()
 End If
 End Sub

End Class

**Codes Used for Managing Functions Associated with Soil Date Entry Interface

Imports System.Math
Imports System.Data
Public Class InputForm
 Public EnteredData() As Boolean = {False, True, False, False, False, False, False,
False, False, False, False, False}
 Dim AllEntered As Boolean = True
 Dim SoilPropertiesTableCreated As Boolean = False
 Dim NumberSoilLayersEntered As UInteger
 Dim TempoSoilTable As DataTable

 Private Sub InputForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 119

 Try
 'Loading the saved width and depth
 TextBox2.Text = BasicProjectDataRow.Item("Width")
 TextBox1.Text = BasicProjectDataRow.Item("Depth")
 SoilProperties.DataSource = SoilPropertiesTable

 'Loading the number of layers
 NumberSoilLayersEntered = BasicProjectDataRow.Item("numberOFlayers")
 TextBox3.Text = BasicProjectDataRow.Item("numberOFlayers")

 'Loading the type of problem (Plane Strian Vs Axisymmetric)
 If BasicProjectDataRow.Item("PlaneStrainOn") Then
 PlaneStrainButton.Checked = True
 Else
 AxisymmetricButton.Checked = True
 End If

 Catch ex As Exception
 'There is no saved database.
 'Creating soil properties table when parameters have not been saved yet

 If SoilPropertiesTableCreated = False Then
 SoilPropertiesTable.Columns.Add("Layer", GetType(String))
 SoilPropertiesTable.Columns.Add("Thickness (m)", GetType(String))
 SoilPropertiesTable.Columns.Add("Modulus of Elasticity(kN/m²)",
GetType(String))
 SoilPropertiesTable.Columns.Add("Poisson's Ratio", GetType(String))
 SoilPropertiesTable.Columns(0).ReadOnly = True
 SoilProperties.DataSource = SoilPropertiesTable
 TextBox3.Text = "1"
 PlaneStrainButton.Checked = True
 SoilPropertiesTableCreated = True
 End If
 End Try

 'making a backup copy of soil properties to enable reversing changes
 TempoSoilTable = SoilPropertiesTable.Copy()
 End Sub

 Private Sub TextBox3_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox3.TextChanged
 Dim i As UShort

 'Arranging the soil properties DataGridView
 If TextBox3.Text <> "" Then
 Try
 DecimalTest = 1 / Sqrt(TextBox3.Text)
 If TextBox3.Text > NumberSoilLayersEntered Then
 For i = NumberSoilLayersEntered + 1 To TextBox3.Text
 SoilPropertiesTable.Rows.Add({i})
 Next
 Else
 For i = TextBox3.Text + 1 To NumberSoilLayersEntered Step 1
 SoilPropertiesTable.Rows.RemoveAt(TextBox3.Text)
 Next
 End If
 NumberSoilLayersEntered = TextBox3.Text
 Catch ex As Exception
 MsgBox("The entry for number of layers is not valid!")
 TextBox3.Text = ""
 Exit Sub

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 120

 End Try
 End If
 End Sub

 Private Sub SoilProperties_CellValueChanged(ByVal sender As Object, ByVal e As
System.Windows.Forms.DataGridViewCellEventArgs) Handles
SoilProperties.CellValueChanged
 Dim ScanRow As DataRow
 Dim CumulativeThickness As Single = 0

 Try
 For Each ScanRow In SoilPropertiesTable.Rows
 If (IsDBNull(ScanRow.Item(1)) = False) Then
 CumulativeThickness += ScanRow.Item(1)
 TextBox1.Text = CumulativeThickness
 End If
 Next ScanRow
 Catch ex As Exception
 MsgBox("Invalid Depth Input!")
 Exit Sub
 End Try
 End Sub

 Private Sub CancelSoilDataButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CancelSoilDataButton.Click
 NumberSoilLayersEntered = NumberSoilLayers
 SoilPropertiesTable = TempoSoilTable.Copy()
 SoilProperties.DataSource = SoilPropertiesTable
 Me.DialogResult = DialogResult.Cancel
 End Sub

 Private Sub ApplySoilDataButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ApplySoilDataButton.Click
 'Converting Database Input Into Array Input (upon clicking APPLY at the Input
Form)

 Dim ScanRow As DataRow
 Dim i As UShort = 0

 'testing the validity of width input
 Try
 DecimalTest = 1 / Sqrt(TextBox2.Text)
 Catch ex As Exception
 MsgBox("The entry for Width is not valid!")
 Exit Sub
 End Try

 'testing the validity of number of soil layers input
 Try
 DecimalTest = 1 / Sqrt(TextBox3.Text)
 Catch ex As Exception
 MsgBox("The entry for number of layers is not valid!")
 Exit Sub
 End Try

 'ReDim Preserve LayerThicknesses(1, TextBox3.Text - 1)
 ReDim ElasticModulus(TextBox3.Text - 1, 1)
 ReDim PoissonsRatio(TextBox3.Text - 1, 1)
 Dim TempoLayerThicknesses(1, TextBox3.Text - 1) As Single
 Dim CumulativeThickness As Single

 'testing the validity of soil properties input, saves the input if valid

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 121

 Try
 i = 0
 For Each ScanRow In SoilPropertiesTable.Rows
 DecimalTest = 1 / Sqrt(ScanRow.Item(1)) 'checking that thickness
is positive
 DecimalTest = 1 / Sqrt(ScanRow.Item(2)) 'checking that elasticity
is positive
 DecimalTest = Sqrt(ScanRow.Item(3)) 'checking that poissons is
not negative
 If ScanRow.Item(3) >= 0.5 Then 'checking that poissons is
less than 0.5
 MsgBox("Layer " & i + 1 & ": Poisson's ratio should be less than
0.5")
 Exit Sub
 End If

 TempoLayerThicknesses(0, i) = ScanRow.Item(1)
 CumulativeThickness += TempoLayerThicknesses(0, i)
 TempoLayerThicknesses(1, i) = CumulativeThickness

 ElasticModulus(i, 0) = ScanRow.Item(2)
 PoissonsRatio(i, 0) = ScanRow.Item(3)
 i = i + 1
 Next
 Catch ex As Exception
 MsgBox("The soil properties table is either incomplete or contains invalid
input!")
 Exit Sub
 End Try

 'saving values in variables and database
 WidthW = TextBox2.Text
 DepthD = TextBox1.Text
 NumberSoilLayers = TextBox3.Text
 LayerThicknesses = TempoLayerThicknesses.Clone()

 If IsDBNull(BasicProjectDataRow.Item("ProgramStage")) Then
 BasicProjectDataRow.Item("ProgramStage") = 1
 End If
 BasicProjectDataRow.Item("Width") = TextBox2.Text
 BasicProjectDataRow.Item("Depth") = TextBox1.Text
 BasicProjectDataRow.Item("numberOFlayers") = NumberSoilLayers

 If PlaneStrainButton.Checked = True Then
 PlaneStrainAnalysis = True
 BasicProjectDataRow.Item("PlaneStrainOn") = 1
 Else
 PlaneStrainAnalysis = False
 BasicProjectDataRow.Item("PlaneStrainOn") = 0
 LeftEndVerticallyRestrained = False
 End If

 BasicProjectDataRow.Item("LeftEndVerticallyRestrained") =
LeftEndVerticallyRestrained
 BasicProjectDataRow.Item("RightEndVerticallyRestrained") =
RightEndVerticallyRestrained

 If BasicProjectDataRow.Item("MeshDefaultOn") Then
 If WidthW > DepthD Then
 BasicProjectDataRow.Item("MaximumMeshSize") = WidthW / 40
 Else
 BasicProjectDataRow.Item("MaximumMeshSize") = DepthD / 40

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 122

 End If
 End If

 Me.DialogResult = DialogResult.OK
 End Sub

End Class

**Codes Used for Managing Functions Associated with Loading Date Entry Interface

Imports System.IO
Imports System.Math
Imports System.Data
Public Class Loading_Data_Input
 Dim EnteredData = {False, False, False, False, False, False}
 Dim AllEntered As Boolean
 'Dim LoadingDataTablesCreated As Boolean = False
 Dim BackupPointLoadsTable As New DataTable
 Dim BackupUniformLoadsTable As New DataTable
 Dim TempoPointLoadNumbers As UInteger
 Dim TempoUniformLoadNumbers As UInteger

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 'Clicking the apply button

 If TextBox1.Text = "" Then
 MsgBox("Entry for number of concentrated loads is invalid!")
 Exit Sub
 End If
 If TextBox2.Text = "" Then
 MsgBox("Entry for number of distributed loads is invalid!")
 Exit Sub
 End If
 If TextBox1.Text = 0 And TextBox2.Text = 0 Then
 MsgBox("No loads have been applied!")
 Exit Sub
 End If

 Dim i As UShort
 Dim ScanRow As DataRow

 Try
 i = 0
 For Each ScanRow In PointLoadTable.Rows()
 DecimalTest = ScanRow!Magnitude
 DecimalTest = ScanRow!Location
 DecimalTest = Sqrt(ScanRow!Location)
 DecimalTest = Sqrt(WidthW - ScanRow!Location)
 DecimalTest = ScanRow!Depth
 DecimalTest = Sqrt(ScanRow!Depth)
 DecimalTest = Sqrt(DepthD - ScanRow!Depth)
 i = i + 1
 Next
 Catch ex As Exception
 MsgBox("The concentrated loads table is either incomplete of contains
invalid input!")
 Exit Sub
 End Try

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 123

 Try
 i = 0
 For Each ScanRow In UniformLoadTable.Rows()
 DecimalTest = ScanRow!Magnitude
 DecimalTest = ScanRow!Beginning
 DecimalTest = Sqrt(ScanRow!Beginning)
 DecimalTest = Sqrt(WidthW - ScanRow!Beginning)
 DecimalTest = ScanRow!End
 DecimalTest = Sqrt(ScanRow!end)
 DecimalTest = Sqrt(WidthW - ScanRow!end)
 DecimalTest = Sqrt(ScanRow!end - ScanRow!Beginning)
 DecimalTest = ScanRow!Depth
 DecimalTest = Sqrt(ScanRow!Depth)
 DecimalTest = Sqrt(DepthD - ScanRow!Depth)
 i = i + 1
 Next
 Catch ex As Exception
 MsgBox("The distributed loads table is either incomplete of contains
invalid input!")
 Exit Sub
 End Try
 NumberPointLoads = TextBox1.Text
 NumberUniformLoads = TextBox2.Text

 BasicProjectDataRow.Item("NumberPointLoads") = TextBox1.Text
 BasicProjectDataRow.Item("NumberUniformLoads") = TextBox2.Text
 BackupPointLoadsTable = PointLoadTable.Copy
 BackupUniformLoadsTable = UniformLoadTable.Copy

 'Converting Database Input Into Array Input
 ReDim PointLoadMatrix(NumberPointLoads - 1, 2) 'Column-0 =magnitude, Column-1
=location, Column-2 =depth
 ReDim UDLMatrix(NumberUniformLoads - 1, 3) 'Column-0 =magnitude, Column-1
=beginning, column-2 =end, Column-3 =depth
 LoadingDataEntered = True

 Try
 i = 0
 For Each ScanRow In PointLoadTable.Rows()
 PointLoadMatrix(i, 0) = ScanRow!Magnitude
 PointLoadMatrix(i, 1) = ScanRow!Location
 PointLoadMatrix(i, 2) = ScanRow!Depth
 i = i + 1
 Next
 Catch ex As Exception
 MsgBox("The concentrated loads table is either incomplete or contains
invalid input!")
 Exit Sub
 End Try

 Try
 i = 0
 For Each ScanRow In UniformLoadTable.Rows()
 UDLMatrix(i, 0) = ScanRow!Magnitude
 UDLMatrix(i, 1) = ScanRow!Beginning
 UDLMatrix(i, 2) = ScanRow!End
 UDLMatrix(i, 3) = ScanRow!Depth
 i = i + 1
 Next
 Catch ex As Exception

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 124

 MsgBox("The distributed loads table is either incomplete or contains
invalid input!")
 Exit Sub
 End Try

 Me.DialogResult = DialogResult.OK
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
 'cancel button clicked
 TempoPointLoadNumbers = NumberPointLoads
 TempoUniformLoadNumbers = NumberUniformLoads
 PointLoadTable = BackupPointLoadsTable.Copy
 UniformLoadTable = BackupUniformLoadsTable.Copy
 TextBox1.Text = NumberPointLoads
 TextBox2.Text = NumberUniformLoads
 Me.DialogResult = DialogResult.Cancel
 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox1.TextChanged
 'Event Procedure when the number of POINT loads has been changed

 Dim i As UShort

 If TextBox1.Text <> "" Then
 Try
 If TextBox1.Text > TempoPointLoadNumbers Then
 For i = TempoPointLoadNumbers + 1 To TextBox1.Text
 PointLoadTable.Rows.Add({i})
 Next
 Else
 For i = TextBox1.Text + 1 To TempoPointLoadNumbers Step 1
 PointLoadTable.Rows.RemoveAt(TextBox1.Text)
 Next
 End If

 TempoPointLoadNumbers = TextBox1.Text
 If TempoPointLoadNumbers <> TextBox1.Text Then
 MsgBox("Entry for number of concentrated loads is invalid!")
 TextBox1.Text = TempoPointLoadNumbers
 Exit Try
 End If
 Catch ex As Exception
 MsgBox("Entry for number of concentrated loads is invalid!")
 TextBox1.Text = ""
 End Try
 End If
 End Sub

 Private Sub TextBox2_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox2.TextChanged
 'Event Procedure when the number of UNIFORM loads has been changed

 Dim i As UShort
 'Dim TempoUniformLoadNumbers As UInteger

 If TextBox2.Text <> "" Then
 Try
 If TextBox2.Text > TempoUniformLoadNumbers Then

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 125

 For i = TempoUniformLoadNumbers + 1 To TextBox2.Text
 UniformLoadTable.Rows.Add({i})
 Next
 Else
 For i = TextBox2.Text + 1 To TempoUniformLoadNumbers Step 1
 UniformLoadTable.Rows.RemoveAt(TextBox2.Text)
 Next
 End If
 TempoUniformLoadNumbers = TextBox2.Text
 If TempoUniformLoadNumbers <> TextBox2.Text Then
 MsgBox("Entry for number of distributed loads is invalid!")
 TextBox2.Text = TempoUniformLoadNumbers
 End If
 Catch ex As Exception
 MsgBox("Entry for number of distributed loads is invalid!")
 TextBox2.Text = ""
 End Try
 End If

 End Sub

 Private Sub Loading_Data_Input_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Dim Note As String

 TempoPointLoadNumbers = NumberPointLoads
 TempoUniformLoadNumbers = NumberUniformLoads

 Try
 'Case: there is a saved database
 TextBox1.Text = BasicProjectDataRow("NumberPointLoads")
 Try
 'there is at least one point load
 PointLoadData.DataSource = PointLoadTable
 Catch ex As Exception
 'there is no point load (database saved is only for uniform load)
 BuildPointLoadTable()
 PointLoadData.DataSource = PointLoadTable
 End Try
 BackupPointLoadsTable = PointLoadTable.Copy
 Catch ex As Exception
 'Database doesn't exist for loads. It gets created here.
 Try
 BuildPointLoadTable()
 Catch
 End Try
 PointLoadData.DataSource = PointLoadTable
 BackupPointLoadsTable = PointLoadTable.Copy
 TextBox1.Text = 1
 End Try

 Try
 'Case: there is a saved database
 TextBox2.Text = BasicProjectDataRow("NumberUniformLoads")
 Try
 'there is at least one uniform load
 UniformLoadData.DataSource = UniformLoadTable
 Catch ex As Exception
 'there is no point load (database saved is only for point load)
 BuildUniformLoadTable()
 UniformLoadData.DataSource = UniformLoadTable
 End Try

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 126

 BackupUniformLoadsTable = UniformLoadTable.Copy
 Catch ex As Exception
 'Database doesn't exist for loads. It gets created here.
 Try
 BuildUniformLoadTable()
 Catch
 End Try
 UniformLoadData.DataSource = UniformLoadTable
 BackupUniformLoadsTable = UniformLoadTable.Copy
 TextBox2.Text = 1
 End Try

 If BasicProjectDataRow.Item("PlaneStrainOn") Then
 Note = "Note:" & " The Concentrated Load Shown here is equivalent to
Continious "
 Note = Note & "Line Loading" & vbCrLf & vbCrLf
 Note = Note & " The Distributed Load shown here is equivalen
to Uniform "
 Note = Note & "Strip Load"
 Me.Label14.Location = New System.Drawing.Point(60, 340)
 Label7.Text = "kN/m"
 Else
 Note = "Note:" & " The Concentrated Load Shown in this Axisymmetric
model is equivalent to " & vbCrLf
 Note = Note & " "
 Note = Note & "- a Point Load if R=0 (the unit is kN)" & vbCrLf
 Note = Note & " "
 Note = Note & "- a circumferential line load if R>0 (the unit is kN/m)" &
vbCrLf & vbCrLf
 Note = Note & " The Distributed Load shown here is equivalen
to Uniform "
 Note = Note & "Load distributed over a circular area"
 Me.Label14.Location = New System.Drawing.Point(60, 310)
 Label7.Text = "(kN or kN/m)"
 End If
 Label14.Text = Note

 End Sub

 Private Sub BuildPointLoadTable()
 PointLoadTable.Columns.Add("LoadCase", GetType(String))
 PointLoadTable.Columns.Add("Magnitude", GetType(String))
 PointLoadTable.Columns.Add("Location", GetType(String))
 PointLoadTable.Columns.Add("Depth", GetType(String))
 PointLoadTable.Columns(0).ReadOnly = True
 End Sub

 Private Sub BuildUniformLoadTable()
 UniformLoadTable.Columns.Add("LoadCase", GetType(String))
 UniformLoadTable.Columns.Add("Magnitude", GetType(String))
 UniformLoadTable.Columns.Add("Beginning", GetType(String))
 UniformLoadTable.Columns.Add("End", GetType(String))
 UniformLoadTable.Columns.Add("Depth", GetType(String))
 UniformLoadTable.Columns(0).ReadOnly = True
 End Sub

End Class

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 127

**Codes Used for Managing the End Condtions of the Soil Model

Imports System.Data
Public Class EndConditionForm

 Private Sub CancelEndCondition_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CancelEndCondition.Click
 Try
 LeftEndVerticallyRestrained =
BasicProjectDataRow("LeftEndVerticallyRestrained")
 RightEndVerticallyRestrained =
BasicProjectDataRow("RightEndVerticallyRestrained")
 Catch ex As Exception
 LeftEndVerticallyRestrained = True
 RightEndVerticallyRestrained = True
 End Try
 Me.DialogResult = DialogResult.Cancel
 End Sub

 Private Sub EndConditionForm_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load
 If LeftEndVerticallyRestrained = True Then
 LeftRestrainedRadioButton.Checked = True
 Else
 LeftUnrestrainedRadioButton.Checked = True
 End If
 If RightEndVerticallyRestrained = True Then
 RightRestrainedButton.Checked = True
 Else
 RightUnrestrainedButton.Checked = True
 End If

 End Sub

 Private Sub EndConditionForm_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 Dim BoundaryConditionGraphics As Graphics
 BoundaryConditionGraphics = GroupBox1.CreateGraphics

 Dim SoilColor As New SolidBrush(Color.BurlyWood)
 BoundaryConditionGraphics.FillRectangle(SoilColor, 170, 80, 250, 100)

 Dim BoundaryLinePen As New Pen(Color.Black)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 170, 80, 170, 180)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 170, 180, 420, 180)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 420, 180, 420, 80)

 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 220, 173, 265, 173)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 220, 187, 265, 187)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 235, 173, 250, 187)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 235, 187, 250, 173)

 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 325, 173, 370, 173)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 325, 187, 370, 187)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 340, 173, 355, 187)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 340, 187, 355, 173)

 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 160, 105, 160, 150)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 180, 105, 180, 150)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 128

 If LeftEndVerticallyRestrained = True Then
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 160, 115, 180, 140)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 160, 140, 180, 115)
 End If

 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 410, 105, 410, 150)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 430, 105, 430, 150)
 If RightEndVerticallyRestrained = True Then
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 410, 115, 430, 140)
 BoundaryConditionGraphics.DrawLine(BoundaryLinePen, 410, 140, 430, 115)
 End If

 End Sub

 Private Sub LeftRestrainedRadioButton_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
LeftRestrainedRadioButton.CheckedChanged
 If LeftRestrainedRadioButton.Checked = True Then
 LeftEndVerticallyRestrained = True
 Else
 LeftEndVerticallyRestrained = False
 End If
 Refresh()
 End Sub

 Private Sub RightRestrainedButton_CheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RightRestrainedButton.CheckedChanged
 If RightRestrainedButton.Checked = True Then
 RightEndVerticallyRestrained = True
 Else
 RightEndVerticallyRestrained = False
 End If
 Refresh()
 End Sub

 Private Sub ApplyButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ApplyButton.Click
 BasicProjectDataRow.Item("LeftEndVerticallyRestrained") =
LeftEndVerticallyRestrained
 BasicProjectDataRow.Item("RightEndVerticallyRestrained") =
RightEndVerticallyRestrained
 Me.DialogResult = DialogResult.OK
 End Sub

End Class

**Codes Used for Managing the MAXIMUM MESH DIMENSION

Imports System.Math
Imports System.Data
Public Class Max_Mesh_Dim

 Private Sub CheckBox1_CheckStateChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles CheckBox1.CheckStateChanged
 If CheckBox1.Checked Then
 TextBox1.Enabled = False
 If WidthW > DepthD Then
 TextBox1.Text = WidthW / 40
 Else
 TextBox1.Text = DepthD / 40

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 129

 End If
 Else
 TextBox1.Enabled = True
 End If
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
 'OK button clicked
 Try
 DecimalTest = 1 / Sqrt(TextBox1.Text)
 MaximumMeshDimension = TextBox1.Text

 If CheckBox1.Checked Then
 BasicProjectDataRow.Item("MeshDefaultOn") = True
 DefaultMeshOn = True
 Else
 BasicProjectDataRow.Item("MeshDefaultOn") = False
 DefaultMeshOn = False
 End If
 BasicProjectDataRow.Item("MaximumMeshSize") = TextBox1.Text
 My.Forms.MainForm.GenerateMeshButton.PerformClick()
 Catch ex As Exception
 MsgBox("Entry is not valid for maximum mesh dimension")
 Exit Sub
 End Try
 Close()
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 DefaultMeshOn = True
 Close()
 End Sub

 Private Sub Max_Mesh_Dim_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Try
 If BasicProjectDataRow.Item("MeshDefaultOn") Then
 CheckBox1.Checked = True

 TextBox1.Enabled = False
 If WidthW > DepthD Then
 TextBox1.Text = WidthW / 40
 Else
 TextBox1.Text = DepthD / 40
 End If
 Else
 CheckBox1.Checked = False

 TextBox1.Enabled = True
 TextBox1.Text = BasicProjectDataRow.Item("MaximumMeshSize")
 End If
 Catch ex As Exception
 CheckBox1.Checked = True

 TextBox1.Enabled = False
 If WidthW > DepthD Then
 TextBox1.Text = WidthW / 40
 Else
 TextBox1.Text = DepthD / 40
 End If

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 130

 End Try

 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox1.TextChanged
 If TextBox1.Text = "" Then
 Button2.Enabled = False
 Else
 Button2.Enabled = True
 End If
 End Sub

End Class

**Codes Used for Solving the System of Linear Equations

Imports System.Math
Public Class Gauss_Elimination

 Private Sub Gauss_Elimination_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 End Sub

 Private Sub Gauss_Elimination_Shown(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Shown
 Dim NonZeroList() As UInteger
 Dim i, j As UShort
 Dim k As Short
 Dim NumberOfCaluculations, progress As ULong
 Dim ProgressGraphics As Graphics = Me.CreateGraphics
 Dim StringFont As New Font(Height, 12)
 Dim brush As Brush = Brushes.Black

 ProgressGraphics.DrawString("Processing...", StringFont, brush, New Point(70,
15))

 ProgressBar1.Minimum = 0
 ProgressBar1.Maximum = 100
 NumberOfCaluculations = Round(DOF * (DOF + 1) * (2 * DOF + 1) / 6, 0)

 'Gauss Elimination
 For i = 0 To DOF - 2 'reducer row
 ReDim NonZeroList(0)
 For j = i + 1 To (DOF - 1) 'for every element of the reducer row
 If ShortStiffness(i, j) <> 0.0 Then 'columns containing nonzero
elements(within the reducer row) are listed
 ReDim Preserve NonZeroList(UBound(NonZeroList) + 1)
 NonZeroList(UBound(NonZeroList)) = j
 End If
 Next
 For j = i + 1 To (DOF - 1) 'row to be reduced
 If ShortStiffness(j, i) <> 0.0 Then
 Reducer = ShortStiffness(j, i) / ShortStiffness(i, i)
 For k = 0 To UBound(NonZeroList) 'every element of the
row to be reduced(as per the non zero list)
 ShortStiffness(j, NonZeroList(k)) = ShortStiffness(j,
NonZeroList(k)) - Reducer * ShortStiffness(i, NonZeroList(k))
 Next

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 131

 Shortforces(j) = Shortforces(j) - Reducer * Shortforces(i)
 End If
 Next
 progress += (DOF - i - 1) * (DOF - i)
 ProgressBar1.Value = (progress / NumberOfCaluculations) * 100
 'ProgressPercentage.Text = Round((progress / NumberOfCaluculations), 0) &
" %"
 Next

 'Backsubstitution and Solution
 For i = 1 To DOF
 Reducer = 0
 For j = 1 To i - 1
 Reducer = Reducer + GlobalDisplacements(UnknownDOFList(DOF - j)) *
ShortStiffness(DOF - i, DOF - j)
 Next
 GlobalDisplacements(UnknownDOFList(DOF - i)) = (Shortforces(DOF - i) -
Reducer) / ShortStiffness(DOF - i, DOF - i)
 progress += i
 ProgressBar1.Value = (progress / NumberOfCaluculations) * 100
 'ProgressPercentage.Text = Round((progress * 100 / NumberOfCaluculations),
0) & " %"
 Next

 Me.DialogResult = DialogResult.OK
 End Sub
End Class

**Codes Used for Managing the Output Interface

Imports System.Math
Imports System.IO
Imports System.Drawing.Printing

Public Class Output
 Private PrintPageSettings As New PageSettings
 Dim memoryImage As Bitmap

 Dim MeshGraphicPoints() As Point
 Dim DeformedMeshGraphicPoints() As Point
 Dim GraphicsScale As Single
 Dim GraphicsWidth As UInteger
 Dim GraphicsDepth As UInteger
 Dim OriginX As UInteger = 300
 Dim OriginY As UInteger = 120
 Dim LegendSpace As UInteger = 180

 Dim Top25Percent() As UInteger
 Dim UpperMiddle25Percent() As UInteger
 Dim LowerMiddle25Percent() As UInteger
 Dim Least25Percent() As UInteger
 Dim ZeroPercentList() As UInteger
 Dim TensileList() As UInteger

 Dim HighestOccurance As UInteger
 Dim LeadingCategory As Byte
 Dim OutputUnit As String
 Dim MaximumValue As Single = 0
 Dim ReadyToRefresh As Boolean = True

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 132

 Dim PreviousX, PreviousY As UInteger
 Dim Ordinate, Perpendicular As String

 Dim MaxGraphicsWidth As UInteger = 500
 Dim MaxGraphicsDepth As UInteger = 300
 Dim FullGraphicDepth As UInteger
 Dim FullGraphicWidth As UInteger

 Private Sub CheckBox2_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CheckBox2.CheckedChanged
 If CheckBox2.Checked = False Then
 If ReadyToRefresh = True Then
 Refresh()
 End If
 Else
 DrawUndeformedMesh()
 End If
 End Sub

 Private Sub CheckBox1_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CheckBox1.CheckedChanged
 If CheckBox1.Checked = False Then
 If ReadyToRefresh = True Then
 Refresh()
 End If
 Else
 DrawDeformedMesh()
 End If
 End Sub

 Private Sub Output_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 'Me.Controls.Add(OutPutListBox)
 'OutPutListBox.Items.Add("")
 'OutPutListBox.CausesValidation = False

 Try
 If PlaneStrainAnalysis Then
 Ordinate = "X"
 Perpendicular = "Y"
 Else
 Ordinate = "R"
 Perpendicular = "Θ"
 End If

 If PlaneStrainAnalysis Then
 ComboBox1.Items(1) = "x Stress"
 ComboBox1.Items(2) = "y Stress"
 ComboBox1.Items(4) = "shear stress (xz)"
 ComboBox1.Items(5) = "x Strain"
 ComboBox1.Items(6) = "y Strain"
 ComboBox1.Items(8) = "shear strain (xz)"
 Else
 ComboBox1.Items(1) = "r stress"
 ComboBox1.Items(2) = "Θ stress"
 ComboBox1.Items(4) = "shear stress (rz)"
 ComboBox1.Items(5) = "r Strain"
 ComboBox1.Items(6) = "Θ Strain"
 ComboBox1.Items(8) = "shear strain (rz)"
 End If
 ComboBox1.SelectedIndex = 0

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 133

 PrintPageSettings.Landscape = True
 Catch ex As Exception

 End Try

 End Sub

 Private Sub Output_Mousemove(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.MouseMove

 Dim p As New Point(MousePosition.X, MousePosition.Y)
 Dim PointerX, PointerY As Single

 Dim RowNumber, ColumnNumber As Integer
 Dim i As Integer = 0
 Dim j As Integer = 0
 Dim ElementsPreciding As UInteger
 Dim Element As UInteger
 Dim TooltipText As String

 Try
 PointerX = PointToClient(p).X
 PointerY = PointToClient(p).Y

 If PointerX >= OriginX And PointerX <= OriginX + GraphicsWidth And
PointerY >= OriginY And PointerY <= OriginY + GraphicsDepth Then
 PointerX = (PointerX - OriginX) / GraphicsScale
 PointerY = (PointerY - OriginY) / GraphicsScale

 Do Until PointerX >= VerticalGridMatrix(0, i) And (PointerX <=
VerticalGridMatrix(0, i + 1) Or i = UBound(VerticalGridMatrix, 2) - 1)
 i += 1
 Loop
 ColumnNumber = i

 Do Until PointerY >= HorizontalGridMatrix(j) And (PointerY <=
HorizontalGridMatrix(j + 1) Or j = UBound(HorizontalGridMatrix) - 1)
 j += 1
 Loop
 RowNumber = j

 ElementsPreciding = 4 * RowNumber * UBound(VerticalGridMatrix, 2) + 4
* ColumnNumber

 If PointerY >= HorizontalGridMatrix(j) + (HorizontalGridMatrix(j + 1)
- HorizontalGridMatrix(j)) / (VerticalGridMatrix(0, i + 1) - VerticalGridMatrix(0, i))
* (PointerX - VerticalGridMatrix(0, i)) Then
 If PointerY >= HorizontalGridMatrix(j + 1) +
(HorizontalGridMatrix(j) - HorizontalGridMatrix(j + 1)) / (VerticalGridMatrix(0, i +
1) - VerticalGridMatrix(0, i)) * (PointerX - VerticalGridMatrix(0, i)) Then
 Element = ElementsPreciding + 2
 Else
 Element = ElementsPreciding + 1
 End If
 Else
 If PointerY >= HorizontalGridMatrix(j + 1) +
(HorizontalGridMatrix(j) - HorizontalGridMatrix(j + 1)) / (VerticalGridMatrix(0, i +
1) - VerticalGridMatrix(0, i)) * (PointerX - VerticalGridMatrix(0, i)) Then
 Element = ElementsPreciding + 3
 Else
 Element = ElementsPreciding + 0
 End If

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 134

 End If

 If PreviousX = MousePosition.X And PreviousY = MousePosition.Y Then

 Else

 Dim AlphaI, AlphaJ, AlphaK As Single
 Dim BetaI, BetaJ, BetaK As Single
 Dim GammaI, GammaJ, GammaK As Single
 Dim ElementArea As Single
 Dim Vi, Vj, Vm As Single
 Dim Settlement As Single

 ElementArea = 0.5 * Abs((NodalCoordinates(ElementNodes(Element,
0), 0) * NodalCoordinates(ElementNodes(Element, 1), 1) +
NodalCoordinates(ElementNodes(Element, 1), 0) * NodalCoordinates(ElementNodes(Element,
2), 1) + NodalCoordinates(ElementNodes(Element, 2), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1)) -
(NodalCoordinates(ElementNodes(Element, 1), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1) + NodalCoordinates(ElementNodes(Element,
2), 0) * NodalCoordinates(ElementNodes(Element, 1), 1) +
NodalCoordinates(ElementNodes(Element, 0), 0) * NodalCoordinates(ElementNodes(Element,
2), 1)))

 BetaI = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 1), 1) -
NodalCoordinates(ElementNodes(Element, 2), 1))
 BetaJ = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 2), 1) -
NodalCoordinates(ElementNodes(Element, 0), 1))
 BetaK = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 0), 1) -
NodalCoordinates(ElementNodes(Element, 1), 1))

 GammaI = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 2), 0) -
NodalCoordinates(ElementNodes(Element, 1), 0))
 GammaJ = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 0), 0) -
NodalCoordinates(ElementNodes(Element, 2), 0))
 GammaK = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 1), 0) -
NodalCoordinates(ElementNodes(Element, 0), 0))

 AlphaI = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 1), 0) *
NodalCoordinates(ElementNodes(Element, 2), 1) - NodalCoordinates(ElementNodes(Element,
2), 0) * NodalCoordinates(ElementNodes(Element, 1), 1))
 AlphaJ = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 2), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1) - NodalCoordinates(ElementNodes(Element,
0), 0) * NodalCoordinates(ElementNodes(Element, 2), 1))
 AlphaK = (1 / 2 / ElementArea) *
(NodalCoordinates(ElementNodes(Element, 0), 0) *
NodalCoordinates(ElementNodes(Element, 1), 1) - NodalCoordinates(ElementNodes(Element,
1), 0) * NodalCoordinates(ElementNodes(Element, 0), 1))

 Vi = GlobalDisplacements(2 * ElementNodes(Element, 0) + 1)
 Vj = GlobalDisplacements(2 * ElementNodes(Element, 1) + 1)
 Vm = GlobalDisplacements(2 * ElementNodes(Element, 2) + 1)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 135

 Settlement = (AlphaI * Vi + AlphaJ * Vj + AlphaK * Vm) + PointerX
* (BetaI * Vi + BetaJ * Vj + BetaK * Vm) + PointerY * (GammaI * Vi + GammaJ * Vj +
GammaK * Vm)

 TooltipText = "Xo= " & Round(PointerX, 3) & " m"
 TooltipText = TooltipText & vbCrLf & "Yo= " & Round(PointerY, 3) &
" m"
 TooltipText = TooltipText & vbCrLf & "Vertical Settlement= " &
Round(Settlement, 3) & " m"
 TooltipText = TooltipText & vbCrLf & Ordinate & " Stress= " &
Format(HorizontalStress(Element), "g5") & " kN/m²"
 TooltipText = TooltipText & vbCrLf & Perpendicular & " Stress= " &
Format(StressY(Element), "g5") & " kN/m²"
 TooltipText = TooltipText & vbCrLf & "Z Stress= " &
Format(VerticalStress(Element), "g5") & " kN/m²"
 TooltipText = TooltipText & vbCrLf & "Shear Stress= " &
Format(ShearStress(Element), "g5") & " kN/m²"
 TooltipText = TooltipText & vbCrLf & Ordinate & " Strain= " &
Format(HorizontalStrain(Element), "g5")
 TooltipText = TooltipText & vbCrLf & Perpendicular & " Strain= " &
Format(StrainY(Element), "g5")
 TooltipText = TooltipText & vbCrLf & "Z Strain= " &
Format(VerticalStrain(Element), "g5")
 TooltipText = TooltipText & vbCrLf & "Shear Strain= " &
Format(ShearStrain(Element), "g5")

 ToolTip1.SetToolTip(Me, TooltipText)
 End If
 PreviousX = MousePosition.X
 PreviousY = MousePosition.Y
 Else
 ToolTip1.SetToolTip(Me, "")
 End If
 Catch ex As Exception

 End Try

 End Sub

 Private Sub Output_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 Try
 If Me.Size.Width > 380 Then
 Dim i As Short
 Dim j As UShort
 'Dim k As Short
 'Dim l As Single

 'TextBox1.Select(0, 0)

 'Graphics for soil matrix
 Dim OutputGraphics As Graphics
 OutputGraphics = Me.CreateGraphics

 'Selecting Governing Scale from WidthScale & DepthScale

 MaxGraphicsWidth = Me.Size.Width * (1 - 0.1) - 300 - 70
 MaxGraphicsDepth = Me.Size.Height - 115 - 95 - LegendSpace

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 136

 If WidthW / DepthD > MaxGraphicsWidth / MaxGraphicsDepth Then
 GraphicsScale = MaxGraphicsWidth / WidthW
 Else
 GraphicsScale = MaxGraphicsDepth / DepthD
 End If
 GraphicsDepth = DepthD * GraphicsScale
 GraphicsWidth = WidthW * GraphicsScale
 OriginX = 300 + 75 + 0.5 * (MaxGraphicsWidth - GraphicsWidth)
 OriginY = 90 + 45 + 0.5 * (MaxGraphicsDepth - GraphicsDepth)

 Dim SoilColorDarkRed As New SolidBrush(Color.DarkRed) ' > 75%
red
 Dim SoilColorRed As New SolidBrush(Color.Red) ' > 50%
 Dim SoilColorOrange As New SolidBrush(Color.DarkOrange) '
>25%
 Dim SoilColorBrown As New SolidBrush(Color.BurlyWood) ' >0%
lightgray
 Dim SoilColorLightGray As New SolidBrush(Color.LightGray) ' ≈0%
(0.5% to -0.5%)
 Dim SoilColorWhite As New SolidBrush(Color.GhostWhite) ' <0%
(tension)
 Dim SoilColor As New SolidBrush(Color.BurlyWood) 'Regular
soil color

 If ComboBox1.SelectedIndex <> 0 Then
 Select Case LeadingCategory
 Case 1
 OutputGraphics.FillRectangle(SoilColorDarkRed, OriginX,
OriginY, GraphicsWidth, GraphicsDepth)
 Case 2
 OutputGraphics.FillRectangle(SoilColorRed, OriginX,
OriginY, GraphicsWidth, GraphicsDepth)
 Case 3
 OutputGraphics.FillRectangle(SoilColorOrange, OriginX,
OriginY, GraphicsWidth, GraphicsDepth)
 Case 4
 OutputGraphics.FillRectangle(SoilColorBrown, OriginX,
OriginY, GraphicsWidth, GraphicsDepth)
 Case 5
 OutputGraphics.FillRectangle(SoilColorLightGray, OriginX,
OriginY, GraphicsWidth, GraphicsDepth)
 Case 6
 OutputGraphics.FillRectangle(SoilColorWhite, OriginX,
OriginY, GraphicsWidth, GraphicsDepth)
 End Select

 If LeadingCategory <> 1 Then
 For i = 1 To UBound(Top25Percent) '
Top25Percent(i)
 Dim point1 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Top25Percent(i), 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Top25Percent(i), 0), 1))
 Dim point2 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Top25Percent(i), 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Top25Percent(i), 1), 1))
 Dim point3 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Top25Percent(i), 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Top25Percent(i), 2), 1))
 Dim TrianglePoints As Point() = {point1, point2, point3}
 OutputGraphics.FillPolygon(SoilColorDarkRed,
TrianglePoints)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 137

 Next
 End If
 If LeadingCategory <> 2 Then
 For i = 1 To UBound(UpperMiddle25Percent) '
UpperMiddle25Percent(i)
 Dim point1 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(UpperMiddle25Percent(i), 0), 0), OriginY + GraphicsScale
* NodalCoordinates(ElementNodes(UpperMiddle25Percent(i), 0), 1))
 Dim point2 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(UpperMiddle25Percent(i), 1), 0), OriginY + GraphicsScale
* NodalCoordinates(ElementNodes(UpperMiddle25Percent(i), 1), 1))
 Dim point3 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(UpperMiddle25Percent(i), 2), 0), OriginY + GraphicsScale
* NodalCoordinates(ElementNodes(UpperMiddle25Percent(i), 2), 1))
 Dim TrianglePoints As Point() = {point1, point2, point3}
 OutputGraphics.FillPolygon(SoilColorRed, TrianglePoints)
 Next
 End If
 If LeadingCategory <> 3 Then
 For i = 1 To UBound(LowerMiddle25Percent) '
LowerMiddle25Percent(i)
 Dim point1 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(LowerMiddle25Percent(i), 0), 0), OriginY + GraphicsScale
* NodalCoordinates(ElementNodes(LowerMiddle25Percent(i), 0), 1))
 Dim point2 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(LowerMiddle25Percent(i), 1), 0), OriginY + GraphicsScale
* NodalCoordinates(ElementNodes(LowerMiddle25Percent(i), 1), 1))
 Dim point3 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(LowerMiddle25Percent(i), 2), 0), OriginY + GraphicsScale
* NodalCoordinates(ElementNodes(LowerMiddle25Percent(i), 2), 1))
 Dim TrianglePoints As Point() = {point1, point2, point3}
 OutputGraphics.FillPolygon(SoilColorOrange,
TrianglePoints)
 Next
 End If
 If LeadingCategory <> 4 Then
 For i = 1 To UBound(Least25Percent) '
Least25Percent(i)
 Dim point1 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Least25Percent(i), 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Least25Percent(i), 0), 1))
 Dim point2 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Least25Percent(i), 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Least25Percent(i), 1), 1))
 Dim point3 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Least25Percent(i), 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Least25Percent(i), 2), 1))
 Dim TrianglePoints As Point() = {point1, point2, point3}
 OutputGraphics.FillPolygon(SoilColorBrown, TrianglePoints)
 Next
 End If
 If LeadingCategory <> 5 Then
 For i = 1 To UBound(ZeroPercentList) '
Least25Percent(i)
 Dim point1 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(ZeroPercentList(i), 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(ZeroPercentList(i), 0), 1))
 Dim point2 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(ZeroPercentList(i), 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(ZeroPercentList(i), 1), 1))

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 138

 Dim point3 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(ZeroPercentList(i), 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(ZeroPercentList(i), 2), 1))
 Dim TrianglePoints As Point() = {point1, point2, point3}
 OutputGraphics.FillPolygon(SoilColorLightGray,
TrianglePoints)
 Next
 End If
 If LeadingCategory <> 5 Then
 For i = 1 To UBound(TensileList) '
Least25Percent(i)
 Dim point1 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(TensileList(i), 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(TensileList(i), 0), 1))
 Dim point2 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(TensileList(i), 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(TensileList(i), 1), 1))
 Dim point3 As New Point(OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(TensileList(i), 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(TensileList(i), 2), 1))
 Dim TrianglePoints As Point() = {point1, point2, point3}
 OutputGraphics.FillPolygon(SoilColorWhite, TrianglePoints)
 Next
 End If

 'OutputGraphics.FillRectangle(SoilColor, OriginX, OriginY,
GraphicsWidth, GraphicsDepth)

 Dim LegendRectangle As New Pen(Color.Gray)
 'Dim LegendGraphics As Graphics
 'LegendGraphics = Me.CreateGraphics

 'Graphics for Legend
 If ComboBox1.SelectedIndex <> 0 Then

 Label5.Text = CStr(Format(0.75 * MaximumValue, "0.000")) & " -
" & CStr(Format(MaximumValue, "0.000")) & OutputUnit
 Label6.Text = CStr(Format(MaximumValue * 0.5, "0.000")) & " -
" & CStr(Format(0.75 * MaximumValue, "0.000")) & OutputUnit
 Label7.Text = CStr(Format(MaximumValue * 0.25, "0.000")) & " -
" & CStr(Format(0.5 * MaximumValue, "0.000")) & OutputUnit
 Label8.Text = CStr(Format(0.005 * MaximumValue, "0.000")) & "
- " & CStr(Format(0.25 * MaximumValue, "0.000")) & OutputUnit
 Label9.Text = " ≈ 0 " & OutputUnit
 Label10.Text = " < 0" & OutputUnit & "(Tension)"

 LegendGroupBox.Visible = True
 If ComboBox1.SelectedIndex = 4 Or ComboBox1.SelectedIndex = 8
Then
 Panel4.Visible = False
 Label10.Visible = False
 Else
 Panel4.Visible = True
 Label10.Visible = True
 End If
 End If
 Else
 OutputGraphics.FillRectangle(SoilColor, OriginX, OriginY,
GraphicsWidth, GraphicsDepth)
 LegendGroupBox.Visible = False
 End If

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 139

 'Graphics for soil mesh
 If CheckBox2.Checked = True Then
 DrawUndeformedMesh()
 End If

 'Dim RedPen As New Pen(Color.Red)
 'Dim MagentaPen As New Pen(Color.DarkMagenta)

 Dim LoadingPen As New Pen(Color.DarkMagenta, 2)
 Dim Pencolor As New Pen(Color.Black)

 'Graphics for deformed mesh
 If CheckBox1.Checked = True Then
 DrawDeformedMesh()
 End If

 'Drawign Load Arrows
 If LoadingDataEntered = True Then
 'Dim BackgroudBlank As New SolidBrush(Color.White)

 If NumberUniformLoads <> 0 Then
 For j = 0 To NumberUniformLoads - 1
 If UDLMatrix(j, 0) <> 0 Then
 'OutputGraphics.FillRectangle(BackgroudBlank, OriginX
+ GraphicsScale * UDLMatrix(j, 1) - 10, OriginY + GraphicsScale * UDLMatrix(j, 3) -
35, GraphicsScale * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) + 20, 35)
 OutputGraphics.DrawLine(LoadingPen, OriginX +
GraphicsScale * UDLMatrix(j, 1), OriginY + GraphicsScale * UDLMatrix(j, 3) - 20,
OriginX + GraphicsScale * UDLMatrix(j, 2), OriginY + GraphicsScale * UDLMatrix(j, 3) -
20)
 For i = 0 To 5
 OutputGraphics.DrawLine(LoadingPen, OriginX +
GraphicsScale * UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j,
1)) / 5, OriginY + GraphicsScale * UDLMatrix(j, 3) - 20, OriginX + GraphicsScale *
UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) / 5, OriginY
+ GraphicsScale * UDLMatrix(j, 3))
 OutputGraphics.DrawLine(LoadingPen, OriginX +
GraphicsScale * UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j,
1)) / 5 - 5, OriginY + GraphicsScale * UDLMatrix(j, 3) - 7, OriginX + GraphicsScale *
UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) / 5, OriginY
+ GraphicsScale * UDLMatrix(j, 3))
 OutputGraphics.DrawLine(LoadingPen, OriginX +
GraphicsScale * UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j,
1)) / 5 + 5, OriginY + GraphicsScale * UDLMatrix(j, 3) - 7, OriginX + GraphicsScale *
UDLMatrix(j, 1) + GraphicsScale * i * (UDLMatrix(j, 2) - UDLMatrix(j, 1)) / 5, OriginY
+ GraphicsScale * UDLMatrix(j, 3))
 Next
 End If
 Next
 End If

 'Dim PencolorRed As New Pen(Color.Red)
 If NumberPointLoads <> 0 Then
 For j = 0 To NumberPointLoads - 1 Step 1
 If PointLoadMatrix(j, 0) <> 0 Then
 OutputGraphics.DrawLine(LoadingPen, OriginX +
GraphicsScale * PointLoadMatrix(j, 1), OriginY + GraphicsScale * PointLoadMatrix(j, 2)
- 30, OriginX + GraphicsScale * PointLoadMatrix(j, 1), OriginY + GraphicsScale *
PointLoadMatrix(j, 2))

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 140

 OutputGraphics.DrawLine(LoadingPen, OriginX +
GraphicsScale * PointLoadMatrix(j, 1) - 7, OriginY + GraphicsScale *
PointLoadMatrix(j, 2) - 10, OriginX + GraphicsScale * PointLoadMatrix(j, 1), OriginY +
GraphicsScale * PointLoadMatrix(j, 2))
 OutputGraphics.DrawLine(LoadingPen, OriginX +
GraphicsScale * PointLoadMatrix(j, 1) + 7, OriginY + GraphicsScale *
PointLoadMatrix(j, 2) - 10, OriginX + GraphicsScale * PointLoadMatrix(j, 1), OriginY +
GraphicsScale * PointLoadMatrix(j, 2))
 End If
 Next
 End If
 End If

 'Graphics for Layer Lines
 Dim PenColorLayers As New Pen(Color.Black, 2)
 For i = 0 To (UBound(LayerThicknesses, 2) - 1)
 OutputGraphics.DrawLine(PenColorLayers, OriginX, OriginY +
GraphicsScale * LayerThicknesses(1, i), OriginX + GraphicsWidth, OriginY +
GraphicsScale * LayerThicknesses(1, i))
 Next

 'Graphics for Soil Boundary
 Dim SoilBoundaryPen As New Pen(Color.Black, 1)

 'Drawing Soil Matrix Boundary
 OutputGraphics.DrawLine(SoilBoundaryPen, OriginX, OriginY, OriginX,
OriginY + GraphicsDepth) 'Left
 OutputGraphics.DrawLine(SoilBoundaryPen, OriginX, OriginY +
GraphicsDepth, OriginX + GraphicsWidth, OriginY + GraphicsDepth) 'Bottom
 OutputGraphics.DrawLine(SoilBoundaryPen, OriginX + GraphicsWidth,
OriginY + GraphicsDepth, OriginX + GraphicsWidth, OriginY) 'Right

 'End conditions left
 OutputGraphics.DrawLine(Pencolor, OriginX - 10, OriginY +
CInt(GraphicsDepth / 3) - 30, OriginX - 10, OriginY + CInt(GraphicsDepth / 3) + 30)
 OutputGraphics.DrawLine(Pencolor, OriginX + 10, OriginY +
CInt(GraphicsDepth / 3) - 30, OriginX + 10, OriginY + CInt(GraphicsDepth / 3) + 30)

 OutputGraphics.DrawLine(Pencolor, OriginX - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) - 30, OriginX - 10, OriginY + CInt(GraphicsDepth * 2 / 3)
+ 30)
 OutputGraphics.DrawLine(Pencolor, OriginX + 10, OriginY +
CInt(GraphicsDepth * 2 / 3) - 30, OriginX + 10, OriginY + CInt(GraphicsDepth * 2 / 3)
+ 30)

 If LeftEndVerticallyRestrained = True Then
 OutputGraphics.DrawLine(Pencolor, OriginX - 10, OriginY +
CInt(GraphicsDepth / 3) - 10, OriginX + 10, OriginY + CInt(GraphicsDepth / 3) + 10)
 OutputGraphics.DrawLine(Pencolor, OriginX - 10, OriginY +
CInt(GraphicsDepth / 3) + 10, OriginX + 10, OriginY + CInt(GraphicsDepth / 3) - 10)

 OutputGraphics.DrawLine(Pencolor, OriginX - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) - 10, OriginX + 10, OriginY + CInt(GraphicsDepth * 2 / 3)
+ 10)
 OutputGraphics.DrawLine(Pencolor, OriginX - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) + 10, OriginX + 10, OriginY + CInt(GraphicsDepth * 2 / 3)
- 10)
 End If

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 141

 'End Condition Bottom with crossing
 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth / 3) -
40, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth / 3) + 40, OriginY +
GraphicsDepth - 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth / 3) -
40, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth / 3) + 40, OriginY +
GraphicsDepth + 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth / 3) -
20, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth / 3) + 20, OriginY +
GraphicsDepth + 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth / 3) -
20, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth / 3) + 20, OriginY +
GraphicsDepth - 10)

 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth * 2 /
3) - 40, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 40,
OriginY + GraphicsDepth - 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth * 2 /
3) - 40, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 40,
OriginY + GraphicsDepth + 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth * 2 /
3) - 20, OriginY + GraphicsDepth - 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 20,
OriginY + GraphicsDepth + 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + CInt(GraphicsWidth * 2 /
3) - 20, OriginY + GraphicsDepth + 10, OriginX + CInt(GraphicsWidth * 2 / 3) + 20,
OriginY + GraphicsDepth - 10)

 'End Condition Right
 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth / 3) - 30, OriginX + GraphicsWidth - 10, OriginY +
CInt(GraphicsDepth / 3) + 30)
 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth + 10,
OriginY + CInt(GraphicsDepth / 3) - 30, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth / 3) + 30)

 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth * 2 / 3) - 30, OriginX + GraphicsWidth - 10, OriginY +
CInt(GraphicsDepth * 2 / 3) + 30)
 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth + 10,
OriginY + CInt(GraphicsDepth * 2 / 3) - 30, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth * 2 / 3) + 30)

 If RightEndVerticallyRestrained = True Then
 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth / 3) - 10, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth / 3) + 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth / 3) + 10, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth / 3) - 10)

 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth * 2 / 3) - 10, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth * 2 / 3) + 10)
 OutputGraphics.DrawLine(Pencolor, OriginX + GraphicsWidth - 10,
OriginY + CInt(GraphicsDepth * 2 / 3) + 10, OriginX + GraphicsWidth + 10, OriginY +
CInt(GraphicsDepth * 2 / 3) - 10)
 End If

 'Drawing Coordinate Axes and Directional Arrows
 Dim CoordinatesPen As New Pen(Color.DarkRed, 3)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 142

 Dim AxisPen As New Pen(Color.Gray, 1)
 Dim font As New Font(Height, 14)
 Dim OriginFont As New Font(Height, 10)
 Dim brush As Brush = Brushes.Black
 Dim TextFormat As New StringFormat(StringFormatFlags.NoClip)
 Dim Centralformat As New StringFormat(StringFormatFlags.NoClip)
 Dim RightAlignFormat As New StringFormat(LeftRightAlignment.Right)

 OutputGraphics.DrawLine(CoordinatesPen, OriginX + GraphicsWidth + 5,
OriginY, OriginX + GraphicsWidth + 40, OriginY)
 OutputGraphics.DrawLine(CoordinatesPen, OriginX + GraphicsWidth + 30,
OriginY - 5, OriginX + GraphicsWidth + 40, OriginY)
 OutputGraphics.DrawLine(CoordinatesPen, OriginX + GraphicsWidth + 30,
OriginY + 5, OriginX + GraphicsWidth + 40, OriginY)
 If PlaneStrainAnalysis Then
 OutputGraphics.DrawString("x", font, brush, OriginX +
GraphicsWidth + 40, OriginY - 28, TextFormat)
 Else
 OutputGraphics.DrawString("r", font, brush, OriginX +
GraphicsWidth + 40, OriginY - 28, TextFormat)
 End If

 OutputGraphics.DrawLine(CoordinatesPen, OriginX, OriginY +
GraphicsDepth + 5, OriginX, OriginY + GraphicsDepth + 40)
 OutputGraphics.DrawLine(CoordinatesPen, OriginX - 5, OriginY +
GraphicsDepth + 30, OriginX, OriginY + GraphicsDepth + 40)
 OutputGraphics.DrawLine(CoordinatesPen, OriginX + 5, OriginY +
GraphicsDepth + 30, OriginX, OriginY + GraphicsDepth + 40)
 OutputGraphics.DrawString("z", font, brush, OriginX - 27, OriginY +
GraphicsDepth + 25, TextFormat)

 OutputGraphics.DrawString("(0,0)", OriginFont, brush, OriginX - 35,
OriginY - 40 + 25, TextFormat)

 OutputGraphics.DrawLine(AxisPen, OriginX - 75, OriginY - 45, OriginX +
GraphicsWidth, OriginY - 45)
 OutputGraphics.DrawLine(AxisPen, OriginX - 75, OriginY - 45, OriginX -
75, OriginY + GraphicsDepth)

 Dim Marker As Single

 Do While Marker <= WidthW
 OutputGraphics.DrawLine(AxisPen, OriginX + CInt(GraphicsScale *
Marker), OriginY - 50, OriginX + CInt(GraphicsScale * Marker), OriginY - 40)
 Marker = i * Max(WidthW, DepthD) / 10
 i += 1
 Loop
 Marker = 0
 i = 1
 Do While Marker <= DepthD
 OutputGraphics.DrawLine(AxisPen, OriginX - 80, OriginY +
CInt(GraphicsScale * Marker), OriginX - 70, OriginY + CInt(GraphicsScale * Marker))
 Marker = i * Max(WidthW, DepthD) / 10
 i += 1
 Loop
 Marker = 0
 Do While Marker <= WidthW
 OutputGraphics.DrawString(Marker, OriginFont, brush, OriginX +
GraphicsScale * Marker - 7, OriginY - 70, Centralformat)
 Marker += (Max(DepthD, WidthW) / 5)
 Loop
 Marker = 0

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 143

 Do While Marker <= DepthD
 OutputGraphics.DrawString(Marker, OriginFont, brush, OriginX - 85,
OriginY + GraphicsScale * Marker - 10, RightAlignFormat)
 Marker += (Max(DepthD, WidthW) / 5)
 Loop

 ReadyToRefresh = True

 End If
 Catch ex As Exception

 End Try

 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ComboBox1.SelectedIndexChanged
 Me.Cursor = Cursors.WaitCursor
 Dim i As Integer = 0
 Dim OutputTableTitles() As String

 ReDim Top25Percent(0)
 ReDim UpperMiddle25Percent(0)
 ReDim LowerMiddle25Percent(0)
 ReDim Least25Percent(0)
 ReDim ZeroPercentList(0)
 ReDim TensileList(0)

 Try
 CheckBox2.Checked = False

 Select Case ComboBox1.SelectedIndex
 Case 0 'Soil Matrix Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Node", "Settlement", "Xo", "Zo", "X f",
"Z f"}
 Else
 OutputTableTitles = {"Node", "Settlement", "Ro", "Zo", "R f",
"Z f"}
 End If

 DataGridView1.DataSource = BuildOutputTable(GlobalDisplacements,
OutputTableTitles, 1)

 ReadyToRefresh = False
 CheckBox1.Checked = True
 CheckBox2.Checked = False
 MaximumValue = LargestDeformation
 Label4.Text = "Displacement and Coordinates of Nodes"
 'TextBox1.Text = DeformationOutput
 Label2.Text = "Maximum Deformation(m)= " &
CStr(Format(Abs(MaximumValue), "0.000"))
 Refresh()

 Case 1 'X Stress Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "X Stress (kN/m²)", "Centroid-
X", "Centroid- Z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = "Elemental Stresses (X direction) and
Coordinates"
 LegendGroupBox.Text = "Magnitudes of X-Stress"
 Else

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 144

 OutputTableTitles = {"Element", "r stress (kN/m²)", "Centroid-
r", "Centroid- z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = "Elemental Stresses (r direction) and
Coordinates"
 LegendGroupBox.Text = "Magnitudes of r-stress"
 End If

 DataGridView1.DataSource = BuildOutputTable(HorizontalStress,
OutputTableTitles, 2)

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxHorizontalStress
 RankProcedure(HorizontalStress)
 'TextBox1.Text = HorizontalStressOutput
 Label2.Text = "Maximum Stress(kN/m²)= " &
CStr(Format(Abs(MaximumValue), "0.000"))
 OutputUnit = " kN/m²"
 Refresh()

 Case 2 'Y or Θ Stress Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "Y Stress (kN/m²)", "Centroid-
X", "Centroid- Z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = "Elemental Stresses (Y direction) and
Coordinates"
 LegendGroupBox.Text = "Magnitudes of Y-Stress"
 Else
 OutputTableTitles = {"Element", "Θ stress (kN/m²)", "Centroid-
r", "Centroid- z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = "Elemental Stresses (Θ direction) and
Coordinates"
 LegendGroupBox.Text = "Magnitudes of Θ-stress"
 End If

 DataGridView1.DataSource = BuildOutputTable(StressY,
OutputTableTitles, 2)

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxYstress
 RankProcedure(StressY)
 'TextBox1.Text = VerticalStressOutput
 Label2.Text = "Maximum Stress(kN/m²)= " &
CStr(Format(Abs(MaximumValue), "0.000"))
 OutputUnit = " kN/m²"
 Refresh()

 Case 3 'Z Stress Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "Z Stress (kN/m²)", "Centroid-
X", "Centroid- Z", "Node- i", "Node- J", "Node- m"}
 Else
 OutputTableTitles = {"Element", "Z Stress (kN/m²)", "Centroid-
r", "Centroid- z", "Node- i", "Node- J", "Node- m"}
 End If
 Label4.Text = "Elemental Stresses (Z direction) and Coordinates"
 DataGridView1.DataSource = BuildOutputTable(VerticalStress,
OutputTableTitles, 2)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 145

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxVerticalStress
 RankProcedure(VerticalStress)
 'TextBox1.Text = VerticalStressOutput
 Label2.Text = "Maximum Stress(kN/m²)= " &
CStr(Format(Abs(MaximumValue), "0.000"))
 LegendGroupBox.Text = "Magnitudes of Z-Stress"
 OutputUnit = " kN/m²"
 Refresh()

 Case 4 'Shear Stress Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "Shear Stress (kN/m²)",
"Centroid- X", "Centroid- Z", "Node- i", "Node- J", "Node- m"}
 Else
 OutputTableTitles = {"Element", "Shear Stress (kN/m²)",
"Centroid- r", "Centroid- z", "Node- i", "Node- J", "Node- m"}
 End If
 DataGridView1.DataSource = BuildOutputTable(ShearStress,
OutputTableTitles, 2)

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxShearStress
 RankProcedure(AbsoluteShearStress)
 Label4.Text = "Elemental Shear Stresses" & vbCrLf & "and
Coordinates"
 'TextBox1.Text = ShearStressOutput
 Label2.Text = "Maximum Stress(kN/m²)= " &
CStr(Format(Abs(MaximumValue), "0.000"))
 LegendGroupBox.Text = "Magnitudes of Shear Stress (Absolute
Value)"
 OutputUnit = " kN/m²"
 Refresh()

 Case 5 'X or r Strain Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "X Strain", "Centroid- X",
"Centroid- Z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = "Elemental Strains (X direction) and
Coordinates"
 LegendGroupBox.Text = "Magnitudes of X-Strain"
 Else
 OutputTableTitles = {"Element", "r strain", "Centroid- r",
"Centroid- z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = "Elemental Strains (r direction) and
Coordinates"
 LegendGroupBox.Text = "Magnitudes of r-strain"
 End If

 DataGridView1.DataSource = BuildOutputTable(HorizontalStrain,
OutputTableTitles, 2)

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxHorizontalStrain
 RankProcedure(HorizontalStrain)
 'TextBox1.Text = HorizontalStrainOutput

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 146

 Label2.Text = "Maximum Strain= " & CStr(Format(Abs(MaximumValue),
"0.000"))
 OutputUnit = " "
 Refresh()

 Case 6 'Y or Θ Strain Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "Y Strain ", "Centroid- X",
"Centroid- Z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = CStr("Elemental Strains (Y Direction)" & vbCrLf
& "and Coordinates")
 LegendGroupBox.Text = "Magnitudes of Y-Strain"
 Else
 OutputTableTitles = {"Element", "Θ strain ", "Centroid- r",
"Centroid- z", "Node- i", "Node- J", "Node- m"}
 Label4.Text = CStr("Elemental Strains (Θ Direction)" & vbCrLf
& "and Coordinates")
 LegendGroupBox.Text = "Magnitudes of Θ-strain"
 End If
 DataGridView1.DataSource = BuildOutputTable(StrainY,
OutputTableTitles, 2)

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxVerticalStrain
 RankProcedure(StrainY)
 'TextBox1.Text = VerticalStrainOutput
 Label2.Text = "Maximum Strain= " & CStr(Format(Abs(MaximumValue),
"0.000"))
 OutputUnit = " "
 Refresh()

 Case 7 'Z Strain Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "Z Strain ", "Centroid- X",
"Centroid- Z", "Node- i", "Node- J", "Node- m"}
 Else
 OutputTableTitles = {"Element", "Z Strain ", "Centroid- r",
"Centroid- z", "Node- i", "Node- J", "Node- m"}
 End If
 DataGridView1.DataSource = BuildOutputTable(VerticalStrain,
OutputTableTitles, 2)

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxVerticalStrain
 RankProcedure(VerticalStrain)
 Label4.Text = CStr("Elemental Strains (Z direction)" & vbCrLf &
"and Coordinates")
 'TextBox1.Text = VerticalStrainOutput
 Label2.Text = "Maximum Strain= " & CStr(Format(Abs(MaximumValue),
"0.000"))
 LegendGroupBox.Text = "Magnitudes of Z-Strain"
 OutputUnit = " "
 Refresh()

 Case 8 'Shear Strain Selected
 If PlaneStrainAnalysis Then
 OutputTableTitles = {"Element", "Shear Strain ", "Centroid-
X", "Centroid- Z", "Node- i", "Node- J", "Node- m"}

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 147

 Else
 OutputTableTitles = {"Element", "Shear Strain ", "Centroid-
r", "Centroid- Z", "Node- i", "Node- J", "Node- m"}
 End If
 DataGridView1.DataSource = BuildOutputTable(ShearStrain,
OutputTableTitles, 2)

 ReadyToRefresh = False
 CheckBox1.Checked = False
 CheckBox2.Checked = False
 MaximumValue = MaxShearStrain
 RankProcedure(AbsoluteShearStrain)
 Label4.Text = CStr("Elemental Shear Strains" & vbCrLf & "and
Coordinates")
 'TextBox1.Text = ShearStrainOutput
 Label2.Text = "Maximum Strain= " & CStr(Format(Abs(MaximumValue),
"0.000"))
 LegendGroupBox.Text = "Magnitudes of Shear Strain (Absolute
Value)"
 OutputUnit = " "
 Refresh()
 End Select

 i = 0
 Dim OutputColumn As DataGridViewColumn
 For Each OutputColumn In DataGridView1.Columns
 'Me.DataGridView1.Columns(i).SortMode =
DataGridViewColumnSortMode.NotSortable
 OutputColumn.SortMode = DataGridViewColumnSortMode.NotSortable
 i = i + 1
 Next

 Me.Cursor = Cursors.Default
 Catch ex As Exception

 End Try

 End Sub

 Sub RankProcedure(ByVal ParameterMatrix)
 Dim i As Short
 HighestOccurance = 0

 For i = 0 To UBound(ParameterMatrix)
 If Round(ParameterMatrix(i), 3) > Round(0.75 * MaximumValue, 3) Then
 ReDim Preserve Top25Percent(UBound(Top25Percent) + 1)
 Top25Percent(UBound(Top25Percent)) = i
 If UBound(Top25Percent) > HighestOccurance Then
 HighestOccurance = UBound(Top25Percent)
 LeadingCategory = 1
 End If
 ElseIf Round(ParameterMatrix(i), 3) > Round(0.5 * MaximumValue, 3) Then
 ReDim Preserve UpperMiddle25Percent(UBound(UpperMiddle25Percent) + 1)
 UpperMiddle25Percent(UBound(UpperMiddle25Percent)) = i
 If UBound(UpperMiddle25Percent) > HighestOccurance Then
 HighestOccurance = UBound(UpperMiddle25Percent)
 LeadingCategory = 2
 End If
 ElseIf Round(ParameterMatrix(i), 3) > Round(0.25 * MaximumValue, 3) Then
 ReDim Preserve LowerMiddle25Percent(UBound(LowerMiddle25Percent) + 1)
 LowerMiddle25Percent(UBound(LowerMiddle25Percent)) = i

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 148

 If UBound(LowerMiddle25Percent) > HighestOccurance Then
 HighestOccurance = UBound(LowerMiddle25Percent)
 LeadingCategory = 3
 End If
 ElseIf Round(ParameterMatrix(i), 3) > Round(0.005 * MaximumValue, 3) Then
 ReDim Preserve Least25Percent(UBound(Least25Percent) + 1)
 Least25Percent(UBound(Least25Percent)) = i
 If UBound(Least25Percent) > HighestOccurance Then
 HighestOccurance = UBound(Least25Percent)
 LeadingCategory = 4
 End If
 ElseIf Round(ParameterMatrix(i), 3) >= Round(-0.005 * MaximumValue, 3)
Then
 ReDim Preserve ZeroPercentList(UBound(ZeroPercentList) + 1)
 ZeroPercentList(UBound(ZeroPercentList)) = i
 If UBound(ZeroPercentList) > HighestOccurance Then
 HighestOccurance = UBound(ZeroPercentList)
 LeadingCategory = 5
 End If
 Else
 ReDim Preserve TensileList(UBound(TensileList) + 1)
 TensileList(UBound(TensileList)) = i
 If UBound(TensileList) > HighestOccurance Then
 HighestOccurance = UBound(TensileList)
 LeadingCategory = 6
 End If
 End If
 Next
 End Sub
 Sub DrawUndeformedMesh()
 Dim MeshPen As New Pen(Color.Gray)
 Dim counter As Integer
 Dim MeshDirection As Byte
 Dim i As Short
 Dim j As UShort
 Dim Element As UInteger = 0
 Dim UndeformedMeshGraphics As Graphics

 Try
 UndeformedMeshGraphics = Me.CreateGraphics

 'Previous method; connecting each node of each element involving redundant
lines;
 'For Element = 0 To UBound(ElementNodes)
 'OutputGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 1), OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 1))
 'OutputGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 1), 1), OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 1))
 'OutputGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 2), 1), OriginX + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 0), OriginY + GraphicsScale *
NodalCoordinates(ElementNodes(Element, 0), 1))
 'Next

 'Drawing mesh by using drawlines command (avoinds redundant lines)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 149

 For j = 1 To UBound(VerticalGridMatrix, 2) - 1 'Draw vertical grid
lines
 UndeformedMeshGraphics.DrawLine(MeshPen, OriginX + GraphicsScale *
VerticalGridMatrix(0, j), OriginY, OriginX + GraphicsScale * VerticalGridMatrix(0, j),
OriginY + GraphicsScale * DepthD)
 Next
 For i = 0 To UBound(HorizontalGridMatrix) - 1 'Draw horizontal grid
lines
 UndeformedMeshGraphics.DrawLine(MeshPen, OriginX, OriginY +
GraphicsScale * HorizontalGridMatrix(i), OriginX + GraphicsScale * WidthW, OriginY +
GraphicsScale * HorizontalGridMatrix(i))
 Next

 'Drawing the Criss Crossing mesh lines Undeformed
 counter = 0
 MeshDirection = 1
 MeshGraphicPoints = {New Point(OriginX, OriginY)}
 For j = 0 To UBound(VerticalGridMatrix, 2) - 1 'X-coordinates
 For i = 1 To UBound(HorizontalGridMatrix) 'Y-coordinates-
downwards
 counter = counter + 1
 ReDim Preserve MeshGraphicPoints(counter)
 MeshGraphicPoints(counter) = New Point(OriginX + GraphicsScale *
VerticalGridMatrix(0, j + MeshDirection), OriginY + GraphicsScale *
HorizontalGridMatrix(i))
 MeshDirection = Abs(MeshDirection - 1)
 Next
 For i = UBound(HorizontalGridMatrix) To 0 Step -1 'Y-
coordinates- upwards
 counter = counter + 1
 ReDim Preserve MeshGraphicPoints(counter)
 MeshGraphicPoints(counter) = New Point(OriginX + GraphicsScale *
VerticalGridMatrix(0, j + MeshDirection), OriginY + GraphicsScale *
HorizontalGridMatrix(i))
 MeshDirection = Abs(MeshDirection - 1)
 Next
 MeshDirection = Abs(MeshDirection - 1)
 Next
 UndeformedMeshGraphics.DrawLines(MeshPen, MeshGraphicPoints)
 Catch ex As Exception

 End Try

 End Sub
 Sub DrawDeformedMesh()
 Dim i As Short
 Dim j As UShort
 Dim counter As Integer
 Dim Element As UInteger = 0
 Dim MeshDirection As Byte
 Dim DeformedMeshPen As New Pen(Color.Red)
 Dim DeformedMeshGraphics As Graphics

 Try
 DeformedMeshGraphics = Me.CreateGraphics

 'Drawing the deformed mesh using DrawLines method
 counter = 1
 MeshDirection = 0

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 150

 DeformedMeshGraphicPoints = {New Point(OriginX + GraphicsScale *
ScaledDeformedCoordinates(0, 0), OriginY + GraphicsScale *
ScaledDeformedCoordinates(0, 1))}
 For j = 0 To UBound(HorizontalGridMatrix) - 1 'along the Vertical
 For i = 0 To UBound(VerticalGridMatrix, 2) - 1 'along the
Horizontal
 ReDim Preserve
DeformedMeshGraphicPoints(UBound(DeformedMeshGraphicPoints) + 7)
 DeformedMeshGraphicPoints(counter) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 1, 1), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 1, 1), 1))
 DeformedMeshGraphicPoints(counter + 1) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 1, 2), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 1, 2), 1))
 DeformedMeshGraphicPoints(counter + 2) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 0, 0), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 0, 0), 1))
 DeformedMeshGraphicPoints(counter + 3) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 0, 1), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 0, 1), 1))
 DeformedMeshGraphicPoints(counter + 4) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 0, 2), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 0, 2), 1))
 DeformedMeshGraphicPoints(counter + 5) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 3, 1), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 3, 1), 1))
 DeformedMeshGraphicPoints(counter + 6) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 3, 0), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 3, 0), 1))
 Element = Element + 4
 counter = counter + 7
 Next
 If j < UBound(HorizontalGridMatrix) - 1 Then
 counter = counter - 1
 ReDim Preserve
DeformedMeshGraphicPoints(UBound(DeformedMeshGraphicPoints) +
UBound(VerticalGridMatrix, 2) - 1)
 For i = UBound(VerticalGridMatrix, 2) - 1 To 0 Step -1
'Returning to the lefternmost edge
 Element = Element - 4
 DeformedMeshGraphicPoints(counter) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 2, 2), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(ElementNodes(Element + 2, 2), 1))
 counter = counter + 1
 Next
 Element = Element + 4 * UBound(VerticalGridMatrix, 2)
 Else
 ReDim Preserve
DeformedMeshGraphicPoints(UBound(DeformedMeshGraphicPoints) + 1)
 DeformedMeshGraphicPoints(counter) = New Point(OriginX +
GraphicsScale * ScaledDeformedCoordinates(UBound(VerticalGridMatrix, 2), 0), OriginY +
GraphicsScale * ScaledDeformedCoordinates(UBound(VerticalGridMatrix, 2), 1))
 End If
 Next
 DeformedMeshGraphics.DrawLines(DeformedMeshPen, DeformedMeshGraphicPoints)

 Catch ex As Exception

 End Try

 End Sub

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 151

 Private Function BuildOutputTable(ByVal OutputArray, ByVal LeadingColumnTitles,
ByVal OutputSetupType) As DataTable

 Dim i As Short
 Dim j As Short
 Dim OutputTable As New DataTable
 Dim TableRow As DataRow

 OutputTable.Columns.Add("ColumnZero")
 OutputTable.Columns.Add("ColumnOne")
 OutputTable.Columns.Add("ColumnTwo")
 OutputTable.Columns.Add("ColumnThree")
 OutputTable.Columns.Add("ColumnFour")
 OutputTable.Columns.Add("ColumnFive")

 If OutputSetupType = 1 Then
 For i = 0 To UBound(NodalCoordinates)
 OutputTable.Rows.Add()
 Next

 i = 0
 j = 1
 For Each TableRow In OutputTable.Rows
 TableRow!ColumnZero = i + 1
 TableRow!ColumnOne = Round(OutputArray(j), 6)
 TableRow!columnTwo = NodalCoordinates(i, 0)
 TableRow!columnThree = NodalCoordinates(i, 1)
 TableRow!columnFour = Round(NodalCoordinates(i, 0) +
GlobalDisplacements(j - 1), 3)
 TableRow!columnFive = Round(NodalCoordinates(i, 1) +
GlobalDisplacements(j), 3)
 i += 1
 j += 2
 Next
 Else
 OutputTable.Columns.Add("ColumnSix")
 For i = 0 To UBound(OutputArray)
 OutputTable.Rows.Add()
 Next

 i = 0
 For Each TableRow In OutputTable.Rows
 TableRow!ColumnZero = i + 1
 TableRow!ColumnOne = Round(OutputArray(i), 6)
 TableRow!columnTwo = Round(ElementCentroids(i, 0), 3)
 TableRow!columnThree = Round(ElementCentroids(i, 1), 3)
 TableRow!columnFour = ElementNodes(i, 0) + 1
 TableRow!columnFive = ElementNodes(i, 1) + 1
 TableRow!ColumnSix = ElementNodes(i, 2) + 1
 i += 1
 Next
 End If

 For i = 0 To UBound(LeadingColumnTitles)
 OutputTable.Columns(i).ColumnName = LeadingColumnTitles(i)
 OutputTable.Columns(i).AllowDBNull = True
 Next

 Return OutputTable

 End Function

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 152

 Private Sub CopyToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CopyToolStripMenuItem.Click
 Clipboard.SetDataObject(Me.DataGridView1.GetClipboardContent())

 'Clipboard.SetDataObject(DataGridView1.SelectedCells)
 End Sub

 Private Sub CopyAllToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles CopyAllToolStripMenuItem.Click
 DataGridView1.SelectAll()
 Clipboard.SetDataObject(Me.DataGridView1.GetClipboardContent())
 End Sub

 Private Sub GraphicOutputToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GraphicOutputToolStripMenuItem.Click
 My.Forms.NumericOutputForm.Show()
 End Sub

 Private Sub GenerateReportToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GenerateReportToolStripMenuItem.Click
 Try
 SaveFileDialog1.Filter = "Text files(*.txt)|*.txt"
 If SaveFileDialog1.ShowDialog() = DialogResult.OK Then
 My.Forms.GenerateReport.Show()
 End If
 Catch ex As Exception

 End Try

 End Sub

 Private Sub PrintToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles PrintToolStripMenuItem.Click
 Try
 CaptureScreen()
 PrintDocument1.Print()
 Catch ex As Exception

 End Try
 End Sub

 Private Sub CaptureScreen()

 Dim myGraphics As Graphics = Me.CreateGraphics()
 Dim s As Size = Me.Size

 FullGraphicDepth = Me.Size.Height - 50
 FullGraphicWidth = Me.Size.Width - 260

 s = New Size(FullGraphicWidth, FullGraphicDepth)

 memoryImage = New Bitmap(s.Width, s.Height, myGraphics)
 Dim memoryGraphics As Graphics = Graphics.FromImage(memoryImage)
 memoryGraphics.CopyFromScreen(Me.Location.X + 260, Me.Location.Y + 50, 0, 0,
s)
 End Sub

 Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, ByVal e As
System.Drawing.Printing.PrintPageEventArgs) Handles PrintDocument1.PrintPage
 Dim PrintableWidth As Single = e.MarginBounds.Width
 Dim PrintableHeight As Single = e.MarginBounds.Height

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 153

 Dim rectDraw As RectangleF
 '(e.MarginBounds.Left, e.MarginBounds.Top, e.MarginBounds.Width,
e.MarginBounds.Height)

 Try
 If PrintableWidth / PrintableHeight > (FullGraphicWidth /
FullGraphicDepth) Then
 rectDraw = New RectangleF(e.MarginBounds.Left, e.MarginBounds.Top, _
 FullGraphicWidth * e.MarginBounds.Height /
FullGraphicDepth, e.MarginBounds.Height)
 Else
 rectDraw = New RectangleF(e.MarginBounds.Left, e.MarginBounds.Top, _
 e.MarginBounds.Width, FullGraphicDepth *
e.MarginBounds.Width / FullGraphicWidth)
 End If

 e.Graphics.DrawImage(memoryImage, rectDraw)
 'e.Graphics.DrawImage(
 Catch ex As Exception

 End Try

 End Sub

 Private Sub PrintPreviewToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles PrintPreviewToolStripMenuItem.Click
 Try
 CaptureScreen()
 PrintDocument1.DefaultPageSettings = PrintPageSettings

 PrintPreviewDialog1.Document = PrintDocument1
 PrintPreviewDialog1.ShowDialog()
 Catch ex As Exception
 'Display error message
 MessageBox.Show(ex.Message)
 End Try
 End Sub

End Class

**Codes Used for Managing the Report Generation

Imports System.IO
Imports System.Math
Imports System.Data

Public Class GenerateReport

 Private Sub GenerateReport_Shown(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Shown

 Try

 Me.Cursor = Cursors.WaitCursor

 Dim i As Integer
 Dim j As UShort

 ReportBegin = TimeString
 ReportStreamToWrite = New StreamWriter(SaveFileDialog1.FileName)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 154

 OutputReportText = vbCrLf & vbTab & vbTab & "Finite Element Software for
Computing Stress & Deformation in Layered Soils" & vbCrLf & vbCrLf & vbTab & vbTab & "
*** " & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & vbTab & vbTab &
vbTab & "Analysis Report" & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab & vbTab &
vbTab & vbTab & vbTab & vbTab & vbTab & DateString & " " & TimeString & vbCrLf &
vbCrLf & vbCrLf

 '
 OutputReportText = OutputReportText & " Given:" & vbCrLf
 OutputReportText = OutputReportText & vbTab & "Soil Matrix:-" & vbTab &
"Width= " & WidthW & "m" & vbTab & "Total Depth= " & DepthD & "m" & vbCrLf & vbCrLf

 For i = 0 To UBound(LayerThicknesses, 2)
 OutputReportText = OutputReportText & vbTab & " Layer-" & i + 1 &
vbTab & "Thickness= " & LayerThicknesses(0, i) & "m" & vbTab & "Modulus of Elasticity,
E=" & ElasticModulus(i, 0) & "kN/m²" & vbTab & "Poisson's Ratio= " & PoissonsRatio(i,
0) & vbCrLf
 Next
 OutputReportText = OutputReportText & vbCrLf & vbCrLf & vbTab & "Load
Cases:-" & vbCrLf
 For i = 0 To UBound(UDLMatrix)
 OutputReportText = OutputReportText & vbTab & " Uniform Load-" & i +
1 & ":" & vbTab & UDLMatrix(i, 0) & "kN/m" & " acting from X= " & UDLMatrix(i, 1) &
"m" & " to X= " & UDLMatrix(i, 2) & "m, at " & UDLMatrix(i, 3) & "m depth" &
vbCrLf
 Next
 OutputReportText = OutputReportText & vbCrLf
 For i = 0 To UBound(PointLoadMatrix)
 OutputReportText = OutputReportText & vbTab & " Point Load-" & i + 1
& ":" & vbTab & PointLoadMatrix(i, 0) & "kN" & vbTab & "acting on X= " &
PointLoadMatrix(i, 1) & "m" & " at " & PointLoadMatrix(i, 2) & "m depth" & vbCrLf
 Next

 OutputReportText = OutputReportText & vbCrLf
 If LeftEndVerticallyRestrained Then
 OutputReportText = OutputReportText & vbCrLf & vbTab & "-Left boundary
is Vertically Restrained" & vbCrLf
 Else
 OutputReportText = OutputReportText & vbCrLf & vbTab & "-Left boundary
is Vertically Unrestrained" & vbCrLf
 End If
 If RightEndVerticallyRestrained Then
 OutputReportText = OutputReportText & vbTab & "-Right boundary is
Vertically Restrained" & vbCrLf
 Else
 OutputReportText = OutputReportText & vbTab & "-Right boundary is
Vertically Unrestrained" & vbCrLf
 End If

 OutputReportText = OutputReportText & vbCrLf
 If PlaneStrainAnalysis Then
 OutputReportText = OutputReportText & vbCrLf & vbTab & "The problem
type is- Plane Strain" & vbCrLf
 Else
 OutputReportText = OutputReportText & vbCrLf & vbTab & "The problem
type is- Axisymmetric" & vbCrLf
 End If

 OutputReportText = OutputReportText & vbCrLf

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 155

 OutputReportText = OutputReportText & vbCrLf & " Finite Element Method
Steps:" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & "Maximum Mesh Dimension
Used= " & MaximumMeshDimension & "m" & vbCrLf
 OutputReportText = OutputReportText & vbTab & "Total Number of Nodes = " &
UBound(NodalCoordinates) + 1 & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & "Nodal Coordinates
and Degrees of Freedom:-" & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 For i = 0 To UBound(NodalCoordinates)
 If PlaneStrainAnalysis Then
 OutputReportText = vbTab & " Node " & i + 1 & vbTab & "X= " &
(NodalCoordinates(i, 0).ToString("f4")) & vbTab & " Z= " & (NodalCoordinates(i,
1).ToString("f4")) & " " & vbTab & "DOF_Id {x,z}= { " & 2 * i + 1 & " , " & 2 * (i
+ 1) & " }" & vbCrLf
 Else
 OutputReportText = vbTab & " Node " & i + 1 & vbTab & "r= " &
(NodalCoordinates(i, 0).ToString("f4")) & vbTab & " z= " & (NodalCoordinates(i,
1).ToString("f4")) & " " & vbTab & "DOF_Id {r,z}= { " & 2 * i + 1 & " , " & 2 * (i
+ 1) & " }" & vbCrLf
 End If
 ReportStreamToWrite.Write(OutputReportText)
 Next
 OutputReportText = vbCrLf & vbCrLf & vbCrLf & vbTab & "Total Number of
Elements Formed= " & UBound(ElementNodes) + 1 & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & "Element-Node
Connectivity:-" & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 For i = 0 To UBound(ElementNodes)
 OutputReportText = vbTab & " Element " & i + 1 & vbTab & " Nodes= {"
& ElementNodes(i, 0) + 1 & "," & ElementNodes(i, 1) + 1 & "," & ElementNodes(i, 2) + 1
& "}" & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)
 Next

 OutputReportText = vbCrLf & vbCrLf & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & "Assembly of elemental
stiffnesses" & vbCrLf & vbCrLf

 If PlaneStrainAnalysis Then
 OutputReportText = OutputReportText & vbTab & " - for Plane Strain
problems the elemental stiffness matrix is given by;" & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & vbTab & vbTab &
" T" & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & "[k] = tA [B]
[D][B]" & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & "where;" &
vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & " t = thickness
(for the 2 dimensional case of plane strain problems, t=1 unit)" & vbCrLf & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 OutputReportText = " ┌ ┐" &
vbCrLf
 OutputReportText = OutputReportText & " │ βi 0 βj 0
βm 0 │ where the Beta and Gamma variables represent orthogonal distances
between the nodes i,j, and m as follows" & vbCrLf

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 156

 OutputReportText = OutputReportText & " 1│
 │" & vbCrLf
 OutputReportText = OutputReportText & " [B] = ──│ 0 γi 0
γj 0 γm │ βi = Yj-Ym βj = Ym-Yi βk = Yi-Yj" & vbCrLf
 OutputReportText = OutputReportText & " 2A│
 │" & vbCrLf
 OutputReportText = OutputReportText & " │ 0 0 0 0
0 0 │ γi = Xm-Xj γj = Xi-Xm γk = Xj-Xi" & vbCrLf
 OutputReportText = OutputReportText & " │
 │" & vbCrLf
 OutputReportText = OutputReportText & " │ γi βi γj βj
γm βm │" & vbCrLf
 OutputReportText = OutputReportText & " └
 ┘" & vbTab & " A= area of the element " & vbCrLf
 Else
 OutputReportText = OutputReportText & vbTab & " - for axisymmetric
problems the elemental stiffness matrix is approximated by;" & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & vbTab & vbTab &
" _ _ T _" & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & "[k] = 2π.r.A
[B] [D][B]" & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & "where;" &
vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & " _" & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & " r = radius
(distance from Axis of symmetry to centroid of element)" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & " A = area of
the element" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & " _" & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & " [B] = the
value of the strain-displacement matrix at the centroidal point" & vbCrLf & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 OutputReportText = " ┌
┐" & vbCrLf
 OutputReportText = OutputReportText & " │ βi
0 βj 0 βm 0 │" & vbCrLf
 OutputReportText = OutputReportText & " │
 │" & vbCrLf
 OutputReportText = OutputReportText & " │ 0
γi 0 γj 0 γm │" & vbCrLf
 OutputReportText = OutputReportText & " │
 │" & vbCrLf
 OutputReportText = OutputReportText & " │
 │" & vbCrLf
 OutputReportText = OutputReportText & " _ 1 │
αi+βi.r+γi.z 0 αj+βj.r+γj.z 0 αm+βm.r+γm.z 0 │" & vbCrLf
 OutputReportText = OutputReportText & " [B] = ── │_____________
____________ ____________ │" & vbCrLf
 OutputReportText = OutputReportText & " 2A │ r
r r │" & vbCrLf
 OutputReportText = OutputReportText & " │
 │" & vbCrLf
 OutputReportText = OutputReportText & " │
 │" & vbCrLf
 OutputReportText = OutputReportText & " │ γi
βi γj βj γm βm │" & vbCrLf
 OutputReportText = OutputReportText & " └
 ┘" & vbTab & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbTab & vbTab & "
 where; " & vbCrLf & vbCrLf

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 157

 OutputReportText = OutputReportText & vbTab & vbTab & vbTab & " αi
= rj.Zm-rm.Zj αj = rm.Zi-ri.Zm αk = ri.Zj-rj.Zi" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab & " βi
= Yj-Ym βj = Ym-Yi βk = Yi-Yj" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab & " γi
= Xm-Xj γj = Xi-Xm γk = Xj-Xi" & vbCrLf & vbCrLf

 End If
 ReportStreamToWrite.Write(OutputReportText)

 OutputReportText = vbCrLf & vbCrLf & vbTab & vbTab & vbTab & "the Stress-
Strain matrix (Constitutive martix), [D], is given by;" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & " ┌
┐" & vbCrLf
 OutputReportText = OutputReportText & " │ 1-ν
 ν ν 0 │ where " & vbCrLf
 OutputReportText = OutputReportText & " E │
 │ E= modulus of elasticity for the respective element" &
vbCrLf
 OutputReportText = OutputReportText & " [D] = ────── │ ν
1-ν ν 0 │ " & vbCrLf
 OutputReportText = OutputReportText & " (1+ν)(1-2ν) │
 │ ν= Poisson's ratio for the respective element" & vbCrLf
 OutputReportText = OutputReportText & " │ ν
 ν 1-ν 0 │ " & vbCrLf
 OutputReportText = OutputReportText & " │
 │" & vbCrLf
 OutputReportText = OutputReportText & " │ 0
 0 0 0.5-ν │ " & vbCrLf
 OutputReportText = OutputReportText & " └
 ┘" & vbCrLf & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 '
 Dim Element As UInteger
 Dim LocalDisplacements(5) As Single

 Dim ElementStiffnessMatrix(5, 5) As Double
 'Dim GlobalStiffnessMatrix(UBound(FixityStatus), UBound(FixityStatus)) As
Double
 Dim ArrayProduct(5, 3) As Double
 Dim ElementArea As Double
 Dim ElementalElasticModulus As Single
 Dim ElementalPoissonsRatio As Single

 For Element = 0 To UBound(ElementNodes)

 ElementArea = 0.5 * Abs((NodalCoordinates(ElementNodes(Element, 0), 0)
* NodalCoordinates(ElementNodes(Element, 1), 1) +
NodalCoordinates(ElementNodes(Element, 1), 0) * NodalCoordinates(ElementNodes(Element,
2), 1) + NodalCoordinates(ElementNodes(Element, 2), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1)) -
(NodalCoordinates(ElementNodes(Element, 1), 0) *
NodalCoordinates(ElementNodes(Element, 0), 1) + NodalCoordinates(ElementNodes(Element,
2), 0) * NodalCoordinates(ElementNodes(Element, 1), 1) +
NodalCoordinates(ElementNodes(Element, 0), 0) * NodalCoordinates(ElementNodes(Element,
2), 1)))
 ElementalElasticModulus = ElasticModulus(0, 0)
 ElementalPoissonsRatio = PoissonsRatio(0, 0)

 For i = 0 To NumberSoilLayers - 1

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 158

 If Element >= PoissonsRatio(i, 1) Then
 ElementalElasticModulus = ElasticModulus(i, 0)
 ElementalPoissonsRatio = PoissonsRatio(i, 0)
 End If
 Next

 For i = 0 To 5
 For j = 0 To 3
 ArrayProduct(i, j) = BTranspose(i, 0, Element) * DMatrix(0, j,
Element) + BTranspose(i, 1, Element) * DMatrix(1, j, Element) + BTranspose(i, 2,
Element) * DMatrix(2, j, Element) + BTranspose(i, 3, Element) * DMatrix(3, j, Element)
 Next
 Next

 'Calculation of Elemental Stiffness
 For i = 0 To 5
 For j = 0 To 5
 ElementStiffnessMatrix(i, j) = ElementArea *
(((ArrayProduct(i, 0)) * (BMatrix3D(0, j, Element))) + ((ArrayProduct(i, 1)) *
(BMatrix3D(1, j, Element))) + ((ArrayProduct(i, 2)) * (BMatrix3D(2, j, Element))) +
((ArrayProduct(i, 3)) * (BMatrix3D(3, j, Element))))
 If PlaneStrainAnalysis = False Then
 ElementStiffnessMatrix(i, j) = ElementStiffnessMatrix(i,
j) * 2 * PI * ElementCentroids(Element, 0)
 End If
 Next
 Next

 OutputReportText = vbCrLf & vbTab & "Element " & Element + 1 & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & " E= " &
ElementalElasticModulus & "kN/m²" & vbTab & "ν= " & ElementalPoissonsRatio & " A= "
& ElementArea & " m²" & " Elemental Nodes= {" & ElementNodes(Element, 0) + 1 & ","
& ElementNodes(Element, 1) + 1 & "," & ElementNodes(Element, 2) + 1 & "}" & "
DOF_List= {" & 2 * ElementNodes(Element, 0) + 1 & "," & 2 * ElementNodes(Element, 0) +
2 & "," & 2 * ElementNodes(Element, 1) + 1 & "," & 2 * ElementNodes(Element, 1) + 2 &
"," & 2 * ElementNodes(Element, 2) + 1 & "," & 2 * ElementNodes(Element, 2) + 2 & "}"
& vbCrLf & vbCrLf
 'OutputReportText = OutputReportText & vbTab & vbTab & " [D]= " & "[[
" & Round(DMatrix(0, 0, Element), 5) & " " & Round(DMatrix(0, 1, Element), 5) & " 0
] " & "[" & Round(DMatrix(1, 0, Element), 5) & " " & Round(DMatrix(1, 1, Element),
5) & " " & "0] " & "[0 0 " & Round(DMatrix(2, 2, Element), 5) & "]]" & vbCrLf &
vbCrLf
 'OutputReportText = OutputReportText & vbTab & vbTab & " [B]= " & "[[
" & BMatrix3D(0, 0, Element) & " 0 " & BMatrix3D(0, 2, Element) & " 0 " &
BMatrix3D(0, 4, Element) & " 0] [" & " 0 " & BMatrix3D(1, 1, Element) & " 0 "
& BMatrix3D(1, 3, Element) & " 0 " & BMatrix3D(1, 5, Element) & "] [" &
BMatrix3D(2, 0, Element) & " " & BMatrix3D(2, 1, Element) & " " & BMatrix3D(2, 2,
Element) & " " & BMatrix3D(2, 3, Element) & " " & BMatrix3D(2, 4, Element) & " "
& BMatrix3D(2, 5, Element) & "]]" & vbCrLf

 OutputReportText = OutputReportText & vbTab & vbTab & " [D]= " & "["
 For i = 0 To 3
 OutputReportText = OutputReportText & "["
 For j = 0 To 3
 OutputReportText = OutputReportText & Round(DMatrix(i, j,
Element), 5) & " "
 Next
 OutputReportText = OutputReportText & "] "
 Next
 OutputReportText = OutputReportText & "]" & vbCrLf & vbCrLf

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 159

 OutputReportText = OutputReportText & vbTab & vbTab & " [B]= " & "["
 For i = 0 To 3
 OutputReportText = OutputReportText & "["
 For j = 0 To 5
 OutputReportText = OutputReportText & Round(BMatrix3D(i, j,
Element), 5) & " "
 Next
 OutputReportText = OutputReportText & "] "
 Next
 OutputReportText = OutputReportText & "]" & vbCrLf & vbCrLf

 OutputReportText = OutputReportText & vbCrLf & vbTab & vbTab & "=>
[k]= "
 OutputReportText = OutputReportText & " ["
 For i = 0 To 5
 OutputReportText = OutputReportText & " ["
 ReportStreamToWrite.Write(OutputReportText)

 For j = 0 To 5
 OutputReportText = Round(ElementStiffnessMatrix(i, j), 5) & "
"
 ReportStreamToWrite.Write(OutputReportText)
 Next
 OutputReportText = "]"
 Next
 OutputReportText = OutputReportText & "] " & vbCrLf & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 '
 Next

 OutputReportText = vbCrLf & vbCrLf & vbTab & "List of Unconstrained
Degrees of Freedom (with Unknown displacement values)" & vbCrLf & vbCrLf & vbTab &
vbTab & "{ "
 ReportStreamToWrite.Write(OutputReportText)

 DOF = 0
 For i = 0 To UBound(FixityStatus)
 If FixityStatus(i) = 0 Then
 OutputReportText = i + 1 & " "
 If (DOF + 1) Mod 30 = 0 Then
 OutputReportText = OutputReportText & vbCrLf & vbTab & vbTab &
" "
 End If
 ReportStreamToWrite.Write(OutputReportText)
 DOF = DOF + 1
 End If
 Next

 OutputReportText = "}" & vbCrLf & vbCrLf & vbCrLf & vbCrLf & vbTab & "The
Global Stiffness Matrix is assembled by superposing the elemental stiffness matrix
elements at the respective degrees of freedom." & vbCrLf & vbTab & "In order to solve
for the unknown displacement values, we use the Partitioned Global Stiffness matrix
formed by taking from the Global" & vbCrLf & vbTab & "Stiffness Matrix the rows &
columns corresponding to unconstrained degrees of freedom (whose displacement value is
not known)." & vbCrLf & vbCrLf & vbCrLf & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 For i = 0 To DOF - 1

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 160

 OutputReportText = vbTab & "Partitioned Global Stiffness Matrix" &
vbTab & "Row " & i + 1 & " (DOF " & UnknownDOFList(i) + 1 & ")" & vbCrLf & vbCrLf
& vbTab & " " & "[["
 ReportStreamToWrite.Write(OutputReportText)

 For j = 0 To DOF - 1
 OutputReportText = Round(ShortStiffnessCopy(i, j), 5) & " "
 ReportStreamToWrite.Write(OutputReportText)
 Next

 OutputReportText = "]]" & vbCrLf & vbCrLf & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 '
 Next

 OutputReportText = vbCrLf & vbCrLf & vbCrLf & vbTab & "The partitioned
forces matrix, [F], corresponding to the unconstrained degrees of freedom is given
by;" & vbCrLf & vbCrLf & vbTab & vbTab & "[["
 ReportStreamToWrite.Write(OutputReportText)

 For i = 0 To DOF - 1
 OutputReportText = ForcesMatrix(UnknownDOFList(i)) & " "
 ReportStreamToWrite.Write(OutputReportText)
 Next

 ReportStreamToWrite.Write("]]" & vbCrLf & vbCrLf)

 '
 OutputReportText = vbCrLf & vbCrLf & vbTab & "From the Stiffness equation;
[F]=[K]{d} where [K] is the stiffness matrix" & vbCrLf & vbCrLf & vbTab & vbTab &
vbTab & vbTab & vbTab & vbTab & vbTab & "{d} is the displacement vector" & vbCrLf &
vbTab & vbTab & vbTab & vbTab & vbTab & "-1" & vbCrLf & vbTab & vbTab & vbTab & " =>
{d} = [K] [F]" & vbCrLf & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbCrLf & vbCrLf & vbTab & "Solving
the matrix equation for the unknown global displacement values gives;" & vbCrLf &
vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

 OutputReportText = vbTab & vbTab & "{d}= {"
 ReportStreamToWrite.Write(OutputReportText)
 For i = 0 To DOF - 1
 OutputReportText = Round(GlobalDisplacements(UnknownDOFList(i)), 5) &
" "
 ReportStreamToWrite.Write(OutputReportText)
 Next

 OutputReportText = "}" & vbCrLf & vbCrLf

 OutputReportText = OutputReportText & vbCrLf & vbCrLf & vbCrLf & vbTab &
"Calculation of Elemental Stresses and Strains" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & "The elemental
displacement matrix is expressed as" & vbCrLf & vbCrLf & vbTab & vbTab &
"{d}={Ui,Vi,Uj,Vj,Uk,Vk} where U and V are displacements along the X and along the Y
respectively" & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab & vbTab &
vbTab & vbTab & "their magnitues are referred from the global displacement matrix
using the degree of freedom ID" & vbCrLf & vbCrLf & vbCrLf
 ReportStreamToWrite.Write(OutputReportText)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 161

 '

 For Element = 0 To UBound(ElementNodes)
 For i = 0 To 2 'for every node
 For j = 0 To 1 'for X direction & Y
direction
 LocalDisplacements(2 * i + j) = GlobalDisplacements(2 *
ElementNodes(Element, i) + j)
 Next
 Next

 OutputReportText = vbTab & "Element " & Element + 1 & vbCrLf & vbCrLf
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab &
"DOF_List= {" & 2 * ElementNodes(Element, 0) + 1 & "," & 2 * ElementNodes(Element, 0)
+ 2 & "," & 2 * ElementNodes(Element, 1) + 1 & "," & 2 * ElementNodes(Element, 1) + 2
& "," & 2 * ElementNodes(Element, 2) + 1 & "," & 2 * ElementNodes(Element, 2) + 2 &
"}" & vbTab & "=> {d}= {" & Round(LocalDisplacements(0), 5) & " " &
Round(LocalDisplacements(1), 5) & " " & Round(LocalDisplacements(2), 5) & " " &
Round(LocalDisplacements(3), 5) & " " & Round(LocalDisplacements(4), 5) & " " &
Round(LocalDisplacements(5), 5) & "}" & vbCrLf & vbCrLf

 OutputReportText = OutputReportText & vbTab & vbTab & " [D]= " & "["
 For i = 0 To 3
 OutputReportText = OutputReportText & "["
 For j = 0 To 3
 OutputReportText = OutputReportText & Round(DMatrix(i, j,
Element), 5) & " "
 Next
 OutputReportText = OutputReportText & "] "
 Next
 OutputReportText = OutputReportText & "]" & vbCrLf & vbCrLf

 OutputReportText = OutputReportText & vbTab & vbTab & " [B]= " & "["
 For i = 0 To 3
 OutputReportText = OutputReportText & "["
 For j = 0 To 5
 OutputReportText = OutputReportText & Round(BMatrix3D(i, j,
Element), 5) & " "
 Next
 OutputReportText = OutputReportText & "] "
 Next
 OutputReportText = OutputReportText & "]" & vbCrLf & vbCrLf & vbCrLf

 ' strain=[B]{d}

 OutputReportText = OutputReportText & vbTab & vbTab & " Strains: {ε}
=[B]{d} => {ε} = {" & Round(HorizontalStrain(Element), 5) & " " &
Round(StrainY(Element), 5) & " " & Round(VerticalStrain(Element), 5) & " " &
Round(ShearStrain(Element), 5) & "}" & vbCrLf & vbCrLf
 If PlaneStrainAnalysis Then
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab &
vbTab & vbTab & vbTab & "εx = " & Round(HorizontalStrain(Element), 5) & vbTab & "εy =
" & Round(StrainY(Element), 5) & vbTab & "εz = " & Round(VerticalStrain(Element), 5) &
vbTab & "γxz = " & Round(ShearStrain(Element), 5) & vbCrLf & vbCrLf
 Else
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab &
vbTab & vbTab & vbTab & "εr = " & Round(HorizontalStrain(Element), 5) & vbTab & "εΘ =
" & Round(StrainY(Element), 5) & vbTab & "εz = " & Round(VerticalStrain(Element), 5) &
vbTab & "γrz = " & Round(ShearStrain(Element), 5) & vbCrLf & vbCrLf
 End If
 OutputReportText = OutputReportText & vbCrLf

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 162

 ' Stress=[D]{Strain}

 OutputReportText = OutputReportText & vbTab & vbTab & " Stresses: {σ}
=[D]{ε} => {σ} = {" & Round(HorizontalStress(Element), 5) & " " &
Round(StressY(Element), 5) & " " & Round(VerticalStress(Element), 5) & " " &
Round(ShearStress(Element), 5) & "}" & vbCrLf & vbCrLf
 If PlaneStrainAnalysis Then
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab &
vbTab & vbTab & vbTab & "σx = " & Round(HorizontalStress(Element), 5) & vbTab & "σy =
" & Round(StressY(Element), 5) & vbTab & "σz = " & Round(VerticalStress(Element), 5) &
vbTab & "τxz = " & Round(ShearStress(Element), 5) & vbTab & "kN/m²" & vbCrLf & vbCrLf
 Else
 OutputReportText = OutputReportText & vbTab & vbTab & vbTab &
vbTab & vbTab & vbTab & "σr = " & Round(HorizontalStress(Element), 5) & vbTab & "σΘ =
" & Round(StressY(Element), 5) & vbTab & "σz = " & Round(VerticalStress(Element), 5) &
vbTab & "τrz = " & Round(ShearStress(Element), 5) & vbTab & "kN/m²" & vbCrLf & vbCrLf
 End If
 ReportStreamToWrite.Write(OutputReportText)

 Next

 ReportEnd = TimeString
 OutputReportText = vbCrLf & vbCrLf & " Analysis Duration = " &
AnalysisBegin & " to " & AnalysisEnd
 OutputReportText = OutputReportText & vbCrLf & " Reporting Duration= " &
ReportBegin & " to " & ReportEnd
 ReportStreamToWrite.Write(OutputReportText)

 ReportStreamToWrite.Close()
 Me.Cursor = Cursors.Default
 Me.Visible = False
 MsgBox("Report Generation Completed")
 Me.DialogResult = DialogResult.OK
 'End If
 Catch ex As Exception
 MsgBox("Error! Report could not be generated.")
 End Try

 End Sub
End Class

**Codes Used for Managing the Cross-Section based Numeric Output

Imports System.Math

Public Class NumericOutputForm

 Private Sub NumericOutputComboBox_SelectedIndexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
NumericOutputComboBox.SelectedIndexChanged
 Dim i As UInteger
 Dim NumericOutputTable As New DataTable
 Dim ScanRow As DataRow
 Dim DOF_index As UInteger = 1
 Dim ColumnStagger As Byte = 0
 Dim ColumnNumber As Integer = 2

 Try

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 163

 Select Case NumericOutputComboBox.SelectedIndex
 Case 0 'Vertical Deformation
Selectd
 For i = 0 To 2 * UBound(VerticalGridMatrix, 2) + 2 'preparing the
columns
 NumericOutputTable.Columns.Add()
 Next
 For i = 0 To 2 * UBound(HorizontalGridMatrix) 'preparing the
rows
 NumericOutputTable.Rows.Add()
 Next

 For Each ScanRow In NumericOutputTable.Rows
 ColumnNumber = ColumnNumber + ColumnStagger
 Do While ColumnNumber <= 2 * UBound(VerticalGridMatrix, 2) + 2
 ScanRow.Item(ColumnNumber) =
GlobalDisplacements(DOF_index)
 ColumnNumber += 2
 DOF_index += 2
 Loop
 ColumnNumber = 2
 ColumnStagger = 1 - ColumnStagger
 Next

 NumericOutputTable.Rows(0).Item(0) = HorizontalGridMatrix(0)
 Dim RowNumber As Integer = 1
 For i = 1 To UBound(HorizontalGridMatrix)
 NumericOutputTable.Rows(RowNumber).Item(0) = 0.5 *
(HorizontalGridMatrix(i - 1) + HorizontalGridMatrix(i))
 NumericOutputTable.Rows(RowNumber + 1).Item(0) =
HorizontalGridMatrix(i)
 RowNumber += 2
 Next

 ColumnNumber = 2
 NumericOutputTable.Columns(0).ColumnName = CStr(" ")
 If PlaneStrainAnalysis Then
 NumericOutputTable.Columns(1).ColumnName = CStr("x
cooridinates")
 Else
 NumericOutputTable.Columns(1).ColumnName = CStr("r
cooridinates")
 End If

 NumericOutputTable.Columns(2).ColumnName =
CStr(VerticalGridMatrix(0, 0))
 For i = 1 To UBound(VerticalGridMatrix, 2)
 NumericOutputTable.Columns(ColumnNumber + 1).ColumnName =
CStr(0.5 * (VerticalGridMatrix(0, i - 1) + VerticalGridMatrix(0, i)))
 NumericOutputTable.Columns(ColumnNumber + 2).ColumnName =
CStr(VerticalGridMatrix(0, i))
 ColumnNumber += 2
 Next

 Dim InsertRow As DataRow = NumericOutputTable.NewRow()
 InsertRow.Item(0) = "z cooridinates"
 NumericOutputTable.Rows.InsertAt(InsertRow, 0)
 DataGridView1.DataSource = NumericOutputTable

 Case 1 'Horizontal
Deformation Selectd
 For i = 0 To 2 * UBound(VerticalGridMatrix, 2) + 2

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 164

 NumericOutputTable.Columns.Add()
 Next
 For i = 0 To 2 * UBound(HorizontalGridMatrix)
 NumericOutputTable.Rows.Add()
 Next

 For Each ScanRow In NumericOutputTable.Rows
 ColumnNumber = ColumnNumber + ColumnStagger
 Do While ColumnNumber <= 2 * UBound(VerticalGridMatrix, 2) + 2
 ScanRow.Item(ColumnNumber) = GlobalDisplacements(DOF_index
- 1)
 ColumnNumber += 2
 DOF_index += 2
 Loop
 ColumnNumber = 2
 ColumnStagger = 1 - ColumnStagger
 Next

 NumericOutputTable.Rows(0).Item(0) = HorizontalGridMatrix(0)
 Dim RowNumber As Integer = 1
 For i = 1 To UBound(HorizontalGridMatrix)
 NumericOutputTable.Rows(RowNumber).Item(0) = 0.5 *
(HorizontalGridMatrix(i - 1) + HorizontalGridMatrix(i))
 NumericOutputTable.Rows(RowNumber + 1).Item(0) =
HorizontalGridMatrix(i)
 RowNumber += 2
 Next

 'Labelling X coordinates on the Column headers
 ColumnNumber = 2
 NumericOutputTable.Columns(0).ColumnName = CStr(" ")
 If PlaneStrainAnalysis Then
 NumericOutputTable.Columns(1).ColumnName = CStr("x
cooridinates")
 Else
 NumericOutputTable.Columns(1).ColumnName = CStr("r
cooridinates")
 End If
 NumericOutputTable.Columns(2).ColumnName =
CStr(VerticalGridMatrix(0, 0))
 For i = 1 To UBound(VerticalGridMatrix, 2)
 NumericOutputTable.Columns(ColumnNumber + 1).ColumnName =
CStr(0.5 * (VerticalGridMatrix(0, i - 1) + VerticalGridMatrix(0, i)))
 NumericOutputTable.Columns(ColumnNumber + 2).ColumnName =
CStr(VerticalGridMatrix(0, i))
 ColumnNumber += 2
 Next

 'inserting the blank row below the column header
 Dim InsertRow As DataRow = NumericOutputTable.NewRow()
 InsertRow.Item(0) = "z cooridinates"
 NumericOutputTable.Rows.InsertAt(InsertRow, 0)
 DataGridView1.DataSource = NumericOutputTable

 Case 2 'x Stress Selectd
 DataGridView1.DataSource =
BuildStressStrainTables(HorizontalStress)

 Case 3 'Y- Stress Selectd
 DataGridView1.DataSource = BuildStressStrainTables(StressY)

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 165

 Case 4 'Z Stress Selectd
 DataGridView1.DataSource = BuildStressStrainTables(VerticalStress)

 Case 5 'Shear Stress Selectd
 DataGridView1.DataSource = BuildStressStrainTables(ShearStress)

 Case 6 'x Strain Selectd
 DataGridView1.DataSource =
BuildStressStrainTables(HorizontalStrain)

 Case 7 'Y Strain Selectd
 DataGridView1.DataSource = BuildStressStrainTables(StrainY)

 Case 8 'Z Strain Selectd
 DataGridView1.DataSource = BuildStressStrainTables(VerticalStrain)

 Case 9 'Shear Strain Selectd
 DataGridView1.DataSource = BuildStressStrainTables(ShearStrain)
 End Select
 DataGridView1.Columns(0).Frozen = True
 DataGridView1.Columns(1).Frozen = True
 DataGridView1.Rows(0).Frozen = True

 Dim OutputColumn As DataGridViewColumn
 For Each OutputColumn In DataGridView1.Columns
 'Me.DataGridView1.Columns(i).SortMode =
DataGridViewColumnSortMode.NotSortable
 OutputColumn.SortMode = DataGridViewColumnSortMode.NotSortable
 Next
 Catch ex As Exception

 End Try

 End Sub

 Private Function BuildStressStrainTables(ByVal OutputParameter)
 Dim OutputTable As New DataTable
 Dim i As Integer
 Dim ScanRow As DataRow
 Dim ColumnSpacing As Byte
 Dim ColumnNumber As Integer = 2
 Dim ElementSeries1 As UInteger = 0
 Dim ElementSeries2 As UInteger = 1
 Dim ElementSeries3 As UInteger = 2
 Dim RowNumber As UInteger
 'Dim ElementIncrement As Integer = -2

 For i = 1 To 3 * UBound(VerticalGridMatrix, 2) + 2
 OutputTable.Columns.Add()
 Next

 For i = 1 To 3 * UBound(HorizontalGridMatrix)
 OutputTable.Rows.Add()
 Next

 RowNumber = 1
 For Each ScanRow In OutputTable.Rows
 'ScanRow.Item(0) = HorizontalGridMatrix(RowNumber - 1)

 If RowNumber Mod 3 = 1 Then

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 166

 ColumnNumber = 3
 Do While ColumnNumber <= 3 * UBound(VerticalGridMatrix, 2) - 1 + 2
 ScanRow.Item(ColumnNumber) = OutputParameter(ElementSeries1)
 ColumnNumber += 3
 ElementSeries1 += 4
 Loop

 ElseIf RowNumber Mod 3 = 2 Then
 ColumnNumber = 2
 ColumnSpacing = 2
 Do While ColumnNumber <= 3 * UBound(VerticalGridMatrix, 2) - 1 + 2
 ScanRow.Item(ColumnNumber) = OutputParameter(ElementSeries2)
 ColumnNumber += ColumnSpacing
 ColumnSpacing = 3 - ColumnSpacing
 ElementSeries2 += 2
 'ElementIncrement = 4 - ElementIncrement
 Loop

 ElseIf RowNumber Mod 3 = 0 Then
 ColumnNumber = 1 + 2
 Do While ColumnNumber <= 3 * UBound(VerticalGridMatrix, 2) - 1 + 2
 ScanRow.Item(ColumnNumber) = OutputParameter(ElementSeries3)
 ColumnNumber += 3
 ElementSeries3 += 4
 Loop

 End If
 RowNumber += 1
 Next

 RowNumber = 0
 For i = 1 To UBound(HorizontalGridMatrix)
 OutputTable.Rows(RowNumber).Item(0) = Round(5 / 6 * HorizontalGridMatrix(i
- 1) + 1 / 6 * HorizontalGridMatrix(i), 3)
 OutputTable.Rows(RowNumber + 1).Item(0) = Round(0.5 *
(HorizontalGridMatrix(i - 1) + HorizontalGridMatrix(i)), 3)
 OutputTable.Rows(RowNumber + 2).Item(0) = Round(1 / 6 *
HorizontalGridMatrix(i - 1) + 5 / 6 * HorizontalGridMatrix(i), 3)
 RowNumber += 3
 Next

 ColumnNumber = 2
 OutputTable.Columns(0).ColumnName = CStr(" ")
 If PlaneStrainAnalysis Then
 OutputTable.Columns(1).ColumnName = CStr("x cooridinates")
 Else
 OutputTable.Columns(1).ColumnName = CStr("r cooridinates")
 End If

 For i = 1 To UBound(VerticalGridMatrix, 2)
 OutputTable.Columns(ColumnNumber).ColumnName = CStr(" " & Round((5 / 6 *
VerticalGridMatrix(0, i - 1) + 1 / 6 * VerticalGridMatrix(0, i)), 3))
 OutputTable.Columns(ColumnNumber + 1).ColumnName = CStr(" " & Round(0.5 *
(VerticalGridMatrix(0, i - 1) + VerticalGridMatrix(0, i)), 3))
 OutputTable.Columns(ColumnNumber + 2).ColumnName = CStr(" " & Round((1 / 6
* VerticalGridMatrix(0, i - 1) + 5 / 6 * VerticalGridMatrix(0, i)), 3))
 'OutputTable.Columns(ColumnNumber).ColumnName = 1 / 5 * ColumnNumber
 'OutputTable.Columns(ColumnNumber + 1).ColumnName = 1 / 5 * ColumnNumber +
1
 'OutputTable.Columns(ColumnNumber + 2).ColumnName = 1 / 5 * ColumnNumber +
2
 ColumnNumber += 3

Development of a Finite Element Software for Computing Stresses and Deformations in Layered Soils

July 2014 167

 Next

 Dim InsertRow As DataRow = OutputTable.NewRow()
 InsertRow.Item(0) = "z cooridinates"
 OutputTable.Rows.InsertAt(InsertRow, 0)
 Return (OutputTable)
 End Function

 Private Sub NumericOutputForm_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 Try
 If PlaneStrainAnalysis Then
 NumericOutputComboBox.Items(2) = "x stress"
 NumericOutputComboBox.Items(3) = "y stress"
 NumericOutputComboBox.Items(5) = "shear stress (xz)"
 NumericOutputComboBox.Items(6) = "x strain"
 NumericOutputComboBox.Items(7) = "y strain"
 NumericOutputComboBox.Items(9) = "shear strain (xz)"
 Else
 NumericOutputComboBox.Items(2) = "r stress"
 NumericOutputComboBox.Items(3) = "Θ stress"
 NumericOutputComboBox.Items(5) = "shear stress (rz)"
 NumericOutputComboBox.Items(6) = "r strain"
 NumericOutputComboBox.Items(7) = "Θ strain"
 NumericOutputComboBox.Items(9) = "shear strain (rz)"
 End If
 NumericOutputComboBox.SelectedIndex = 0
 Catch ex As Exception

 End Try

 End Sub
End Class

