
Addis Ababa University

Addis Ababa Institute of Technology

School of Civil and Environmental Engineering

Cost Optimization of Reinforced Concrete Frames Using Genetic
Algorithms

by

Elias Yilma

Sponsor: Ethiopian Roads Authority(ERA)

March 21, 2017

A Thesis submitted at Addis Ababa Institute of Technology
in partial ful�llment of the requirements for

the Degree of Master of Science in Structural Engineering

The undersigned have examined the thesis entitled `Cost Optimization of Rein-

forced Concrete Frames Using Genetic Algorithms' presented by Elias Yilma,

a candidate for the degree of Master of Science and hereby certify that it is worthy of

acceptance.

Advisor Signature Date

Internal Examiner Signature Date

External Examiner Signature Date

Chair Person Signature Date

UNDERTAKING

I certify that the research work titled �Cost Optimization of Reinforced Con-

crete Frames Using Genetic Algorithms� is my own work. The work has not been

presented elsewhere for assessment. Where material has been used from other sources, it

has been properly acknowledged /referred.

Elias Yilma

Abstract

In this research, cost optimization of reinforced concrete plane and space frames using

genetic algorithms is presented. Previous research endeavors have used highly simpli�ed

continuous and discrete optimization models, while ignoring constructibility. Addition-

ally, the optimization of 3D frames was done without due consideration to shear, torsional

e�ects and sizing constraints. This paper constructs an optimization model with these

points in mind. An integrated software architecture has been developed to implement

the method, and benchmark examples were used to compare its feasibility and e�ciency

with the traditional assume-check design method as well as other heuristic methods. De-

sign check procedures were based on Eurocode-2(2004). Performance and computational

complexity of the algorithm is developed along with a thorough study assessing the e�ect

of genetic parameters such as mutation and crossover on the optimization process. The

method developed proves to be superior as compared to the traditional design paradigm

and heuristic methods.

Keywords: Concrete Frame Optimization, Structural Optimization, Genetic Algo-

rithms, Eurocode , Sizing Optimization, Object-Oriented Model

ACKNOWLEDGMENTS

First and foremost, I cannot thank Dr. Bedilu Habte enough for his relentless involve-

ment and e�ort in guiding me from the inception of this research through its completion,

for his timely feedback and suggestions and for steering me in the right direction whenever

I got lost .

I would also like to acknowledge my friends and colleagues for providing me with

valuable insight in the thesis work. I can boldly say some of their comments were critical

enough to shape this paper to its present state.

Finally, I'm without words to express my heartfelt appreciation and gratefulness to my

family, for their undying love and support is what got me through tough and frustrating

times while doing this work.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Statement of the problem . 2

1.3 Objectives . 2

1.3.1 General Objectives . 2

1.3.2 Speci�c Objectives . 2

1.4 Scope . 3

2 Basics 4

2.1 General . 4

2.2 Deterministic Methods . 4

2.2.1 Mathematical Programming . 4

2.2.2 The Lagrangian Multiplier Method and Kuhn-Tucker Conditions . 5

2.2.3 Optimality Criteria Methods . 6

2.3 Meta-heuristic Methods . 6

2.4 Genetic Algorithms . 7

2.4.1 Description . 7

2.4.2 Genetic Operators . 8

2.4.2.1 Reproduction . 8

2.4.2.2 Crossover . 9

2.4.2.3 Mutation . 9

2.4.3 Genetic Algorithms and Optimization 9

3 State of the Art 11

3.1 Limitations of Mathematical Optimization Methods 11

3.2 Genetic Modeling of Concrete Frames 11

3.2.1 Representation and Modeling for Concrete Frames 11

3.2.2 Problem Formulation . 12

3.2.3 Genetic Encoding . 13

3.2.4 Design Variables . 14

3.2.5 Design and Detailing . 14

ii

3.2.6 Optimization of Space Frames . 15

3.2.7 Convergence . 15

3.2.8 Computational Complexity . 16

3.3 Observations . 16

4 Implementation 18

4.1 Introduction . 18

4.1.1 General Program Structure . 18

4.2 Structural Analysis and Design Actions(Alg. 4.1) 19

4.2.1 Structural Analysis . 19

4.2.2 Improvements to the Sti�ness Solver 21

4.2.3 Computation of Design Actions 22

4.3 Design and Constraint Algorithms . 23

4.3.1 Assumptions . 23

4.3.2 Design Checks for Bending(Alg. 4.14, 4.15) 23

4.3.3 Design Checks for Shear(Alg. 4.18) 25

4.3.4 Design Checks for Torsion (Alg. 4.19, 4.20) 25

4.3.5 Sizing Constraints . 26

4.4 Optimization Formulation . 28

4.5 Genetic Modeling . 28

4.5.1 Member Sizing . 29

4.5.2 Reinforcement Encoding . 29

4.6 Genetic Optimization . 31

4.6.1 Cost Estimation and Penalty (Alg. 4.26) 31

4.6.2 The Fitness Function (Alg. 4.27) 31

4.6.3 Simulation(Alg. 4.21) . 32

4.7 HELIX: A Structural Optimization Platform 32

4.7.1 Why Java? . 33

4.7.2 Main Interface and Grid De�nition 33

4.7.3 Ribbon Functions . 34

4.7.4 Sub-menus . 36

4.7.5 Input and Output Data . 39

4.7.6 Evolutionary Simulation . 39

4.7.7 The Result and Section Dialogs 40

4.8 Algorithm Listings . 41

4.8.1 Structural Analysis . 41

4.8.2 Structural Constraints . 48

4.8.3 Genetic Simulation . 52

4.8.4 Flow Charts . 57

iii

5 Results and Discussion 59

5.1 Introduction . 59

5.2 Models for Design Results Veri�cation 59

5.3 Veri�cation Environment . 60

5.4 MODEL 1: Validation using a Benchmark 60

5.4.1 Problem Description . 60

5.4.2 Design Space . 61

5.4.3 Genetic Simulation . 62

5.4.4 Comparison . 62

5.5 MODEL 2: Validation using ETABS . 65

5.5.1 Problem Description . 65

5.5.2 Results and Comparison . 66

5.6 Summary of Results . 68

5.7 E�ect of GA Parameters . 68

5.7.1 E�ect of Population Size . 69

5.7.2 E�ect of Mutation . 70

5.7.3 E�ect of Evolution Period (Generation Size) 71

5.8 Performance and Pro�ling . 72

5.8.1 Computation Time . 72

5.8.2 Memory Usage . 73

6 Conclusions 75

6.1 General . 75

6.2 Achievements and Observations . 75

6.2.1 Achievements . 75

6.2.2 Observations . 76

6.3 Future Work . 77

6.3.1 Basics . 77

6.3.2 Multi-objective Optimization . 77

6.3.3 Structural Analysis . 78

6.3.4 Parallel Computing . 78

6.3.5 Custom Constraint Formulation 78

A Cost Evaluation for Benchmark 80

A.1 Volume of Concrete . 80

A.2 Quantity of Reinforcement Steel . 81

A.3 Formwork and Sca�olding . 83

A.4 Cost summary . 84

iv

List of Algorithms

4.1 Summary of the Sti�ness Method . 41

4.2 Computation of Member Parameters . 42

4.3 Computation of Local Sti�ness Matrix 43

4.4 Member Rotation Matrix . 43

4.5 Computation of Member Global Sti�ness Matrix 44

4.6 Computation of Member End Actions . 44

4.7 Computation of Equivalent End Actions 44

4.8 Sti�ness Matrix Assembly . 45

4.9 Application of Boundary Conditions . 46

4.10 Reaction Sti�ness Matrix Assembly . 46

4.11 Computation of Displacements . 47

4.12 Computation of Reactions . 47

4.13 The Conjugate Gradient Method . 47

4.14 Algorithm for Determining Biaxial Interaction Boundary Coordinates of

Members . 48

4.15 E�ciency Computation for Biaxial Capacity 49

4.16 Check for a Point Residing in a Closed Boundary 49

4.17 Check for a Point Residing in a Triangle 50

4.18 Shear Resistance Penalty for Reinforced Concrete Beam Elements 50

4.19 Torsion and Shear-Torsion Interaction Penalties 51

4.20 Combined Interaction Capacity for Shear and Torsional Actions 51

4.21 A Simple Genetic Algorithm . 52

4.22 Uniform Crossover . 53

4.23 Mutation . 53

4.24 Tournament Selection of Best Individuals 54

4.25 Gene Decoding . 54

4.26 The Penalty Function . 55

4.27 Individual Fitness Computation . 55

4.28 Total Penalty of a Structure . 56

4.29 Total Cost of a Structure . 56

v

List of Tables

2.1 Reproduction . 8

3.1 Comparison of Past Research Endeavors 17

4.1 Memory Consumption by Matrices . 21

4.2 Penalty Values for Biaxial Bending . 24

4.3 Maximum and Minimum Reinforcement Amounts for Structural Members 26

4.4 Value Encoding for the Sizing of Members 29

4.5 Continuous Reinforcements . 30

4.6 Extra Reinforcement Encoding . 30

4.7 Shear Link Spacing Indices . 31

4.8 Examples of Fitness Evaluation . 32

4.9 Main Ribbon Functions . 35

4.10 Input and Output Data for Analysis, Design and Optimization 39

5.1 Benchmark Computer Speci�cations . 60

5.2 Material Parameters . 60

5.3 Cost Parameters . 61

5.4 Optimally Designed Columns for the GA simulation 63

5.5 Optimally Designed Beams for the GA simulation 64

5.6 Optimally Designed Beams for the GA simulation 67

5.7 ETABS Design Results . 67

5.8 Optimally Designed Columns for the GA simulation 68

5.9 Summary of Models 1 and 2 . 68

5.10 Simulation results for varying Population Size 70

5.11 Simulation results for varying mutation probabilities 71

5.12 Simulation time for di�erent frame sizes 72

A.1 Total Concrete Volume . 80

A.2 Flexural Reinforcement Schedule(Beams) 81

A.3 Reinforcement Schedule(Columns) . 82

A.4 Shear Reinforcement Schedule(Beams) 83

vi

A.5 Formwork and Sca�olding . 83

A.6 Cost Summary . 84

vii

List of Figures

2.1 Crossover . 9

2.2 Mutation . 9

4.1 E�ciency Computation for Biaxial Bending Interactions 25

4.2 Main Canvas Components . 34

4.3 Sub-Menus 1 . 37

4.4 Sub-Menus 2 . 38

4.5 Part of the Plot Dialog . 40

4.6 Main Program Flow Chart . 57

4.7 Fitness Computation Flow Chart . 58

5.1 Benchmark 2D Frame . 62

5.2 Reinforcement Con�guration for Beams 64

5.3 2-story 1-bay Space Frame . 65

5.4 Population Size vs. Fitness . 69

5.5 Mutation Probability vs. Fitness . 71

5.6 Total Time Vs. NNZ . 73

5.7 Memory Usage Vs. NNZ . 74

viii

Chapter 1

Introduction

1.1 Background

Traditional practices of reinforced concrete structural design follow an estimate-analyze-

check paradigm so as to minimize computational time and e�ort. Optimization, if in-

cluded, would comprise of adjusting a couple of section sizes and reinforcement details

without due regard to any form of scienti�c based approach. Recent trends in research,

however, have focused more on grounding design to its performance and resource con-

sumption roots. This shift in the design paradigm has thus resulted in the development

of new methods and tools, and modi�cation of old ones, to allow for extensive optimiza-

tion of resource and form for structures. With the computational power and availability

of computers ever increasing, recent years have yielded substantial progress into non-

deterministic search-based optimization methods.Synchronously, structural optimization

methods have also embraced these tools as they are truly designed for managing complex

problem spaces.

Optimization of structural frames is a complex problem involving several variables and

constraints, especially as the topology of the said structure grows large. Mathematical

methods(such as the Lagrangian family of methods, the Runge-Kutta family of methods,

and several other numerical procedures)for such problems become unmanageable, as their

symbolic rather than numerical nature prohibits their computerization.

On the �ip side, heuristic search-based methods(such as bee/ant algorithms, simulated

annealing, neural networks and genetic algorithms),when applied in optimization prob-

lems, consider a large set of possibilities for a formulated problem, assess each possible

solution and search for the best individual out of these possibilities. Past implementa-

tions of these methods have yielded in successful, though, unrealistic results. This arose

from the fact that researchers often used extremely simpli�ed structural design models to

optimize their problems in the hope of avoiding computational explosion. The research

thus focuses on factoring in what has been left out of past approaches and will try, in

1

parallel, plug in newer and more e�cient methods for obtaining optimal and constructible

solutions .

1.2 Statement of the problem

The computational problem of structural optimization is a di�cult one to tackle, es-

pecially if realistic topology, design and detailing models are assumed. For this reason,

recent studies have adopted the use of search based methods, primarily genetic algorithms,

for optimizing concrete and steel structures. Previous works in search-based structural

optimization of concrete structures de�ned their design problem using very simpli�ed

detailing and design assumptions in favor of ensuring time and memory e�ciency during

simulation. The inclusion of shear design has also not been given much emphasis. This

would result in skewed and unrealistic cost and weight values even for the optimized so-

lution. Thus, the inclusion of these parameters will result in a better and more grounded

estimate of the objective function.

Additionally, even with the advent of newer genetic encoding schemes and design

facilitating techniques, current research is still using traditional formulation schemes such

as binary encoding and single point crossovers for carrying out the selection process. The

fusion of these new techniques will help remedy the time and memory complexity that has

festered in previous implementations. The study of previous algorithms will also identify

which processing schemes are the most resource intensive.

1.3 Objectives

1.3.1 General Objectives

� To develop and solve the optimization formulation for the minimum cost design

of structurally detailed two and three dimensional concrete frames with the use of

genetic algorithms and with due consideration to shear design and torsion.

1.3.2 Speci�c Objectives

� Formulate and solve the structural optimization problem for �nding the least-cost

shear- and �exure- e�cient solution of two and three dimensional concrete frames

with the use of genetic algorithms.

� Develop an integrated software architecture for testing and using the genetic opti-

mization procedure developed.

2

� Study the behavior of convergence and quality of solutions on optimized frames

with varying genetic algorithm parameters.

� Study the computational complexity of the algorithm developed.

1.4 Scope

To limit feature creep, this thesis will not address:

� Inclined and Curved Members : All members are assumed to have either hor-

izontal or vertical alignments. Member axes are also assumed to be aligned along

the global axes.

� Topological constraints: Topology optimization will not be addressed: this im-

plies structural members can not have near zero values for their material and geo-

metric properties

� Design details and algorithms for other types of sections and structural

elements: Rectangular sections will be the only ones utilized in the work.

� Dynamic loads: Time-dependent and oscillatory loadings will not be addressed.

Earthquake and wind e�ects will be transformed to their static counterparts using

the appropriate procedures

� Second order e�ects on columns: All columns will be assumed to be short and

stocky.

3

Chapter 2

Basics

2.1 General

This section brie�y discusses about the merits and limitations of the traditional math-

ematical optimization methods and the state of the art on meta-heuristic algorithms.

It also gives introductory information about genetic algorithms and their application in

optimization.

2.2 Deterministic Methods

2.2.1 Mathematical Programming

In general, optimization problems encountered in design and engineering can be grouped

as linear and non-linear based on their function form .The generic form for most opti-

mization problems can be written as:

minimize objective: f(x), x ∈ Rn

subject to: φj(x) = 0, (j = 1, 2, ...,M),

ψk(x) ≤ 0, (k = 1, 2, ..., K),

(2.1)

where f(x), φj(x)and ψk(x) are functions of the design vector

x = (x1, x2, ..., xn)
T

f(x) is called the objective function, while variables in x are called decision variables.

φj(x) andψk(x) denote constraints of equality and inequality respectively.

Based on the function forms of f(x), φj(x)and ψk(x), an optimization problem can

be classi�ed as linear or non-linear. Some literatures[30] conclude that this distinction

4

can be made regardless of f(x). In linear problems, often called linear programming, the

relationship between the constraint with the design variables needs to be linear i.e. f(x),

φj(x)and ψk(x) need to be de�ned as a linear combination of variables in{x}[7]. Linear
programming techniques have been applied to simple problems involving a manageable

number of design variables. Plastic design of frames and simple truss weight optimiza-

tions are primary examples. Most real-world structural optimization problems, however,

are non-linear in nature since most relations in stress, de�ection, sti�ness and material

behavior are of that form. Thus, other methods, primarily based on multi-variable calcu-

lus, have been developed to directly or indirectly tackle these problems. Most techniques

applicable to structural engineering problems are based on the Lagrangian multiplier

procedures.

2.2.2 The Lagrangian Multiplier Method and Kuhn-Tucker Con-

ditions

In the Lagrangian multiplier method, an expression, called the Lagrangian is formed as

a linear combination of the objective function and the set of active constraints i.e.

L(x, λ) = f(x) +
∑

λjφ
∗
j(x) +

∑
µkψ

∗
k(x) (2.2)

where the asterisk denotes those constraints that are active. The solution then involves

�nding the unknowns i.e. the decision variables−→x and the Lagrangian multipliers
−→
λ and

−→µ . The necessary conditions for �nding the unknowns would be to apply the operators

∇x, ∇λ and ∇µon L(x, λ, µ) to get a system of equations, after which the system can be

solved[23]. The di�culty of obtaining a solution for the equations depends on the nature

of the Lagrangian. In addition, as the number of decision variables gets large, which is

usually the case in engineering problems, �nding an optimum solution and visualizing

it would be next to impossible. To accommodate this, many variants of the Lagrangian

method have been developed, the most widely used being the Kuhn-Tucker conditions[19].

These conditions assure solutions found by satisfying them are optimal. But then again,

applying these conditions to obtain solutions can be di�cult in problems as these condi-

tions are valid if the formulated system is a convex programming problem[8]. It should

thus be clear that unless for the simplest of design optimization problems, concavity can

not be guaranteed in the majority of engineering problems rendering the direct use of

these conditions as limited.

5

2.2.3 Optimality Criteria Methods

The optimality criteria (OC) method is another variant of the Lagrangian multiplier ap-

proach, where instead of solving the aforementioned system of equations(∇(L)) directly,
a set of criteria are established and then formulated for the purpose of updating the

values of −→x ,
−→
λ and −→µ and afterwards developing a general iterative procedure for the

problem[23]. The procedure would start with appropriately assumed values for each vari-

able in −→x ,
−→
λ and −→µ . Upon further value updates, the variation of each variable is

expected to converge to 0. This procedure is, either manually calculated, or programmed

into a computer. OC methods have been successfully applied for engineering optimiza-

tion problems where the decision variables are continuous. Applying Optimality Criteria

methods for problems involving discrete variables, however, requires assuming the discrete

variables to be continuous.

2.3 Meta-heuristic Methods

Optimization problems with continuous variables, usually the case in structural optimiza-

tion problems, have in�nite possible solutions but only one global optimum. The process

of �nding a solution for such problems can then be seen as a problem of search[30].

Mathematics based methods, as discussed above, use pure function forms to study and

manipulate the problem's behavior to reach a solution. The main caveat for these meth-

ods, however, is that, in order to arrive at the solution, the behavior of the formulation

needs to be known. The modeling of discrete variable problems using such methods can

also be cumbersome.[7]

In search-based methods, one randomly searches di�erent regions of the search space

while being guided towards the optimum point by some mechanism. This allows for

the search method not to spend too much time searching for solutions in regions where

there is no potential global optimum. In other words, it avoids being stuck at local op-

timum points for the subsequent iterations. Meta-heuristic methods can also be applied

to problems that have a discrete search space. Some algorithms that fall into this cat-

egory are simulated annealing(SA), swarm algorithms, arti�cial neural networks(ANNs)

and genetic algorithms(GAs). Swarm algorithms[17], simulated annealing[25] and neural

networks[1] have been applied successfully in structural design and optimization problems

but are not discussed here.

All meta-heuristic methods have the following properties in common:

� All start at a random point (or several random points) in the search space

� All have probabilistic convergence behavior

6

� All have mechanisms that allows them to propagate through large separate quad-

rants of the search space in parallel

2.4 Genetic Algorithms

Genetic algorithms(GAs) are a family of meta-heuristic search algorithms based on the

Darwinian theory of natural selection and genetics[12]. They are based on selecting

solutions that are best �t to the problem at hand while maintaining a diverse set of

possible solutions which change and evolve upon subsequent iterations. Developed by

John Holland in the 1970s[16], these algorithms have been applied to �elds extending

from machine learning and arti�cial intelligence to complex optimization and forecasting

problems.

Genetic Algorithms derive their power from the fact that they operate well irrespec-

tive of having any information about the problem space[30]. This makes GAs ideal for

modeling problems that do not have �nice� mathematical properties such as continuity,

concavity and determinism, or for problems that are simply too di�cult to describe to a

computer.

Genetic Algorithms have been successfully applied in several structural design and

optimization problems, including but not limited to weight and topology optimization

problems. [4, 7, 9, 10, 15, 24, 26, 27, 28, 31]

2.4.1 Description

Genetic algorithms operate on a collection of individuals, usually called a population.

Individuals are sets containing values of the design variables, or in other terms represent

single points in a problem's search space. In order to make the selection and evolution

process manageable, the information contained in individuals is stored as encoded strings

of character sequences called chromosomes. Several types of encoding design information

have been proposed[4].

The process of genetic evolution generally consists of three stages namely, initial-

ization,selection and generation. In initialization, an encoded and randomized set of n

individuals is generated. This randomization allows for the exploration of the search

space and for maintaining diversity in the population.[12, 16, 18]

In the selection stage, a genetic operator called reproduction is applied, where a

percentage of the population that consists of individuals that best �t the problem are

selected while the rest of the individuals are discarded. The selection process varies from

implementation to implementation[9, 15, 26, 31].

The generation stage consists of applying genetic operators on the selected individuals

from the previous stage. Genetic operators allow for new individuals with mixed genetic

7

materials to be formed, and also randomly modify existing individuals. The most common

genetic operators used include reproduction, crossover and mutation. Other operators

include dominance, inversion, segregation and migration.

There are several variants of genetic algorithms. The variant used for this work

are called Simple Genetic Algorithms(SGAs), while other derivatives, such as memetic,

parallel and micro-genetic algorithms, have been developed and used by researchers[24,

20].

2.4.2 Genetic Operators

Genetic operators are the main mechanism through which the mimicking of natural

selection processes can be achieved. Simple genetic algorithms, �rst implemented by

Holland[16], was the �rst one to use reproduction, crossover and mutation as genetic

operators.

2.4.2.1 Reproduction

Reproduction is a process of selecting �t individuals for possible genetic recombination

and consists of a variety of methods. Its primary purpose is to identify weak and strong

individuals, discarding the weak ones and selecting the strong ones. The criteria on which

the selection is based on is called �tness. Fitness is a value that weighs if an individual

is better suited to solve the problem or not. The higher the �tness, the least suited the

individual is. Selection is thus, based on choosing x% of the individuals with the least

�tness factor. Table 2.1 shows the reproduction process for 5 individuals. In the ith

generation, the individuals(�rst column), are shown along with their �tness factor. It

can been seen that individuals 1, 4 and 5 have the least �tness factor values out of the 5.

Thus, these individuals pass through for the next generation, if a 60% elitism is selected.

Only two individuals(1 and 4) would pass through, had a 40% elitism been chosen. The

rest of the slots(i.e. slots 2 and 3) would be �lled by either replica of the �t individuals,

or newly formed o�spring. Sometimes A few un�t individuals are added into the mix

to diversify the population and avoid uniformity, which in turn helps in evading local

optima.

Individual ID individuals(generation: i) �tness factor individuals(generation: i+ 1)

i1 1 0 2 4 7 ... 0.412 1 0 2 4 7 ...

i2 3 7 5 0 3 ... 1.503 3 7 5 4 7 ... *

i3 4 7 1 0 2 ... 1.205 1 13 4 7 11 ...

i4 1 13 4 7 11 ... 0.335 1 13 4 7 11 ...

i5 4 1 1 2 9 ... 0.679 4 1 1 2 9 ...

*New Individual formed by allowing crossover between individuals i1 and i2 of generation i

Table 2.1: Reproduction

8

Figure 2.1: Crossover

2.4.2.2 Crossover

Crossover is the primary means of genetic information exchange and is performed with

a large probability[12]. Crossover is carried out by interchanging corresponding parts of

an individuals chromosome with another. The crossover points can be single or multiple.

Uniform crossover is another form where individual gene indices get manipulated instead

of segments of the chromosome.

2.4.2.3 Mutation

Mutation is a random modi�cation in an isolated portion of an individuals gene sequence.

Mutation is applied as a means of avoiding premature convergence and uniformity among

individuals. It is therefore �an insurance policy against premature loss of important

notions.�[12]

Figure 2.2: Mutation

2.4.3 Genetic Algorithms and Optimization

The previous sub-sections have brie�y introduced the basic components of a simple ge-

netic algorithm. Such types of genetic algorithms can be seen as improvised search mech-

anisms, and can thus be applied on problems with large search spaces. They di�er from

other mathematical optimization methods in that, GAs have mechanisms for adopting to

several problems encountered in optimization iterations. For example, their probabilistic

behavior is compatible for problems that have several local optima points. Additionally,

GAs have the power to cover most of the solution space without wasting too much time

on any particular sub-region. The next chapter discusses how GAs have been used for

9

several types of structural optimization problems, and their performance and �exibility

as compared to other mathematical optimization methods.

10

Chapter 3

State of the Art

3.1 Limitations of Mathematical Optimization Meth-

ods

The previous chapter discussed calculus-based methods that have been developed for

the optimization of problems in several �elds, including structural design. The most

notable ones, the Lagrangian method and the optimality criteria method, could be used

for optimizing problems that exhibit continuity in their function forms.

Goldberg[12] notes that these methods have crippling behavior that prohibits their

use in complex problem formulations. First, both methods search for solutions locally.

If global solutions are required, then several restarts of the same operation need to be

performed by some means of a pseudo-random method. Second, these methods strictly

require the availability of well-de�ned gradients and slope values, requiring continuity in

their de�nition.

The following sections critically discuss how previous research attempts have applied

genetic-algorithm-based structural optimization for several type of structural systems,

mainly steel and concrete frames. Gaps in research and assumption in application of this

technique have also been concisely addressed.

3.2 Genetic Modeling of Concrete Frames

3.2.1 Representation and Modeling for Concrete Frames

Concrete frames(usually) consist of horizontal members(beams) and vertical members(columns).

Both beams and columns are characterized by their size and reinforcement quantities,

though how the reinforcement is arranged depends upon the nature of loading they are

exposed to. Then, the optimization problem for concrete frames could be stated as fol-

lows:

11

�For each member, what combination of section size, �exural and shear reinforcement

quantities results in the smallest overall material cost for the structure, with all members

compliant with the imposed strength, serviceability or constructibility constraints ?�

The mapping of this problem to a genetic algorithm model is achieved by assuming a

single size and reinforcement con�guration of a structure as an individual. The population

would then consist of several of these randomized con�gurations. The evolution process

can be consequently setup by:

� Generating a population of randomized individuals

� Decoding: The encoded design information (which contains data about the possible

size and reinforcement quantities of each member) needs to be decoded and assigned

to the structure. This step is done for every individual in the population.

� Evaluation: The newly formed structures are then checked if their constituent mem-

bers violate any constraints. In parallel, the objective function(in this case, cost)

is also computed. the individuals are then tagged with the resulting total �tness

value.

� Selection: Based on results obtained from the evaluation, the �t individuals from the

populations are selected and are allowed to form new individuals, through crossover.

Some individuals also mutate.

� Loop: The new population (now consisting of the �t individuals from the previous

generation and the newly formed o�spring) will then go through the previous four

steps, until the number of iterations is reached

3.2.2 Problem Formulation

The problem formulation for the optimization of frames depends on two properties,

namely material and objective. If the objective that is to be achieved is minimum weight,

then the formulation is independent of the materials used. If instead of weight, however,

cost is the objective, then the formulation will be dependent on the material used. If

structural steel is used, for instance, the cost function can be simply formed as a product

of the unit cost of steel with the total weight of the frame. In the case of concrete, though,

a linear combination of two materials needs to be utilized, as concrete and reinforcement

steel have di�erent unit cost index[26]. The variation of unit costs greatly a�ects optimal

results for concrete frames because the change in cross-section size is(usually) inversely

proportional to the amount of reinforcement provided.

Flexure and shear checks in the case of beams, and uniaxial interaction envelopes in the

case of columns are used as violable strength constraints for 2D frames, whereas biaxial

interaction envelopes are utilized for 3D frames. Researchers have used modi�ed versions

12

of beam and column design procedures as constraints of the optimization problem. In

addition, serviceability criteria have also been included in some studies while maintaining

simplicity. The inclusion of shear design, however, has been absent in the reviewed

literature.

Structural grouping is the process of classifying similar frame elements (in orientation,

loading and position). All elements in a group would then be assigned the same geometric

and loading properties. Commendable studies[26, 21] have used structural grouping to

help reduce the number of design variables used in the optimization process. This has

been a key factor in the development of discrete methods for optimization of concrete

structures. For example, column members at the ground level of a frame can be grouped

into one, where as roof beams can have another. This removes the necessity for main-

taining continuity in addition to reducing the number of design variables. The criteria

used in constructing groups vary. A few examples include similarities in detailing of rein-

forcement, uniformity of cross-sections along an axis,[26] and loading and magnitude of

internal forces[21].

3.2.3 Genetic Encoding

Genetic modeling is the process of representing and reformulating a problem so that it

can be simulated using genetic algorithms. In its simplest form, it comprises of four

subprocesses:

� a reformulation of the objective function and constraints to form a �tness evaluation

function.

� choosing which design variables need optimization

� modeling of design variables as either discrete or continuous

� Selection of type of encoding for representing the design variable vector

Before any selection or generation process begins, the design variables are to be encoded

into genetic sequences. Some encoding schemes include binary, quaternary, octal, hex-

adecimal and real value encodings.

The dominant encoding type, binary digits, were used in the early versions of genetic

algorithms for truss optimization, implemented by Holland and Goldberg as cited by

Rajeev et al.[26] Several others have, since then, used binary sequences to encode design

variables in structural optimization problems[26, 28, 21]. Some[26] have noted that, the

larger the number of variables, the longer the chromosome length, which in turn, would

require longer encoding and decoding time. It can be realized that some researchers[26, 21]

have devised techniques for reducing the number of design variables for the sole purpose

13

of reducing chromosome length, such that processing can be done faster. Others have

chosen to simplify their genetic models in favor of shorter processing time

Later on, other studies[9], have adopted value encoding to successfully perform dis-

crete optimization of structures. Dede et.al.[4] have shown that the type of encoding

cannot necessarily guarantee better solutions and depends on several factors such as the

nature of mutation, type of crossover and population size. It is also dependent on the

size and complexity of the problem.

3.2.4 Design Variables

Most reinforced concrete structural optimization problems are treated as continuous in

their function form, and the design variables can theoretically assume any positive real

number. Hence, solutions usually consist of a set of real numbers. In practice however,

exact values are approximated into discrete sizes and quantities, and are used for con-

struction. Therefore, a better approach would be to list out possible discrete values that

can be assumed for each design variable and selecting a combination that would best

satisfy the problem. This behavior lends itself to the suitability of applying search based

methods. Such techniques have been employed in the past[25, 26, 31] to get discretely

optimized values for the design problem, which can then be directly applied.

Most attempts on structure optimization problems assumed only the most critical

variables, common ones being section type and material quantity. Later approaches tried

to include variables such as classi�cation of reinforcement as negative and positive [15].

Rajeev and Krishnamoorthy[26] have shown that the inclusion of simple reinforcement

detailing patterns as a design variable in the formulation of the optimization problem,

though complex, can be achieved by factoring in reinforcement arrangements used in cur-

rent construction practices or from guidelines found from detailing manuals. It should,

however, be noted that the detailing arrangements taken into consideration did not re-

�ect actual detailing practices such as anchoring, placement and development lengths,

bends and overlaps. Additionally, as such arrangements take more complex forms, the

number of design variables and thus, chromosome length also increases. This makes the

decoding of the chromosomes generated complex, time-consuming and memory intensive.

To alleviate this problem, other researchers[9] have used other types of encoding instead

of the traditional binary encoding, to achieve an overall short chromosome length.

3.2.5 Design and Detailing

Studies[15, 24, 27, 31, 29] have used simple top and bottom reinforcement quantities(in

addition to breadth and height) at a single section, to represent the detailing for a single

structural member in their formulations. Even though, this assertion could lead to theo-

retically optimized solutions, the results can not be usable as such detailing schemes do

14

not exist.

Rajeev and Krishnamoorthy[26] have shown that reinforcement detailing arrange-

ments can be considered as design variables without compromising the speed or perfor-

mance of the algorithm. But in doing so, the chromosome length they have used was

observed to be signi�cantly large(in the order of 100's). To alleviate this problem, they

grouped similar structural elements as identical in section and materials so as to reduce

the number of design variables used in the simulation. The study have also factored in

section sizing and reinforcement arrangement of the current construction practice.

Vidosa et.al.[25] have used a structural modeling scheme that incorporated symmetry

in structures as well as usage of realistic reinforcement details and section de�nitions in

their optimization formulation.

The inclusion of shear design in concrete structures optimization is of paramount

importance for two reasons. First, it would be possible to achieve an end-to-end usable

design from the simulation. Second, shear reinforcement holds a considerable percentage

of the total weight of reinforcing steel that would be needed in most structural frames.

The author notes that the inclusion of shear reinforcement in structural optimization is

rarely considered in the literature.

3.2.6 Optimization of Space Frames

The models used to optimize plane portal frames in [25, 26, 31] can be extended to three

dimensional portal frames. This involves the addition of torsional forces (which become

relevant if bracing elements are existent in the frame), as well as biaxial bending e�ects

to the design procedures. Additionally, structural analysis and topology modelling would

need to be done in three dimensions. Reinforcement details for the minor directions in

shear and bending would also need to be added as design variables.

3.2.7 Convergence

All genetic algorithms are iterative in nature. Most problems require a certain number

of iterations to arrive at a reasonably accurate solution, after which variance between

solutions will no longer exist. The number of iterations can be limited by specifying a

certain condition or group of conditions called convergence criteria. The convergence

criteria specify when an acceptable solution is found and thus when the GA should stop

simulating. Convergence criteria for optimization problems have been de�ned in several

ways including:

� Checking if x% of the population represents the �nal solution

� Explicitly stating the number of generations to be simulated for

15

� Checking the di�erence in magnitude between the �ttest individuals of the current

generation and the previous generation.

That said, it should be noted that convergence criteria don't necessarily ensure the correct

solution to be found. This is because genetic algorithms have a probabilistic rate of

convergence and a tendency to diverge especially if genetic operator parameters are not

selected carefully[4].

3.2.8 Computational Complexity

The problem of execution time is a major issue in most large scale optimization �elds

especially in iterative or search-based methods. This problem emanates in the fact that

the more involved the objective function and the constraints are, the more time it will

take for the computer to go through and evaluate parameters for a single solution which

would then get compounded for several iterations. Thus, balancing out the formulation

of the problem and the assumptions it uses, among other factors, is very important.

Many techniques are available for optimizing memory and time of execution. Perea

et.al.[24] have employed massively parallel genetic algorithms to simultaneously evaluate

many solutions. Several researchers[15, 21, 26] have used groups to minimize the design

check process. Dede et al.[9] used value encoding to reduce chromosome length which

would directly a�ect the encoding/decoding process. Bekiroglu et al.[4] have compared

the e�ect of using di�erent encoding types for structural optimization and its e�ect on

convergence. It can be realized from their result that the performance of the encoding

will depend on the size and complexity of the structure considered, in addition to the size

of the population and the number of iterations selected for the simulation.

3.3 Observations

For the optimization of complex structural systems, search based methods such as Genetic

algorithms need to be employed because calculus based methods creep to a halt when

managing the complexities introduced by the nature and sheer quantity of the design

variables. Researchers have used very simpli�ed models of structures to apply genetic

optimization. This was done to avoid computational explosion that would otherwise occur

in the simulations, had a realistic model been used. In particular, previous optimization

formulations for concrete frames never considered very important variables such as shear

design. Additionally, most ignored the e�ect of structural detailing norms in their designs

which are quintessential in the cost/weight estimation procedures in quantity surveying.

These design variables need to be included to arrive at a reasonable and realistic estimate

of the objective function,be it cost, weight or structural safety.

16

Research Objective Encoding Crossover Structural
Detailing

Shear

Rajeev et al.[26] Cost Binary Single-point Yes* No
Guerra et al.[15] Cost Binary Single-point No No

Yousif[31] Cost Binary Single-point No No
Perea et al.[24] Cost Binary Single-point No No

Current Research Cost Value Uniform Yes** Yes
*For �exure only

**For �exure, shear and constructibility

Table 3.1: Comparison of Past Research Endeavors

Several attempts have been made to reduce the search space for general structural

optimization problems. A primary example is the discretization of design variables in

the formulation of an optimization problem,which would result in a large shrinkage of

the search space, thus resulting in quicker searches. Other techniques include structural

grouping, which can be used to reduce the number of structural elements for which design

checks are to be made.

Another culprit researchers have faced is managing the number of design variables,

which indirectly a�ect the length of chromosome used in the natural selection process.

Value and other types of encoding have been used to alleviate this problem. Such e�cient

forms of genetic encoding can be used to manage the problem of having extremely long

chromosomes.

The researcher believes that while most of the problems encountered in this �eld of

research have been partially or fully solved, almost all e�orts have comprised their solu-

tions by assuming impractical assertions or leaving out necessary ones, thus not moving

far from the status quo. Therefore, in this research, the techniques discussed in previous

sections will be combined to form a generalized approach that will be expected to not

only achieve realistic results but also be e�cient in doing so.

17

Chapter 4

Implementation

4.1 Introduction

This chapter is dedicated to explaining the development of the optimization model for

highlighted in previous chapters. Additionally, it also discusses implementation details

of a program that simulates this optimization model, written in Java. The chapter is

not intended to be a comprehensive guide for these details, but is to be used as concise

description of most of the algorithms used in the structural analysis, design and opti-

mization phases. Thus, auxiliary topics such as mathematical and geometric algorithms

will not be covered.

It is worth to note that most subsections have a corresponding algorithm, located

in section 4.8, associated with them. Thus, the reader is encouraged to refer to these

algorithms as frequently as possible.

4.1.1 General Program Structure

The software follows a top-down object-oriented class structure where one primary routine

can inherit all of its superclasses' attributes. This approach eliminates the need for

extremely long and hard-to-debug scripts familiar in programming languages such as

FORTRAN. Thus, as dictated by Java's object-oriented paradigm, the program �ows

in such a way that one entity or data structure contains the other. Highest in the

organization are packages, which contain class de�nitions, data �les, images and other

�les necessary for the isolated operation of the module/package.

The software implemented comprises of four main packages, namely:

� The Structural Analysis Package: responsible for computing element forces and

moments acting on the structure.

� The Design Package: checks assigned attributes of individual structural member

attributes for adequacy in strength and sizing.

18

� The Genetic Optimization Package: iterates through a population of candidates

and perform evolutionary steps to re�ne a search space.

� Auxiliaries: graphical utilities and mathematical libraries constantly utilized by the

three other modules.

4.2 Structural Analysis and Design Actions(Alg. 4.1)

All design actions required for the optimization algorithms are obtained from elastic

structural analysis. Before structural analysis is carried out, however, loads acting on the

structure should be de�ned and an appropriate method for analysis should be adopted.

In the present version of the program, loads are not di�erentiated as live, dead or

seismic, but instead are to be applied as general actions, either as distributed or point

loadings, and as moments or forces. Additionally, the location and extent of these actions

needs to be known. All forces should have a unit of kilo Newtons(kN), while all moments

are to have units of kilo-Newton-Meters(kN-m).

While several methods are available for the analysis of framed structures, only algo-

rithms based on the sti�ness family of methods(such as the �nite element method(FEM)

and the direct sti�ness method(DSM)) can achieve the scalability required for analyzing

large structures . Out of the two, the direct sti�ness method has been selected for two

reasons:

1. Finite element methods perform poorly(time and memory-wise) when used on sub-

stantially large structures and especially if the mesh used for de�ning the structure

is very �ne.

2. Implementation of the sti�ness method is much more manageable and targeted than

FEM, though FEM can operate on elements with varying cross-sections and shapes,

and can solve several problems with unique boundary conditions.

4.2.1 Structural Analysis

For this work, a straight forward implementation of the direct sti�ness method has been

used. Details of its implementation can be found in [13]. It should be noted that the

algorithm has a limitation in that it doesn't recognize members which are not oriented

in the default upwards direction. Thus, the roll angle, α, for all structural members is

assumed to be 0o.

The implementation of the analysis program has been modi�ed to satisfy the following

performance criteria:

19

1. Speed: In almost all structural design programs, structural analysis takes up the

most amount of time as compared to other processes, such as design and post-

processing. This is so because most of the steps involved in reaching the solution

require large matrix operations. Out of these steps, the notable time consuming

processes are:

(a) Computation of Element Sti�ness Matrices(O(2n ∗ 123)): This involves
the double multiplication of a 12x12 rotation matrix with a 12x12 sti�ness

matrix for every element in the structure.

(b) Assembly of the Structure Sti�ness Matrix(SSM) (O(n ∗ 122)): The

element sti�ness matrices formed in step (a) need to be assembled into one

sti�ness matrix with a shape of DOFxDOF .

(c) Application of Boundary Conditions(O(DOF 2)): Boundary conditions

such as restrained nodes need to be imposed on the structural sti�ness ma-

trix. This involves removal of all rows and columns in the SSM corresponding

to node indices that are restrained in one or more directions. The reduced

sti�ness matrix has a size of uDOF x uDOF . uDOF is the total number of

unrestrained degrees of freedom.

(d) Formation of the Reaction Sti�ness Matrix(O(DOF 2)): For the pur-

poses of calculating support reactions, a modi�ed version of the SSM needs to

be formed. The procedure is similar to step (c) except for, instead of remov-

ing unrestrained rows from the SSM, only restrained degrees of freedom are

removed row-wise. This results in a matrix of size cDOF x uDOF .

(e) Computation of Displacements: After the reduced sti�ness matrix has

been formed, the displacements need to be computed as usual by solving the

linear system [K][D] = [F], where [F] is the reduced force vector. This step

is one of the most time consuming procedures in the analysis algorithm, since

the sti�ness matrix [K] needs to be appropriately transformed into either a

triangular or diagonal form. This step could be achieved through direct as well

as iterative methods. The di�culty of reaching the solution within a reasonable

time is dependent on the size and regularity of the matrix. Direct methods such

as Gauss-Jordan elimination and LU decomposition are well suited for small

sized matrices, but start to take up exponentially large amounts of time as this

size increases. Iterative methods such as the conjugate gradient method and its

preconditioned variants are used for large and usually sparse linear systems,

though they are convergent only on speci�c types of matrices. Proper care

needs to be taken on which method is utilized as the wrong choice of technique

might have a crippling e�ect. In addition, some techniques are more adoptive

to parallel computing while others are less so.

20

2. Memory: Values obtained from structural analysis consist of forces, moments, dis-

placements and rotations. For these values to be obtained with reasonable accuracy,

either single or double precision variables need to be used with a reasonable number

of signi�cant �gures. This usually o�sets the amount of memory(RAM) allocated

for storage of such variables. As this amount is limited by the virtual machine

or operating system running the program, it needs to be appropriately utilized,

especially for storing large pieces of data such as matrices. Table 4.1 summarizes

the space complexity of some of the variables that use up large portions of the

allocated RAM. The third column illustrates how the expressions in column 2 are

used for a 10x10x10 portal frame with 11*11*11*6=7986 degrees of freedom, 3410

members, 121*6= 726 restrained DOFs (cDOFs) and 7986-726=7260 unrestrained

DOFs (uDOFs).

Matrix Memory Used (Bytes)* EXAMPLE

Structure Sti�ness Matrix 8 ∗DOF ∗DOF 8 ∗ 7986 ∗ 7986 = 486MB**
Reduced Sti�ness Matrix 8 ∗ uDOF ∗ uDOF 8 ∗ 7260 ∗ 7260 = 402MB
Reaction Sti�ness Matrix 8 ∗ cDOF ∗ uDOF 8 ∗ 7260 ∗ 726 = 40.2MB
Element Sti�ness Matrix 8 ∗ 12 ∗ 12 ∗ n 8 ∗ 12 ∗ 12 ∗ 3410 = 3.74MB
Element Rotation Matrix 8 ∗ 12 ∗ 12 ∗ n 8 ∗ 12 ∗ 12 ∗ 3410 = 3.74MB

TOTAL 935.68MB
*1 Real value with double precision= 8 Bytes

**1MB=1024*1024 Bytes

Table 4.1: Memory Consumption by Matrices

4.2.2 Improvements to the Sti�ness Solver

As shown in the previous section, manipulation of matrices involved in structural analysis

hold up a lot of memory and take exponential amounts of time to complete processing.

However, a large percentage of this problem can be reduced by studying each matrix and

applying the appropriate mechanisms to minimize both space and time utilization.

For example, the primarily important structural sti�ness matrix has common prop-

erties for most types of topologies. This can be taken advantage of, especially if a fast

structural analysis program is required.

First, the SSM can be classi�ed as very sparse, that is, in most cases, more than 95%

of its entries are zeros. This implies that vast amounts of memory and time is wasted

manipulating zeros. Hence, a more e�ective means of data storage is needed. Past e�orts

in this topic have yielded several e�cient formats for the storage of sparse matrices.

These include compressed matrix storage formats like Compressed Row Storage(CRS),

Compressed Column Storage(CCS), Coordinate Column/Row Storage(COOC/R) and

their variants. Hence, one of these formats could be selected as a replacement to standard

21

matrices. In this study, a relatively new storage format called the sparse array[14] has

been adopted to store large matrices, preferred for its almost excessive versatility and

e�ciency in manipulating sparse matrices.

Second, the SSM(and its reduced form after boundary conditions have been applied)

is Symmetric Positive De�nite (SPD). This allows for iterative methods such as the

Preconditioned Conjugate Gradient(PCG) method to be applied directly for solving the

linear equation system with the nodal displacements as unknowns. Because the SSM is

diagonal in shape, diagonal preconditioning has been selected for this algorithm.

The same schemes discussed in the previous paragraphs have been used for other

matrix based computations present in the study.

4.2.3 Computation of Design Actions

Once structural analysis has been completed, the next step is to determine the magni-

tudes of design actions to be used for carrying out sizing and reinforcement computations.

For general load cases, determination of these actions requires locating all maxima and

minima internal action magnitudes that occur on the member at one or several locations.

This can be done by calculating the member end actions for each member, and determin-

ing internal action coordinates through section-based equilibrium at prede�ned intervals

along the member. Then, gradients/di�erentials could be determined by using:

∇i =
(Fi+1 − Fi)
4x

(4.1)

where∇i is the gradient, Fi and Fi+1represent consecutive internal action coordinates,

and 4x is the length interval.

By detecting a change of signs in the gradient, one can locate all maximum and/or

minimum point locations on the member. This step needs to be executed 6 times for all

6 types of internal actions available, namely: axial force AX−X , major shear VY−Y , minor

shear VZ−Z , torsional moments TX−X , major bending moment MZ−Z and minor bending

moment MY−Y .

A relatively special case for determining design actions would be axial force and

bending moment combinations. Since the location of the critical AX−X-MZ−Z -MY−Y is

unknown, the program is provided with guided search tools that allow it to select the

most critical combination by applying these protocols:

1. If MY−Y or MZ−Z is too small, then a combination of MY−Y or MZ−Z with AX−X

can be used to check for the uniaxial interaction resistance of the structural element.

2. If AX−X is too small, then bending moments MY−Y and MZ−Z are checked for

bending moment resistance only.

22

3. If both MY−Y and MZ−Z are too small in magnitude, then the element is treated

as an axial member and is treated as such in the checking process.

4. If none of the conditions apply, a guided search is done to �nd the critical AX−X-

MZ−Z -MY−Y section. The guided search algorithm starts from the largest combi-

nations available and checks if other more critical combinations exist by randomly

taking a section and constructing a biaxial diagram for the formed eccentricity.

4.3 Design and Constraint Algorithms

4.3.1 Assumptions

The next few subsections brie�y explain how design procedures according to Eurocode-2

were implemented in the program, and are divided based on the actions considered. The

design algorithms were constructed so as to handle standard concrete frame elements, in

this case, beams and columns. Additionally, sizing constraints imposed by Eurocodes 2-1

and 2-2 have also been dealt with.

Design actions to be checked for, are obtained from searching for the maximum and

minimum values of each internal action diagram (See previous section). These values are

then used for di�erentiating regions with varying quantity or positioning in reinforcement.

4.3.2 Design Checks for Bending(Alg. 4.14, 4.15)

Based on the procedures described in [3], sections subjected to combined axial and bend-

ing moments need to be designed for the combined stress interactions developed. While

other approximate methods exist for such designs, in this work, the direct procedure of

constructing interaction diagrams has been used to check the available capacity for the

sections under stress. Based on the existent conditions, interaction checks are made ei-

ther in individual directions, initiating uniaxial interaction functions, or in cases where

moments in both directions are comparable, initiating biaxial check functions. This clas-

si�cation is based on the criteria:

ey
h
/
ez
b
≤ 0.2 (4.2)

or its inverse. Any member that doesn't satisfy this condition is treated to behave in a

biaxial manner. This case can be handled by constructing biaxial interaction diagrams

for the current orientation θ that the design moment in the major direction makes with

the minor one. A separate program has not been made for doing uniaxial interaction

checks, as applying speci�c orientations of θ = 0o or θ = 90oin the biaxial interaction

routines, for the major and minor directions respectively, yields the desired result.

23

Condition for Penalty Penalty Magnitude

εbiaxial=0.0 1.0
0.0<εbiaxial≤1.0 1-εbiaxial
εbiaxial>1.0 pmax

Table 4.2: Penalty Values for Biaxial Bending

Biaxial interaction diagrams have been constructed by directly manipulating the neu-

tral axis depth, and collecting the resulting internal moment and axial loading capacity

coordinates. To speed up relevant computations, stress magnitude in concrete is as-

sumed to have a rectangular distribution which spans 80% of the length from the top of

the section to the current neutral axis.

Once the coordinates for the interaction diagrams have been computed, additional

work needs to be done to check for capacity. First, the algorithm needs to check if

the internal bending moment and axial load combinations reside within the interaction

boundary. Second, it is also required to check how far the loading coordinate is from the

boundary. The farther it is from the boundary, the more the reserve capacity the section

has, making the assigned section conservative. The �tness and penalty for the member

is also computed based on this e�ciency value.

If the internal action coordinates reside outside of the interaction boundary, then the

assigned section is inadequate. Penalty is thus applied based on this deviation. The

algorithm for the full procedure is as given in Algorithm 4.15.

The function insideBoundary() takes two arguments: the design action coordinates

and the interaction coordinate list, and checks in which sub-region the design point lies.

If it doesn't reside in any of the regions, then by de�nition, the point should be outside of

the interaction boundary. If it does reside in one of the regions, the index for that region

gets returned. The function computeEfficiency() takes the index of the region returned

by insideBoundary() and constructs a relative scale through which the e�ciency can be

determined. (See Figure 4.1.)

Penalty is applied to the cost function whenever a structural member is found to have

failed this biaxial design check. The magnitude of the penalty is a constant value for all

members. Penalty values are also applied based on how e�cient the section is. That is,

the less e�cient the section is, the more the magnitude of penalty would be.

24

Figure 4.1: E�ciency Computation for Biaxial Bending Interactions

4.3.3 Design Checks for Shear(Alg. 4.18)

The design for pure shear in both the major and minor directions follows the procedure

outlined on [4, 22], which involves computing the resistance provided by concrete through

strut action. Because the shear link spacings for each member have already been randomly

assigned by the genetic algorithm, the procedure is supposed to check the adequacy of

these spacing values. In order to do this, the spacing of shear links required to resist

the design shear needs to be computed. The design shear forces can be found from the

shear force diagram of that member and the values are taken as the magnitudes at the

intersection between elastic centroidal axis of the member and a 45oline emanating from

the supports. It should be noted that this method of �nding design shear forces is only

applicable when load cases are typical. For atypical cases, the gradient method outlined

in section 4.2.3 could be used.

Finally, the penalty factor for shear capacity is calculated for both minor and major

directions by using the required and the provided shear link spacing values.

4.3.4 Design Checks for Torsion (Alg. 4.19, 4.20)

The designer's guide for Eurocode-2[3] subdivides torsional action into two categories:

equilibrium torsion, which exists to provide stability to a structural element (such as in

girders and curved elements), and compatibility torsion, usually encountered to satisfy

compatibility conditions for deformation. Examples include torsional action developed

25

Member Design Action Maximum Minimum

Columns
Flexure

0.04 ∗ b ∗ h− As

or
0.08 ∗ b ∗ h− A+

s

 Max

{
0.1NED/(fyk/1.15)

(0.002 ∗ 0.04 ∗ b ∗ h− As)

}
Shear Smax = 0.75 ∗ d �

Beams
Flexure 0.04 ∗ b ∗ h− As 0.0013 ∗ b ∗ d
Shear Smax = 0.75 ∗ d Smin = (Asv ∗ fyk)/(0.08∗b∗

√
fck)

+Near Lapped Regions

Table 4.3: Maximum and Minimum Reinforcement Amounts for Structural Members

in edge beams attached to slabs. For regular structural frames, the dominant action

encountered would be compatibility torsion.

The design actions for torsional capacity checks are obtained by taking the maxi-

mum torsional moment value from the torsional moment diagram of the member. The

procedure for checking torsional capacity is similar as that for pure shear. Addition-

ally, structural members subjected to both shear and torsion require a simple interaction

check, i.e.

Vsd,i
VRD,max

+
Tsd,i

TRD,max
≤ 1 (4.3)

The computation of e�ciency and boundary checks follow the same mechanisms as dis-

cussed in biaxial interaction checks. The e�ect of torsional moments on a member needs

to be re�ected on both the longitudinal and shear reinforcements. Both these reinforce-

ments can carry the inclined tensile stresses developed by acting as tension struts where

as the concrete serves as a compressive member within the truss. Failure occurs when

longitudinal reinforcements start yielding and the concrete crushes along the crack axes.

Once the torsional tensile stress exceeds the cracking stress magnitude, tensile reinforce-

ment in the form of shear links(stirrups) needs to be provided to resist the full torsional

moment magnitude[22].

4.3.5 Sizing Constraints

In the design of concrete structures, Eurocode-2 dictates the following additional require-

ments to be ful�lled:

1. Maximum and Minimum Reinforcement Quantities: For the purpose of

resisting temperature stresses and limiting crack width, Eurocode-2-1[5](Section 9.2) rec-

ommends a small amount of reinforcement be placed in members that do not require

strength reinforcement. Maximum reinforcement limits are provided such that the ease

of constructibility in placing reinforcement bars and pouring concrete is ensured.

26

2. Breadth-to-Height Ratio: Since the algorithm chooses section sizes randomly,

certain limits need to be placed on these sizes, so as to avoid deep/narrow or thin/wide

members. In this study, a b/h ratio of 0.5 has been taken as a limiting criteria.

3. Minimum Width: To provide ample resistance to �re (Eurocode 2-2[6], section

5.6.3, Table 5.6), all beams shall have a minimum width of 200mm by assuming all

calculations to be done for a standard �re resistance duration of 60 minutes and an axis

distance of 12mm. Columns shall have a minimum width of 200mm with a concrete cover

of 25mm, again by assuming a 60 minute �re resistance duration, and with the column

being exposed on more than one side. (Eurocode 2-2[6], section 5.3.2, Table 5.2a)

27

4.4 Optimization Formulation

Let Fi be a 3D frame composed of H horizontal members and V vertical members and

having l regions of critical internal action. A general formulation for its cost optimization

would be de�ned as:

Decision Variables: {Asv,kAs,l,k, bk, hk} where k ∈ (H ∪ V) , l ∈ {Xf,k}
Minimize O =

∑
r=k{

∑
Cconc + Csteel + Cformwork}

Subject to:

MED,k ≤Mrd,k k ∈ H

VED,k ≤ Vrd,k k ∈ H
Nk

Nu,k
+ Mk

Myu,k
+ Mzk

Mzu,k
≤ 1 k ∈ (H ∪ V)

Ask ≥ Ask,min k ∈ (H ∪ V)

Ask ≤ Ask,max k ∈ (H ∪ V)

VED,k

VRD,max,k
+

TED,k

TRD,max,k
≤ 1 k ∈ (H ∪ V)

TED,k ≤ Trd,s,k k ∈ H

(4.4)

Where individual costs for volume of concrete and reinforcing steel as well as the area

for form-work and sca�olding for beams could be determined, respectively, as:

Cconc,k = cconcγconcbkhklk (4.5)

Csteel,k = csteel ∗ (
∑

γsteelAs,l,kll,k +
∑

γsteelAsv,kll,k) (4.6)

Cformwork,k =

cform ∗ (2 ∗ hk + 2 ∗ bk) ∗ lk k ∈ V

cscaffold ∗ (bk ∗ lk) + cform ∗ (2 ∗ hk + bk) ∗ lk k ∈ H
(4.7)

Because genetic algorithms are to be used for the structural optimization, this stan-

dard formulation needs to be recon�gured to achieve �tness evaluation expressions that

include both the e�ect of the objective function as well as the constraints.

4.5 Genetic Modeling

Genetic algorithms operate on collections of randomly generated strings of data, por-

tions of which represent the design variables. These strings, called chromosomes, should

therefore be decoded in order for the data stored to be utilized. In this study, a single

chromosome is used to represent all geometric and reinforcement data contained within

a single structure. This includes the sizes(widths and heights) of each member in the

28

structure, and �exural and shear reinforcements for several moment and shear critical

regions of all members. Every index in a chromosome thus, represents a real number

value for one of this variables, and its corresponding value is obtained by doing a simple

table lookup. Once all these indices have been decoded and their corresponding values

assigned to each respective member, the resulting structure formed can be analyzed and

evaluated for all constraints listed in section 4.3.

4.5.1 Member Sizing

Sizes for structural member are encoded on a simple discrete scale as shown in the table

below. Each integer represents a single width/height value in the individual chromosome.

One observation that can be made from table 4.4 is that both width and height variables

could assume any randomly generated key. Thus, it is possible to obtain width-height

combinations that would result in wide, deep or narrow sections. This can be avoided

by utilizing the sizing constraints discussed in section 4.3.5. These constraints impose

large magnitudes of penalty on individual chromosomes having members that exhibit size

miscon�guration. Thus, after a few iterations in the simulation, these individuals will be

eliminated from the population as a result of their �tness value.

Key Value(mm) Key Value(mm) Key Value(mm)

0 200 5 325 10 450
1 225 6 350 11 475
2 250 7 375 12 500
3 275 8 400 13 525
4 300 9 425 14 550

Table 4.4: Value Encoding for the Sizing of Members

4.5.2 Reinforcement Encoding

Each member has two basic types of �exural reinforcements assigned to it: continuous

reinforcements located at each corner of the member, and additional reinforcements for

regions of critical negative and positive bending. Continuous reinforcements have a simple

indexing scheme based on all available diameters of reinforcing bars.

29

Top and Bottom Reinforcements

Key No.of Bars φ, mm Area, mm2

0 2 12 226.1946711
1 2 14 307.8760801
2 2 16 402.1238597
3 2 20 628.3185307
4 2 24 904.7786842
5 2 32 1413.716694

Table 4.5: Continuous Reinforcements

Additional reinforcements are provided based on available diameters of reinforcement

and number of bars. Four values are used in the encoding scheme: two indices for positive

reinforcements in the Y- and Z- directions, and the remaining two assigned for negative

reinforcements. Areas of reinforcements for positive and negative bending regions in a

section could then be computed by adding up the reinforcement areas for the continuous

and additional reinforcements. A maximum number of 3 bars has been encoded for all

diameter types. If more than three bars is desired, the source code could be modi�ed

easily to accomodate this.

Additional Negative and Positive Reinforcements

Key No.of Bars φ, mm Area, mm2 Key No.of Bars φ, mm Area, mm2

0 1 12 113.0973355 9 1 20 314.1592654
1 2 12 226.1946711 10 2 20 628.3185307
2 3 12 339.2920066 11 3 20 942.4777961
3 1 14 153.9380400 12 1 24 452.3893421
4 2 14 307.8760801 13 2 24 904.7786842
5 3 14 461.8141201 14 3 24 1357.168026
6 1 16 201.0619298 15 1 32 706.8583471
7 2 16 402.1238597 16 2 32 1413.716694
8 3 16 603.1857895 17 3 32 2120.575041

Table 4.6: Extra Reinforcement Encoding

Shear reinforcements for both beams and columns is provided in the form on shear

links. For convenience, 8mm bars are used with varying spacings for each member. Indices

from chromosomes represent discrete spacing values. As varied spacing of links is more

critical in beams than in columns, two potential spacing values (excluding the minimum

and maximum spacing) are used.

30

Shear Link Spacing
Key Value(mm) Key Value(mm)

0 100 6 250
1 120 7 270
2 150 8 300
3 170 9 320
4 200 10 350
5 220

Table 4.7: Shear Link Spacing Indices

4.6 Genetic Optimization

4.6.1 Cost Estimation and Penalty (Alg. 4.26)

The performance of a structural design is estimated based on two criteria: its structural

performance under loading and its cost. The structural performance could be measured

by assessing �exural and shear capacities of each member based on the current loading

conditions. This would also include determining permissible envelopes for internal ac-

tions. Details of determining the structural performance are given in section 4.3. Cost

values could be estimated by taking appropriate cost indices for concrete(cconc), rein-

forcing steel(csteel), formwork and sca�olds(cform, cscaffold) and computing the total rein-

forcement and concrete volumes. The total cost could be determined by using equation

4.4. In order to evaluate a design from both these aspects, a combined expression for

incorporating these values is needed. This expression is called the �tness function, and its

evaluated value is the primary criteria through which the evolutionary selection process

is carried out with.

4.6.2 The Fitness Function (Alg. 4.27)

The �tness function evaluates the total performance of the structure and lets the genetic

simulation algorithms use its result as a means to identify whether that particular design

is a good �t or not. The general expression is:

F = (1 + p) ∗ C (4.8)

where F is the �tness value, p is the penalty and C is the total cost of the structure.

It can be seen from equation 4.8 that, low values of F indicate that:

1. The penalty value p is small, or

2. The total cost C is small, or

31

3. Both (1) and (2) are true, in which case, the design is optimal.

Low p values indicate that the structure is e�cient in terms of structural capacity(but

not necessarily cheap), while low C values indicate that the design is cheap(but doesn't

necessarily satisfy strength/capacity/sizing constraints). Thus, the �tness function acts

as a weighted visualizer of the design's cost and performance feasibility, whereas the

penalty and cost parameters only illuminate part of this evaluation. Table 4.8 illustrates

di�erent values for these parameters and how to assess their value.

Case Cost Penalty Fitness Remark Conclusion

1 10000 5.0 60000.0 High Pen., Med. Cost, High Fitness Not Optimal
2 10000 1.0 20000.0 Low Pen., Med. Cost, Low Fitness Near Optimal
3 2000 11.0 24000.0 High Pen., Low Cost, High Fitness Not Optimal
4 30000 1.0 60000.0 Low Pen., High Cost, High Fitness Not Optimal

Table 4.8: Examples of Fitness Evaluation

4.6.3 Simulation(Alg. 4.21)

The simulation process of a simple genetic algorithm is described in algorithm 4.21.

The routine takes a population size and the number of iterations as input. Based on

this, it randomly creates a population of individuals with value encoded strings. For

each individual, this encoded information is decrypted and entered into the structure's

database. Based on the decoded information, the structure is analyzed, and evaluated

for its cost and its structural performance. Finally, the �tness function is evaluated for

it. Once all individuals in the population have gone through this process, the genetic

algorithm takes over to apply selection, mutation, and crossover on the individuals. This

procedure is repeated for the prescribed number of iterations. Convergence is achieved

when the variance between successive iterations vanishes or when a user-speci�ed criteria

is satis�ed.

4.7 HELIX: A Structural Optimization Platform

The following sections illustrate the main features of the developed program, named HE-

LIX. HELIX was written in Java 8 and at the time of this writing is about 138MB in

size(including external libraries and graphics resources). It is a single-threaded applica-

tion that can run on any x86/x64 based Intel or AMD processor. HELIX can be used as

a structural analysis software as well as for structural optimization problems.

32

4.7.1 Why Java?

Java is an object-oriented programming language used universally in a multitude of sec-

tors from web-scripting to operating system development, arti�cial intelligence research,

infrastructure control sytems and consumer application production. Currently, Java runs

on more than 3.5 billion devices including mainframes, smart phones, computers, cars,

home appliances, communication platforms and several other electronic equipments.

Unlike other programming languages which run on the environment of the operating

system they are installed on, Java runs exclusively on a virtual machine with preallo-

cated resources known as the Java Virtual Machine, which is instantiated alongside the

operating system when a program runs. This feature allows a program written in Java

to compile/run on any computer/OS capable of supporting the JVM. Another feature

of the JVM would be customizable resource allocation(i.e. total amount of RAM and

bandwidth allocated by the OS can be modi�ed by the user/programmer). In addition,

Java comes with a plethora of external and stock libraries for problems ranging from UI

design to numerical computations. Perhaps the most alluring feature of Java, in addition

to the aforementioned features, would be its object-oriented paradigm. This allows for

either a top-down or a bottom-up design to be feasible.

This research work has chosen Java for its almost excessive support for matrix manip-

ulations, for its ease of integration with other applications, its speed and customizability

in using hardware resources, and for its unparalleled integration with XML for writing

Graphic User Interfaces(GUIs).

4.7.2 Main Interface and Grid De�nition

The primary window is the one that is encountered when the program opens. At the start

of the program, the ribbon shown at the left is the grid de�nition menu. Depending on

the topology, empty two and three dimensional grids, can be de�ned here. In addition,

prede�ned portal frames could also be drawn on the canvas.

33

Figure 4.2: Main Canvas Components

4.7.3 Ribbon Functions

Through the ribbon, one could access the majority of functionalities featured in the

program. Table 4.9 summarizes these functions.

34

Ribbon Functions

Sets the display canvas to drawing mode. In this mode,
members could be quickly drawn by connecting points on
the grid using the left mouse button.

Sets the display canvas to joint selection mode. Joints can
then be selected individually by placing the cursor near a
labeled joint and clicking the left mouse button once.
Multiple joints could also be selected by clicking the left
mouse button and dragging through the area of interest.

Sets the display canvas to member selection mode. A
member can be easily selected by moving the cursor near it,
and single clicking using the left mouse button. Multiple
members could also be selected by cross- dragging along the
members using the left mouse button.

Displays the material de�nition menu. Constitutive property
data for concrete and reinforcing steel is to be entered here.

Displays the joint restraint options menu. Selected joints
can be assigned appropriate restraints for any degree of
freedom using this menu.

Displays the load de�nition menu. Load data, such as
direction of application, type(distributed or concentrated)
magnitude and location is to be speci�ed here.

Displays the section de�nition menu. Cross-sectional data
such as width and height of members

Performs structural analysis, if all relevant data has been
entered, and topology has been de�ned appropriately.

Computes reinforcement quantities based on previously
assigned section information and analysis results.

Opens the genetic optimization menu. In this dialog, one
can enter simulation parameters such as iteration number
and population size. The simulation is also to be started
from this menu.

Table 4.9: Main Ribbon Functions

35

4.7.4 Sub-menus

There are six sub-menus that could be accessed from the main ribbon. These are:

1. Grid De�nition - the user can enter parameters for de�ning an empty rectangular

grid with regular spacing in this sub-menu. These include basic dimensions such

as story height and bay width in the horizontal directions. The number of grid

lines in each direction can also be speci�ed. If two dimensional frames/grids are

required, then one could set the number of grid lines in the unwanted direction

to zero. If a regular portal frame is what's required, then manual drawing of all

members can be avoided by selecting the �Generate Frame Elements� check-box.

This option generates a portal frame aligned with the grid, and instantiates all

necessary topological data. This is useful especially if large portal frames are to be

drawn quickly.

2. Material De�nition- Concrete and reinforcing steel material properties are to

be entered here. This data is later utilized in forming the element and structure

sti�ness matrices. If these values are not known, or haven't been decided upon,

then by checking the �Defaults� option, predetermined data could be set.

3. Loads- Before load data can be entered, members to which the load is to be applied

need to be selected. One can select members by clicking on the �Select Members�

ribbon. Once selection is complete, load data could be entered. Through the sub-

menu, concentrated force and moment magnitudes can be applied by entering the

magnitude and relative position of the application point. Distributed load data can

be input by selecting the �Distributed� check-box.

4. Restraints- Joints can be restrained against the six possible degrees of freedom.

Similar to the load sub-menu, the joints sub-menu needs at least one selected joint

as input.

5. Optimization- Through the optimization sub-menu, parameters for simulating

a genetic selection scheme can be speci�ed. This includes assigning mutation,

crossover probabilities and population size. Once these values are entered, the

�Accept� button can be pressed to start the iteration. The �Optimize as Building�

option allows for the structure to be treated as a regular building with uniaxial

actions and reinforcement pro�les. If selected, secondary actions in the minor di-

rection would also be ignored in the design check procedure.

36

Figure 4.3: Sub-Menus 1

37

Figure 4.4: Sub-Menus 2

38

4.7.5 Input and Output Data

Based on the provided input, three tasks could be accomplished using the software:

Structural analysis, structural design and optimization. In order for these procedures to

be carried out, however, speci�c groups of information need to given beforehand. Table

4.10 summarizes all required inputs and generated outputs of the software.

Data Analysis Design Optimization

Input
Material Properties X X X
Section De�nition X X

Initial Reinforcement Quantity X
Optimization Parameters X X X
Material/Equipment Cost X

Output
Support Reactions X X X
Internal Actions X X X
Design Section X

Design Reinforcement X X
Capacity Information X
Cost Information X X

Table 4.10: Input and Output Data for Analysis, Design and Optimization

4.7.6 Evolutionary Simulation

Genetic simulation can be initiated by supplying the necessary optimization information.

After simulation has been initiated, depending on the size of the problem, a progress

window might appear showing all necessary simulation and performance information in

real-time. The required time depends upon several factors, such as, the number of iter-

ations, the size of the structure(topologically) and the size of the population. When the

simulation ends, plots showing the progress of convergence and the descents of penalty

and �tness values could be viewed. The plots could also be saved as images by accessing

the right-click properties menu on the graph.

39

Figure 4.5: Part of the Plot Dialog

4.7.7 The Result and Section Dialogs

These dialog boxes are displayed, if and only if, a successful design, genetic simulation

or structural analysis has been performed. Through these dialogs output data such as

internal action magnitudes, design reinforcement areas, sizing information and structural

e�ciency can be viewed. Additionally, all information can also be exported in a tab-

ular form by using .TSV �le format, which can be readily opened by any spreadsheet

application like Microsoft Excel.

40

4.8 Algorithm Listings

In this section, algorithms for the topics discussed in chapter 4 have been concisely

presented. While the algorithms were made written in the hope of having a clear and

concise description, some details haven't been included for the sake of brevity. The reader

is advised to read the preceding sections before going through this section.

4.8.1 Structural Analysis

Algorithm 4.1 Summary of the Sti�ness Method

Function Analyze(S)

Material Properties : {Ei}
Joint Vector : Ji
Member Vector : Mi

Load Vector : Li
Structure : S

Total Degrees of Freedom DOF : n= Length(Ji)*6
Restrained DOF: nr = RestrainedDOF(Ji)
MemberParameters(Mi,{{Ei})
AssembleStiffness(S)

ApplyBoundaryConditions(S)

AssembleReactionStiffness(S)

ComputeDisplacements(S)

ComputeReactions(S)

MemberEndActions(S)

for each action R in {AX−X, VY−Y , VZ−Z, TX−X, MZ−Z, MY−Y } do

DesignActions(R, S)

end for

End Function

41

Algorithm 4.2 Computation of Member Parameters

function MemberParameters(Mi ,{{Ei})

for each member M in Mi do

h=height(m)

b=breadth(m)

l=length(m)

lx = xend − xstart, ly = yend − ystart, lz = zend − zstart
Cross-sectional Area: A = height(m)*breadth(m)

Moment of Inertia:

Izz = b∗h3
12

Iyy = h∗b3
12

Ixx = (1/3)− (0.21 ∗ (b
h
) ∗ (1− (b4

(12∗h4)))) ∗ h ∗ b
3

Direction Cosines:

cx=lx/l , cy=ly/l , cz=lz/l

Rotation Matrix:

R= RotationMatrix(cx, cy, cz)

Local Stiffness Matrix:

Kl = LocalStiffness(M, E, J)

Global Stiffness Matrix:

Kg = GlobalStiffness(M)

AML(M)

end for

end function

42

Algorithm 4.3 Computation of Local Sti�ness Matrix

function LocalStiffness(Member M ,Constitutive Prop. {Ei})
k1 =

A∗E
L

, k2 =
12∗E∗Iz

L3 , k3 =
12∗E∗Iy

L3 , k4 =
6∗E∗Iz
L2 , k5 =

6∗E∗Iy
L2 , k6 =

4∗E∗Iz
L

, k7 =
4∗E∗Iy

L
, k8 =

2∗E∗Iz
L

, k9 =
2∗E∗Iy

L
,k10 =

G∗Ix
L

.

Sparse Array: Kl=

k1 0 0 0 0 0 −k1 0 0 0 0 0
0 k2 0 0 0 k4 0 −k2 0 0 0 k4
0 0 k3 0 −k5 0 0 0 −k3 0 −k5 0
0 0 0 k10 0 0 0 0 0 −k10 0 0
0 0 −k5 0 k7 0 0 0 k5 0 k9 0
0 k4 0 0 0 k6 0 −k4 0 0 0 k8
−k1 0 0 0 0 0 k1 0 0 0 0 0
0 −k2 0 0 0 −k4 0 k2 0 0 0 −k4
0 0 −k3 0 k5 0 0 0 k3 0 k5 0
0 0 0 −k10 0 0 0 0 0 k10 0 0
0 0 −k5 0 k9 0 0 0 k5 0 k7 0
0 k4 0 0 0 k8 0 −k4 0 0 0 k6

end function

Algorithm 4.4 Member Rotation Matrix

function RotationMatrix(cx, cy, cz)
Direction Cosines: cx, cy, cz
Member Roll Angle: α

cxz=
√
c2x + c2z, cosA = cos(α), sinA = sin(α)

r1 =
(−cx∗cy∗cosA−cz∗sinA)

cxz
, r2 = cxz ∗ cosA

r3 =
(−cy∗cz∗cosA+cx∗sinA)

cxz
, r4 =

(cx∗cy∗sinA−cz∗cosA)
cxz

r5 = −cxz ∗ sinA, r6=
(cy∗cz∗sinA−cx∗cosA)

cxz

Rotation Matrix: R=

cx cy cz 0 0 0 0 0 0 0 0 0
r1 r2 r3 0 0 0 0 0 0 0 0 0
r4 r5 r6 0 0 0 0 0 0 0 0 0
0 0 0 cx cy cz 0 0 0 0 0 0
0 0 0 r1 r2 r3 0 0 0 0 0 0
0 0 0 r4 r5 r6 0 0 0 0 0 0
0 0 0 0 0 0 cx cy cz 0 0 0
0 0 0 0 0 0 r1 r2 r3 0 0 0
0 0 0 0 0 0 r4 r5 r6 0 0 0
0 0 0 0 0 0 0 0 0 cx cy cz
0 0 0 0 0 0 0 0 0 r1 r2 r3
0 0 0 0 0 0 0 0 0 r4 r5 r6

end function

43

Algorithm 4.5 Computation of Member Global Sti�ness Matrix

function GlobalStiffness(Member M)

Local Stiffness Matrix: Kl

Rotation Matrix: R
Global Stiffness Matrix: Kg = RT*Kl*R

end function

Algorithm 4.6 Computation of Member End Actions

function MemberEndActions(Member M)

Member Displacement Vector: Dispm =
{dxst, dyst, dzst, rxst, ryst, rzst, dxend, dyend, dzend, rxend, ryend, rzend}T
Member End Actions: Fend = Aml +Kl ∗R ∗Dispm

end function

Algorithm 4.7 Computation of Equivalent End Actions

function AML(Member M)

Loading Vector: {L}
For each loading L in {L}
Fixed End Moments :

Start Node: Rsx, Rsy, Rsz, Msx, Msy, Msz

End Node: Rex, Rey, Rez, Mex, Mey, Mez

Local actions: Aml,local=

{Rsx, Rsy, Rsz, Msx, Msy, Msz, Rex, Rey, Rez, Mex, Mey, Mez}

Global actions: Aml,global= RT ∗ Aml,local
Aml,total+=Aml,local
end for

end function

44

Algorithm 4.8 Sti�ness Matrix Assembly

function AssembleStiffness(Structure3 S)
Total Structure DOF : tDOF

Structure Stiffness Matrix: K[tDOF][tDOF]

for each Member in MemberVector: S → {M}
Start Joint DOF indices: sDoF = dxs, dys, dzs, rxs, rys, rzs
End Joint DOF indices: eDoF = dxe, dye, dze, rxe, rye, rze
Global Stiffness Matrix: Kg[12][12]

localDOFindex,row= 0

indexCombinations={{sDOFindex,sDOFindex},{sDOFindex,eDOFindex},
{eDOFindex,sDOFindex},{eDOFindex,eDOFindex}}

localDOFindex,row= 0

for each indexCombination in indexCombinations do

{indexrow,indexcolumn}←indexCombination

for each indexrow in sDoF do

localDOFindex,column= 0

for each indexcolumn in eDoF do

K[indexrow][indexcolumn]=K[indexrow][indexcolumn]+
Kg[localDOFindex,row][localDOFindex,column]

localDOFindex,column++
end for

localDOFindex,row++

end for

end for

end for

end function

45

Algorithm 4.9 Application of Boundary Conditions

function ApplyBoundaryCondition(Structure S)

Array: unrestrained DOF Index : uDOF []

Reduced Stiffness Matrix: Kr

Reduced Load Vector: Fr
r = 0, c = 0

for each uDOFrow in uDOF [] do

c = 0

for each uDOFcolumn in uDOF [] do

Kr[r][c] = K[uDOFrow][uDOFcolumn]
c++

end for

Fr[r] = loadVector[uDOFrow]
r++

end for

end function

Algorithm 4.10 Reaction Sti�ness Matrix Assembly

function AssembleReactionStiffness(Structure S)

Array: restrained DOF Index : cDOF []
Array: unrestrained DOF Index : uDOF []

Reaction Stiffness Matrix: Krxn

Reaction Load Vector: Frxn
r = 0, c = 0

for each cDOFrow in cDOF [] do

c = 0

for each uDOFcolumn in uDOF [] do

Krxn[r][c] = K[cDOFrow][uDOFcolumn]
c++

end for

Frxn[r] = loadVector[cDOFrow]
r++

end for

end function

46

Algorithm 4.11 Computation of Displacements

function ComputeDisplacements(Structure S)

Reduced Load Vector : Fr
Master/Structure Stiffness Matrix: K
Displacement Vector: Disp
Diagonal Preconditioner : Diag()
Conjugate Gradient Solver : Solver(out Disp)
Solver->preconditioner(Diag())
Solver->ConjugateGradientSolve(Fr, K, Disp)
return Disp

end function

Algorithm 4.12 Computation of Reactions

function ComputeReactions(Structure S)

Reaction Load Vector : Fr
Reaction Vector : Frxn
Reaction Stiffness Matrix: Krxn

Displacement Vector: Disp
Frxn = Fr +Krxn ∗Disp
return Frxn

end function

Algorithm 4.13 The Conjugate Gradient Method

function ConjugateGradientSolve(b, A, x)

Generate x0
r0 ← b− Ax0
Steepest Descent: s0 ← r0
for k from 0 to RowLength(A) do

αk ← sTk rk/s
T
kAsk

xk+1 ← xk + αksk
rk+1 ← b− Axk+1

if |rk+1| ≤ ε exit loop

βk ← −rTk+1Ask/s
T
kAsk

sk+1 ← rk+1 + βksk

end for

return x

end function

47

4.8.2 Structural Constraints

Algorithm 4.14 Algorithm for Determining Biaxial Interaction Boundary Coordinates
of Members

function BiaxialBoundary(Member M)

Biaxial Interaction Coordinates: {Pi}={(M1, N1), (M2, N2), ...}
Section Profile: Dimensions [breadth: b],[height: h]

Corner reinforcement: {r1,r2,r3,r4}
Extra reinforcement, Y: {ry1,ry2,ry3,ry4}
Extra reinforcement, Z: {rz1,rz2,rz3,rz4}

Design Actions: MyED,MzED , NED

Neutral Axis Orientation: θ=Arctan(MyED/MzED)
Maximum Neutral Axis Location: xmax = Ymin + (Ymax − Ymin) ∗ 1.25
Neutral Axis Depth: x
While x < xmax do

Concrete Compression Area Coordinates: Cxy={(X1, Y1), (X2, Y2),...}
Centroid(X,Y)= ComputeCentroid(Cxy)
Area= ComputeArea(Cxy)
Concrete Compressive Force, Fc = Area ∗ fcd/1000.0 kN

Concrete Compressive Moment, Mc =
Fc ∗ (CenterY − CentroidY)/1000.0 kN.m

For every reinforcement bar R{φ,X,Y}, in

{r1,r2,r3,r4,ry1,ry2,ry3,ry4,rz1,rz2,rz3,rz4} do

If (RY>x) then

εbottom = ((Ltotal − LNA)/LNA)*εcm
εR = (RY − x)/(Ltotal − LNA) ∗ εbottom

Otherwise

εR = (x−RY)/LNA ∗ εcm
End If

If (εR > εyd) then εR = εyd
Steel Stress, σsR=εR ∗ Es
Steel Force, FsR=σsR ∗ AR where AR= φ2

R ∗ π/4
Steel Moment, MsR = FsR ∗ (RY − centerY)/1000.0

End For

Ni=Ftotal =
∑
FsRi + Fc

Mi=Mtotal=
∑
MsRi +Mc

Pi ← {Ni,Mi}

End While

Return {Pi}
End Function

48

Algorithm 4.15 E�ciency Computation for Biaxial Capacity

Function BiaxialEfficiency()

Efficiency : e

Interaction Coordinates {Pi}: BiaxialBoundary{(M1, N1), (M2, N2), ...}
Design Actions:MyED,MzED,NED

Resultant Moment: MrED =
√
(MzED)2 + (MyED)2

Design Coordinates: PED=(MrED,NED)

i=insideBoundary(PED,{Pi})
If i 6=null then

e=computeEfficiency(PED,i)
Return e

Else

Return e=-1

End If

Biaxial Penalty: Cbiax=1-e
Return Cbiax

Algorithm 4.16 Check for a Point Residing in a Closed Boundary

Function InsideBoundary(Pr,R)

Boundary Geometry: R = {(X0, Y0), (X1, Y1), ...}
Point: Pr=(Xr,Yr)
Contour Origin: PC= (XC , YC)
Residence Region Index : m
Inside Boundary: Check=false

while i< Length(R) and Check=false do

Trianglei={PC,R[i], R[i+ 1]}
if(insideTriangle(Pr,Trianglei))
Check=true
m = i
end if

end while

Return

49

Algorithm 4.17 Check for a Point Residing in a Triangle

Function InsideTriangle(Point Pr, Region Triangle)

Triangle Coordinates: T = {(X0, Y0), (X1, Y1), (X2, Y2)}
Point: Pr=(Xr,Yr)
Region 1: R1={(Xr, Yr), (X1, Y1), (X2, Y2)}
Region 2: R2={(X0, Y0), (Xr, Yr), (X2, Y2)}
Region 3: R3={(X0, Y0), (X1, Y1), (Xr, Yr)}
Triangle Area: AT= |((x0 ∗ (y1 − y2)) + x1 ∗ (y2 − y0) + x2 ∗
(y0 − y1))|
Region 1 Area: A1= |((xr∗(y1−y2))+x1∗(y2−yr)+x2∗(yr−y1))|
Region 2 Area: A2= |((x0∗(yr−y2))+xr∗(y2−y0)+x2∗(y0−yr))|
Region 3 Area: A3= |((x0∗(y1−yr))+x1∗(yr−y0)+xr∗(y0−y1))|
If (|(AT-(A1 + A2 + A3)|<0.000001)

Return true

Else if

Return false

End function

Algorithm 4.18 Shear Resistance Penalty for Reinforced Concrete Beam Elements

Function shearCapacity()

for i = Y, Z
Material Properties: Ec, Es, fck, fyd
Design Properties: H, B, S, As1,hp, d
Design Shear: Ved,i
Spacing Provided: Si
Penalty: Cshear,i
Shear Resistance: Vrd,max,i = 0.124 ∗ bwd ∗ (1− fck/250) ∗ fck
if (Vrd,max >Ved)

θ = 22o

else

θ = 0.5 ∗ sin−1(
Ved,i

0.18∗bwd∗fck∗(1−fck/250))

end if

Shear Spacing: Sreqd,i = 0.78 ∗ d ∗ fyk ∗ cot(θ) ∗ Asw/Ved,i
Cshear,i=Penalty(Si, Sreqd,i)
Return Cshear,i
End Function

50

Algorithm 4.19 Torsion and Shear-Torsion Interaction Penalties

Function torsionShearCapacity()

Material Properties: Ec, Es, fck, fyd
Design Properties: H, B, S, As1,hp, d
Design Torsional Moment: TED
Cross-Section Area: B*H

Cross-Section perimeter: B*2+H*2

Equivalent Hollow Section Thickness t = (B∗H)
(B∗2+H∗2)

Equivalent Hollow Section Area Ak = (B − t) ∗ (H − t)
Efficiency Factor ν = (1− fck/250) ∗ 0.7
Truss Inclination Angle θ=22o

TRD,max = 2 ∗ ν ∗ fcd ∗ Ak ∗ t ∗ sin(θ) ∗ cos(θ))/1000000.0
Torsion Spacing: St =

2∗Ak∗0.87∗fyk∗cot(θ)∗Asw

TED

Shear Spacing: Sreqd,i = 0.78 ∗ d ∗ fyk ∗ cot(θ) ∗ Asw/Ved,i
Total Spacing : Sreqd,total =

Asw
(Asw/St)+(Asw/Sreqd,i)

Shear-Torsion Interaction Cs−t = shearTorsionInteraction(Trd,max,TED,Vrd,max,VED)
Shear-Torsion combined penalty: Penalty(Si, Sreqd,total)
Return Ctorsion, Cs−t
End Function

Algorithm 4.20 Combined Interaction Capacity for Shear and Torsional Actions

Function shearTorsionInteraction()

Material Properties: Ec, Es, fck, fyd
Design Properties: H, B, S, As1,hp, d
Design Torsional Moment: TED
Design Shear: Vsd,Y ,Vsd,Z
interaction Coordinates: (TRD,max, 0), (0, VRD,max)
design Coordinates:

if insideBoundary((TED, VEDi),(TRD,max, 0), (0, VRD,max)) then

e=computeEfficiency((TED, VEDi),(TRD,max, 0), (0, VRD,max))

Else

e=-1

End if

Cshear−torsion= 1-e

Return Cshear−torsion
End Function

51

4.8.3 Genetic Simulation

Algorithm 4.21 A Simple Genetic Algorithm

function GASimulation()

Objective function and constraints: O(),φ(),ψ()
Fitness function ->�> Fitness(x) ∝O(), φ(), ψ()
Probabilities of crossover:Pc and mutation:Pm
Elitism Percentage:e , Population Size:n
Genetic operators:

{tournamentSelection(Population P),

mutation(individual i),

crossover(individual i1,individual i2)}
convergence criteria: Conv

//----------------STAGE 1: INITIALIZATION----------//

Initialize population P (n)
for each individual i in P do

fitness(i)

end do

//--//

//----------STAGE 2: SELECTION+EVOLUTION----------//

while (Conv = false)

while (nnew < n)

individual Pnew[] = tournamentSelection(P)
Select 2 individuals from Pnew:

return individuals i1,i2

end select

inew= crossover(i1,i2)

end while

mutation(Pnew(random(i)))
for each individual i in P

f=fitness(decode(Structure S, Individual i))

end for

Sort(Pnew, parameter=f)
Select the top e percent of fit individuals

end while

//---//

end function

52

Algorithm 4.22 Uniform Crossover

function Crossover(individual i1, individual i2)
Crossover Probability: Pc
Offspring: i3
Gene Sequences: G1[] , G2[] , G3[]
Gene Length: g=Length(G1[])

for i from 1 to g do

random probability: r=random(0,1)
if (r <= Pc) then

G3[i]= G1[i]

else

G3[i]= G2[i]

end if

end for

End function

Algorithm 4.23 Mutation

function Mutation(individual i1)
Mutation Probability: Pm
Gene Sequence: G1[]
Gene Length: g=Length(G1[])

for i from 1 to g do

random probability: r=random(0,1)
if (r <= Pm) then

//generate a mutated gene

mutation: m= random(0,1)* G1[i]

G1[i]= m

else

// Do Nothing

end if

end for

End function

53

Algorithm 4.24 Tournament Selection of Best Individuals

function tournamentSelection(Population P)

Tournament Size : n
Tournament Population: T
for i from 0 to n do

Random Individual Index: r=random(0,1)*Length(P)
T [i] = P [r]

end for

Return Best Individual ifit: fittest[T]

End function

Algorithm 4.25 Gene Decoding

function decode(Structure S, Individual i)

Number of Members: nmembers
Breadth Data: BIndex[]={250,300,325,350,...}

Height Data: HIndex[]={250,300,325,350,...}

Flexural Reinforcement Data: RIndex[]={{nT0φdT0 −
nB0φdB0},{nT1φdT1 − nB1φdB1}, ...}

Shear Spacing Data: SpIndex[]={100,110,120,130,...}

Member Vector: S →M
gene index: g=0
for i from 0 to nmembers do

Member: m =M [i]
Breadth: m← b=BIndex[g]
g ++
Height: m← h=HIndex[g]
g ++
Flexural Reinforcement : m← R = RIndex[g]
g ++
Shear Reinforcement : m←
Sp = SpIndex[g]
g ++

end for

End function

54

Algorithm 4.26 The Penalty Function

Function Penalty(Xallowable, Xdesign)

Allowable Value: Xallowable

Design Value: Xdesign

Penalty: C
Maximum Penalty: Cmax
C = (

Xdesign

Xallowable
)-1

if (C < 0)

C = 0

else if(C > 1)

C = Cmax

end if

Return C

Algorithm 4.27 Individual Fitness Computation

Function Fitness()

Individual : i

Structure: S

Material Properties: E, Es, fyk, fcd

Geometric Properties:

For each member M in {M} do

If Beam?(M)

M <- {B, H, Ast, Asb, Asn1, Asn2, Asp, Asv1, Asv2}
Else

M <- {B, H, As1, As2, Asv}
End if

end For

Analyze(S)

Cost: C = ComputeCost(S)

Penalty: p = TotalPenalty(S)

Penalized Fitness Function: F = (1 + p) ∗ C
S<-F
End function

55

Algorithm 4.28 Total Penalty of a Structure

Function TotalPenalty(S)

TotalPenalty: p
For each member m in S->{m}

ptorsion = torsionShearCapacity()

pshear = shearCapacity()

pbiaxial = biaxialEfficiency()

psizing = sizingConstraints()

MemberPenalty: pmem = ptorsion+pshear+pbiaxial+psizing
p += pmem

end For

return p
End Function

Algorithm 4.29 Total Cost of a Structure

Function ComputeCost(S)

Total Cost: Ctotal= 0.0
Material Unit Weights: γconc,γsteel
Material Unit Costs: cconc, csteel, cform, cscaffold
For each member in S->m

Cconc = cconc ∗ γconc ∗ b ∗ h ∗ l
Csteel = csteel ∗ (

∑
γsteelAsl +

∑
γsteelAsvl)

if (m is vertical) then

Cformwork=cform ∗ (2 ∗ h+ 2 ∗ b) ∗ l
else

Cformwork=cscaffold ∗ (b ∗ l) + cform ∗ (2 ∗ h+ b) ∗ l
end if

Ctotal=Ctotal+Cformwork+ Cconc+Csteel

End For

End Function

56

4.8.4 Flow Charts

This sub-section enlists �ow charts to be used in conjunction with the algorithms in the

previous sub-sections. Aside from auxiliary methods, all major algorithms discussed in

this chapter have been included in the �ow charts for simple convenience of cross-reference

with sections 4.8.1, 4.8.2, 4.8.3.

Figure 4.6: Main Program Flow Chart

57

Figure 4.7: Fitness Computation Flow Chart

58

Chapter 5

Results and Discussion

5.1 Introduction

In this chapter, the algorithms discussed previously are put to use on reference and exam-

ple problems and the results are presented and analyzed. Additionally, the chapter also

discusses about observations made from varying genetic operator parameters and their

e�ect on performance, convergence and accuracy of solution. The results of the program

are also compared for accuracy, with other research attempts and with traditional design

paradigms.

5.2 Models for Design Results Veri�cation

To verify the results obtained from the genetic based simulation, experiments that can

compare these results to values obtained from other methods need to be designed. These

experiments can take one or more of the following four approaches.

1. To compare the results with designed and built building frames.

2. To evaluate the complete search space of the problem. This approach is mainly size

dependent, and can only be used to get results for small problems since size of the

search space is bound to increase exponentially, causing computational explosion.

However, it is a foolproof method to get the global optimum for any optimization

problem.

3. To compare results with benchmarks developed in past research e�orts.

4. To evaluate the outputs obtained from other structural design software such as

SAP, ETABS or SAFE.

59

5.3 Veri�cation Environment

All tests in this chapter were done on a single computer with speci�cations given in table

5.1.

Feature Value

RAM 8GB
No. of Cores 4
No. of Threads 4

Hyper-threading Support Yes
Processor Frequency 3.2 GHz
Processor Architecture x64

OS Architecture x64

Table 5.1: Benchmark Computer Speci�cations

5.4 MODEL 1: Validation using a Benchmark

5.4.1 Problem Description

The work on optimizing building frames done by Vidosa et. al. [25] has been used to

compare the magnitude of results obtained by the procedures developed above. The

benchmark consists of a 5-story 2-bay frame and the procedure used for optimization was

simulated annealing. For the sake of comparison, all material properties and cost indices

were taken identical to this study. The values are given in tables 5.2 and 5.3

Material Properties Value

Cylindrical Strength of Concrete, fck, MPa 35
Young's Modulus of Concrete, Ec, GPa 34
Shear Modulus of Concrete, Gc, GPa 13.07

Poisson's Ratio, νc 0.3
Characteristic Yield Strength of Steel, fyk, MPa 500

Young's Modulus of Steel, Es, GPa 200
Shear Modulus of Steel, Gs, GPa 80

Poisson's Ratio, νs 0.25

Table 5.2: Material Parameters

The problem used a combined vertical load of 35kN/m at each �oor level (including

self-weight), and a wind load magnitude of 4.5kN/m applied horizontally on columns of

the left side(paper-wise). The simulation checked for ultimate limit states for �exure,

shear and instability as well as for service conditions satisfying de�ection based on the

Spanish code standards. The optimization was treated as a discrete optimization problem

with prede�ned reinforcement details and section sizing. A cost of ¿4458.08 has been

60

Cost Units Cost(¿)/Unit

B-500S (S-500) Reinforcing Steel * kg 1.3
HA-45 (C-35/45) Concrete* m3 112.13

Formwork for Beams m2 25.05
Formwork for Columns m2 22.75
Sca�olding for Beams m2 38.89

*Designations are based on the Spanish Design Codes

Table 5.3: Cost Parameters

reported after using simulated annealing. The simulation converged in 105000 iterations

and took 97 minutes to complete on a 3.2GHz processor. For comparison purposes, the

total cost was re-evaluated using the cost function de�ned in equation 4.4. A value of

¿4887.52 was obtained using the details described in the research paper (See Appendix

A).

5.4.2 Design Space

The total number of decision variables could be quanti�ed by as follows.

� Two variables are needed to describe the cross-sectional geometry of each member,

namely the width and height.

� Base �exural reinforcement(section 4.5) is provided throughout the member. This

variable assumes any of the available reinforcement diameters for the current sim-

ulation.

� Extra reinforcements(section 4.6) is provided at moment critical regions. If the

structure is a building, then beams have 3 such critical regions while columns are

assumed to have one region represented by the maximum moment magnitude. Ad-

ditionally, extra reinforcements are to be provided for the major as well as the minor

bending directions. 4 variables are needed for extra reinforcements of a section.

� Shear reinforcements(section 4.7) for beams are provided at three di�erent locations:

the left support region, the right support region and the mid-span region. Hence,

two variables1 are needed. Shear reinforcement for columns is provided using a

single spacing value and requires only one variable.

� Therefore, for a beam element, a total of 2+1+4*3+2=17 variables are required

to represent it. For a column element, 2+1+4+1=8 variables are needed. Thus, a

frame would need 17 ∗Nbeam + 8 ∗Ncolumn variables to represent it.

1The mid-span region is provided with the minimum reinforcement spacing, which is calculated from

0.08f0.5
ck ∗ bw/fyk. Thus, it doesn't need a variable to represent it.

61

For the frame in �gure 5.1, the total number of decision variables required are thus

17*10+8*15=290. By calculating the combinatorial possibilities of each possible solution,

a search space of about 10150 solutions is obtained.

Figure 5.1: Benchmark 2D Frame

5.4.3 Genetic Simulation

For comparison purposes, the frame shown in �gure 5.1 has been optimized by using the

genetic algorithm formulation made earlier. To get unbiased results, some simulation

features have been modi�ed in the following ways.

� While structural analysis is carried out by assuming 3D members, the design of these

members, however, proceeds in a two dimensional manner. Thus, both columns and

beams will be treated as uniaxial members. Additionally, shear forces in the minor

directions have been ignored.

� Flexural reinforcements to be generated by the simulator have also been restricted

to utilize uniaxial pro�les only.

5.4.4 Comparison

The genetic simulation was done for more than 40 runs using varied genetic parameter

combinations. Population sizes varying from 40 up to 300 and mutation probabilities

62

ranging from 1% up to 6% were used in the test runs. The best result was found using

a mutation probability of 3.2%, a crossover probability of 50% and a population size of

250, while convergence was achieved in 200 iterations. Each simulation took about 44

seconds to complete. The best individual had a �tness value of 18439.86 with a cost of

¿4644.8 (as compared to ¿4887.52 for SA)2 and a total penalty value of 2.97. These

results are close to those obtained in the research by Paya with an improvement of about

4.97%. Tables 5.4 and 5.5 give the complete design details obtained from the software. It

can be observed that the simulation program achieved these results within 0.55%3 of the

time taken for the SA simulation to complete. Furthermore, the GA simulation searched

through a total of 250*200=50,000 possible designs to arrive at a comparable solution with

the one obtained from SA methods(which searched through a total of 105,000 solutions)

reducing the extent of the navigated search space by 47.6%.

ID Breadth Height Basic R. Extra R. Shear R. εBIAX* Penalty

C-1 225 450 4 d 20 2 d 12 d8/ 200.0 99.53% 0
C-2 250 300 4 d 12 1 d 12 d8/ 200.0 99.75% 0
C-3 225 350 4 d 14 1 d 12 d8/ 200.0 96.89% 0.03
C-4 250 275 4 d 12 2 d 16 d8/ 200.0 94.90% 0.05
C-5 225 350 4 d 20 1 d 12 d8/ 200.0 94.92% 0.05
C-6 275 550 4 d 12 1 d 12 d8/ 200.0 98.66% 0.01
C-7 225 550 4 d 12 2 d 12 d8/ 200.0 95.82% 0.04
C-8 250 450 4 d 12 2 d 12 d8/ 200.0 93.66% 0.06
C-9 225 325 4 d 12 3 d 32 d8/ 200.0 99.79% 0
C-10 250 375 4 d 12 1 d 14 d8/ 200.0 99.17% 0.01
C-11 250 350 4 d 12 1 d 12 d8/ 200.0 91.58% 0.08
C-12 225 275 4 d 12 1 d 12 d8/ 200.0 99.18% 0.01
C-13 225 225 4 d 12 3 d 16 d8/ 200.0 95.32% 0.05
C-14 225 350 4 d 16 2 d 16 d8/ 200.0 94.44% 0.06
C-15 225 525 4 d 32 1 d 12 d8/ 200.0 91.81% 0.08

*See section 4.3

Table 5.4: Optimally Designed Columns for the GA simulation

2ETB113,268.09 as compared to ETB119,187.06, with ¿1.00=ETB24.386, received on March 20,2017
3Simulations from both research e�orts used 3.2GHz Intel processors without multi- or hyper-

threading, and since computational speed is independent of RAM, this percentage comparison can be

made without bias.

63

ID Breadth Height Base Extra Y. Shear L. Shear S. Shear R. εBIAX εV Y Penalty

B-1 225 275 4 d 24 1 d 12(TL), 2 d 14(TR), 1 d 12(B) d8/ 130 d8/ 200 d8/ 110 95.07% 84.62% 0.25
B-2 225 250 4 d 24 1 d 12(TL), 2 d 12(TR), 1 d 12(B) d8/ 130 d8/ 200 d8/ 130 97.63% 100.00% 0.07
B-3 250 300 4 d 20 1 d 12(TL), 1 d 12(TR), 1 d 12(B) d8/ 140 d8/ 200 d8/ 150 97.09% 100.00% 0.13
B-4 225 375 4 d 16 1 d 12(TL), 1 d 12(TR), 1 d 12(B) d8/ 130 d8/ 200 d8/ 100 98.59% 76.92% 0.2
B-5 225 300 4 d 16 2 d 12(TL), 1 d 12(TR), 2 d 12(B) d8/ 120 d8/ 200 d8/ 120 90.44% 92.31% 0.39
B-6 225 300 4 d 24 1 d 12(TL), 3 d 20(TR), 1 d 12(B) d8/ 120 d8/ 200 d8/ 130 96.30% 100.00% 0.16
B-7 275 400 4 d 24 1 d 12(TL), 2 d 24(TR), 1 d 12(B) d8/ 170 d8/ 200 d8/ 150 92.28% 88.24% 0.31
B-8 225 425 4 d 16 1 d 20(TL), 3 d 20(TR), 2 d 14(B) d8/ 130 d8/ 200 d8/ 110 97.53% 84.62% 0.18
B-9 300 350 4 d 20 1 d 12(TL), 1 d 24(TR), 1 d 12(B) d8/ 170 d8/ 200 d8/ 190 99.04% 100.00% 0.1
B-10 275 375 4 d 24 1 d 14(TL), 1 d 12(TR), 1 d 12(B) d8/ 160 d8/ 200 d8/ 150 82.56% 88.24% 0.64

Table 5.5: Optimally Designed Beams for the GA simulation

Figure 5.2: Reinforcement Con�guration for Beams

64

5.5 MODEL 2: Validation using ETABS

5.5.1 Problem Description

The second experiment involved comparing the results obtained from HELIX to that de-

signed by an industry standard structural design package. For this purpose, CSI ETABS

2015 x64(version 15.2.2) was used. The problem selected for comparison was a 2-story

1-bay 3D portal frame. All longitudinal dimensions are 3m in length. All model, material

data were assumed according to table 5.3 and 5.2.

Since this is a reinforced concrete structural design, ETABS needs prede�ned concrete

sections assigned to each member. However, if these section assignments were done by a

human, a great deal of bias would be introduced (Since the engineer would preferentially

choose the best/worst values for the section parameters based on experience). To avoid

this, the AUTO-SELECT feature of ETABS has been used. This entails de�ning all

cross-section geometries allowed in the analysis, and adding them to a section list in the

ETABS section de�nition dialog. By assigning the de�ned auto-select section list to all

members, initial sections for the purpose of analysis would be selected automatically by

the software. This also has an added advantage when it comes to design. Instead of just

designing/checking the reinforcement using prede�ned sections, the software would now

be directed to choose a section pro�le economically from the auto-select list and assign

it to the appropriate member, indirectly optimizing the frame. After such progress, the

computation of reinforcements could proceed in the usual way.

Figure 5.3: 2-story 1-bay Space Frame

65

5.5.2 Results and Comparison

The genetic algorithm simulations were done for 35 runs and an optimal solution was

found at a �tness value of 6921.22 and had a total cost of ¿1870.6. These results

were obtained after 200 iterations, using a population size of 200, mutation probabil-

ity of 7% and a crossover probability 50%. The total number of solutions evaluated were

200*200=40000, and each simulation took 27 seconds to complete. Details of the result

are given in tables 5.6 and 5.8.

The ETABS auto-selective design had a calculated cost of ¿1871.574. The time

benchmarks were not taken, since there were pauses between iteration con�rmations, in

addition to memory leaks that caused the software to freeze frequently. As it is evident,

the results obtained by both software are close with an improvement of about 0.06%.

This is so because ETABS uses relatively simple design evaluation mechanisms, that do

not give considerations to the miscellaneous restraints (such as sizing, proportions and

member e�ciency) imposed in the previous chapter. Thus, the member designs obtained

are highly economical unto themselves and do not consider the frame as a unit. Had it

been so, much higher costs would have been obtained.

4ETB45,616.45 for GA as compared to ETB45,640.11 for ETABS

66

ID Breadth Height Base Extra Y. Shear L. Shear S. Shear R. εBIAX εV Y Penalty

B-1 225 225 4 d12 1 d 12(TL), 2 d 14(TR), 1 d 12(B) d8/ 100.0 d8/ 200.0 d8/ 120.0 94.72% 92.31% 0.36
B-2 275 300 4 d12 1 d 12(TL) , 2 d 12(TR) , 1 d 12(B) d8/ 170.0 d8/ 200.0 d8/ 170.0 70.69% 100.00% 0.88
B-3 225 225 4 d12 1 d 12(TL) , 0 d 0(TR) , 1 d 12(B) d8/ 130.0 d8/ 200.0 d8/ 120.0 96.70% 92.31% 0.15
B-4 225 225 4 d12 1 d 12(TL) , 1 d 12(TR) , 1 d 12(B) d8/ 130.0 d8/ 200.0 d8/ 110.0 84.59% 84.62% 0.56
B-5 225 225 4 d12 1 d 12(TL) , 1 d 14(TR) , 1 d 12(B) d8/ 130.0 d8/ 200.0 d8/ 130.0 97.06% 100.00% 0.09
B-6 225 225 4 d12 1 d 12(TL) , 1 d 12(TR) , 1 d 12(B) d8/ 110.0 d8/ 200.0 d8/ 120.0 88.69% 92.31% 0.49
B-7 225 225 4 d12 1 d 12(TL) , 1 d 12(TR) , 1 d 12(B) d8/ 130.0 d8/ 200.0 d8/ 100.0 95.99% 76.92% 0.27
B-8 225 225 4 d12 1 d 12(TL) , 1 d 12(TR) , 1 d 12(B) d8/ 130.0 d8/ 200.0 d8/ 130.0 86.56% 100.00% 0.4

Table 5.6: Optimally Designed Beams for the GA simulation

ID H B
Top Bottom Shear

ID H B Flex. Shear
Left Mid Right Left Mid Right Left Mid Right

B-1 225 225 369 371 369 369 371 369 298 212 298 C-1 225 225 506.0 638.94
B-2 225 225 369 371 369 369 371 369 298 298 298 C-2 225 225 506.0 638.94
B-3 225 225 369 371 369 369 371 369 298 212 298 C-3 225 225 506.0 638.94
B-4 225 225 369 371 369 369 371 369 298 212 298 C-4 225 225 506.0 638.94
B-5 225 225 369 371 369 369 371 369 298 298 298 C-5 225 225 506.0 638.94
B-6 225 225 369 371 369 369 371 369 298 212 298 C-6 225 225 506.0 638.94
B-7 225 225 369 371 369 369 371 369 298 212 298 C-7 225 225 506.0 638.94
B-8 225 225 369 371 369 369 371 369 298 212 298 C-8 225 225 506.0 638.94

Table 5.7: ETABS Design Results

67

ID Breadth Height Basic R. Extra R. Shear R. εBIAX Penalty

C-1 250 275 4 d12 1 d 12 d8/ 200.0 100.00% 0
C-2 225 225 4 d14 1 d 12 d8/ 200.0 100.00% 0
C-3 225 225 4 d12 1 d 12 d8/ 200.0 100.00% 0
C-4 250 275 4 d20 1 d 12 d8/ 200.0 100.00% 0
C-5 225 250 4 d12 1 d 12 d8/ 200.0 100.00% 0
C-6 225 225 4 d12 1 d 12 d8/ 200.0 100.00% 0
C-7 225 225 4 d12 1 d 12 d8/ 200.0 100.00% 0
C-8 325 350 4 d20 1 d 12 d8/ 200.0 100.00% 0

Table 5.8: Optimally Designed Columns for the GA simulation

5.6 Summary of Results

The following table summarizes the data and results obtained from the models developed

in previous sections.

Parameters Model 1 Model 2

No. of Members 25 18
Mutation Probability 3.2% 7%
Crossover Probability 50% 50%

Population Size 250 200
Number of Iterations 200 200
Optimal Fitness Value 18439.86 6921.22
Optimal Cost(GA) ¿4644.8 ¿1870.6

Optimal Cost(ETABS) � ¿1871.57
Optimal Cost(SA) ¿4887.5 �
Cost Di�erence 4.97% 0.06%

Table 5.9: Summary of Models 1 and 2

5.7 E�ect of GA Parameters

As the operation of genetic algorithms by itself is stochastic and unpredictable, it is im-

portant to study the e�ect of simulation parameters on speed, performance, convergence

and most importantly, the quality of solutions. The parameters tested were population

size, number of iterations and mutation probability. By keeping all variables constant

except for the target variable, its e�ect can be readily determined. The constant values

the other variables can assume would be values for the best simulated results attained in

the previous sections.

The 5-story by 2-bay frame used in the section 5.4 has been used here and was selected

so as to have a comparable benchmark. To guarantee comprehensible results, each trial

68

Figure 5.4: Population Size vs. Fitness

simulation has been done for a total of 5 runs. Loading con�gurations as well as material

and cost parameters used in previous simulations have not been changed.

5.7.1 E�ect of Population Size

The population is a group of individuals that are evaluated for �tness for a certain itera-

tion. The size of a population for a given simulation determines the degree of variability

between evaluated solutions. Additionally, genetic operators like crossover and selection

help diversify types of individuals available and create highly �t solutions as the evolution

proceeds further. As the evolution reaches the last stages however, most of the population

would be saturated with similar potentially optimum individuals. In this case, the only

way to ensure the creation of di�erent individuals is through mutation.

Hence, given a constant mutation percentage, increasing population sizes tend to

increase entropy of the simulation. This can be demonstrated by doing test simulations

for variable population sizes while keeping other variables constant.

As seen from the table and plots, better results can be achieved by selecting larger

population sizes. This is especially true for large sized problems with several design

variables. Three points can be observed here:

1. Larger population sizes allow for a su�ciently large sector of the search space to be

evaluated.

2. Such sizes also increase variability between solutions and hence help avoid prema-

ture convergence to local optima. Consequently, signi�cantly large iteration counts

are required for such simulations to converge.

3. Though optimum cost values can be obtained at small population sizes, these cost

values appear as a result of violated constraints along with a higher penalty value.

69

Ultimately, the total �tness value would the deciding factor, to which these low-cost

high-penalty individuals would attain large �tness values.

Population Size Pmutation Pcrossover Least Cost (¿) Best Fitness

40 0.032 0.5 4926.08 28226.44
90 0.032 0.5 5097.21 25592.04
100 0.032 0.5 4805.72 26287.29
120 0.032 0.5 4576.89 23635.51
150 0.032 0.5 4822.10 20359.45
170 0.032 0.5 4668.30 21472.80
200 0.032 0.5 4741.00 20281.998
250 0.032 0.5 4658.53 18439.86

Table 5.10: Simulation results for varying Population Size

5.7.2 E�ect of Mutation

Mutation is a highly stochastic process that might take the iteration towards a lo-

cal/global optimum or sway it away in another random direction. Mutation directly

a�ects the composition of a population by injecting random genes at random locations

at random times. This property helps in diversifying the population composition and

allows individuals to have more diverse genetic material to work with. Consequently, the

stochasticity of mutation helps the evolution avoid being stuck at local optima, increasing

entropy of the system, which indirectly improves the chances of superior solutions to be

formed. The amount of mutation introduced into a system should however be limited, as

improper application could result in several problems. A large mutation probability can

inject too much chaos into the variability of the population, greatly reducing the proba-

bility of �nding an acceptable optima as well as causing divergence in extreme cases. On

the contrary, a very low probability value won't have enough force to drive the evolution

achieve enough diversity. Thus, it is highly likely that a premature convergence at a

local optimum would occur. In summary, small mutation percentages can bene�t the

evolutionary process but misuse can result in problematic or even senseless results. As

seen from the data summary(�gure 5.5 and table 5.11), the larger the mutation value

gets the larger the �tness value attained, resulting in unusable results, even though small

costs were obtained for large mutations.

70

Figure 5.5: Mutation Probability vs. Fitness

Population Size Pmutation Pcrossover Least Cost (¿) Best Fitness

250 0.01 0.5 5215.18 19139.7106
250 0.05 0.5 4503.52 29948.408
250 0.07 0.5 4488.64 42327.8752
250 0.09 0.5 4260.29 49585.51531
250 0.1 0.5 4252.51 46947.7104
250 0.2 0.5 4864.12 132547.27
250 0.3 0.5 5650.93 159977.8283

Table 5.11: Simulation results for varying mutation probabilities

5.7.3 E�ect of Evolution Period (Generation Size)

For a particular simulation, as the number of generations speci�ed increases, the probabil-

ity of convergence also increases. Once convergence is achieved however, the simulation

needs to be stopped. If it is allowed to continue, the optimizer will start to generate

individuals with deviant genes which might lead to divergent behavior or to signi�cant

modi�cations of the currently optimal individual. Therefore, the number of iterations

needed for each simulation should be selected carefully. This should also be done with

other genetic parameters in mind. For example, higher values for the mutation probabil-

ity should be accompanied with lower values of generations. As mutation always drives

the evolutionary process towards instability, such high mutation percentages increase the

probability for divergence at later stages of the iteration. Higher population sizes dic-

tate higher number of iterations be used, since such populations tend to have a lot of

variability in them, causing instability for a large portion of the evolution period.

For large problems, that is, for structures with large number of elements, the selection

71

of these parameters needs special attention because computation time will start to have

a signi�cant e�ect. Additionally, the size of the search space would also be large enough

that convergence to a global optima would be unlikely. Through several attempts, large

population sizes with high mutation probabilities and longer evolution spans have been

observed to achieve highly varied populations as well as faster convergence rates and

acceptable local optima solutions.

5.8 Performance and Pro�ling

This section quantitatively discusses the computational complexity of genetic algorithms

when applied to structural optimization of concrete frames. It is the authors believe

that identifying and quantifying the time and memory overheads introduced by each

procedure can be key in changing key aspects of the algorithm's construction towards a

more e�cient variant.

To pro�le the algorithm, regular portal frames of di�erent sizes have been optimized

and the result time and memory consumption were recorded. Apart from the total degrees

of freedom available, the total number of non-zero entries(NNZ) in the structure sti�ness

matrix is a good indicator of the size of the problem. Table5.12 gives a summary of

the pro�ling results obtained for several size of frames optimized using the same genetic

parameters.

Frame Size
DOFs NNZ TIteration TTotal* RAM(MB)

Nstory Nbays,X Nbays,Y

1 1 1 48 152 0.0063** 4 423.4
2 2 2 162 984 0.045 16 460.5
3 3 3 384 2944 0.09 49 539
5 5 5 1296 12120 3 299 551
7 7 7 3072 31416 15 1860 612
10 10 10 7986 87392 136 12300 1019

*Pmutation = 0.05,Pcrossover = 0.05, Npopulation = 120, Niteration = 90
**All times were measured in Seconds.

Table 5.12: Simulation time for di�erent frame sizes

5.8.1 Computation Time

It should not come as a surprise that GA simulation times increase as the size of the

problem increases. The size of a problem can be seen from two di�erent perspectives.

The �rst involves the topology of the structure to be optimized. Estimating the total

time vs. the size of the problem for increasing complexity in topology is problematic.

This happens mainly because of the variability in the time taken for structural analysis.

Structural analysis takes 90-95% of the total time consumed for any particular simulation,

72

with the rest 5-10% being mainly distributed between computation of internal actions and

design check of members among other procedures. Thus, structural analysis dominates

the time variation displayed in such cases.

The second involves the total number of assessed solutions. In this case however, the

amount of time taken could be easily quanti�ed as:

Ttotal = Titeration ∗Niteration (5.1)

where Titeration is total time elapsed per iteration given as:

Titeration = Npopulation ∗ Tindividual (5.2)

and Tindividual is the total time taken to analyze and evaluate a single individual from

a certain population. Table 5.12 gives a highlight of how the problem size exponentially

increases the simulation time. To minimize bias, all simulations were made using the same

genetic parameters(given in the table). It should be noted that these time measurements

were taken from an intrusive in-line pro�ler and are generally much larger in magnitude

than the time taken for non-pro�led simulations.

Figure 5.6: Total Time Vs. NNZ

5.8.2 Memory Usage

If the program is applied for large problems, certain computational resources become

increasingly critical. One such resource is available RAM. If the total utilized RAM

exceeds the total maximum allocated RAM for the JVM, the program will cease to operate

and crash. This can be avoided by manually increasing the available JVM RAM(which in

turn is dependent on total RAM installed in the computer) using the respective command

line routines in operating systems such as Linux and Windows. Table 5.12 shows memory

usage with respect to problem size. It is evident that large problems take up signi�cant

73

portions of the JVM RAM. This is mainly due to the exponentially increasing number of

non-zero entries in the SSM and its reduced variant. Other types of data also increase in

size such as interaction diagram coordinate data, internal action coordinate data.

Figure 5.7: Memory Usage Vs. NNZ

74

Chapter 6

Conclusions

6.1 General

The research work has tried to develop a methodology for achieving local and global

optima for two and three dimensional concrete frames with regards to cost and strength.

Genetic algorithms have been used for the optimization, while the design procedures were

based on those described in Eurocode-2. To implement and test the method, a software

has been written for custom analysis, design and optimization. Two benchmark frames

have been used to verify the results obtained from the developed method. From the

research, it has been observed that genetic algorithms provide an e�cient way to navigate

through the design search space while compromising for cost and imposed constraints

simultaneously.

6.2 Achievements and Observations

6.2.1 Achievements

The research work has achieved the following major tasks:

1. A design method for the cost optimization of two and three dimensional frames

using genetic algorithms has been developed. The GA method proves to be a

reliable design alternative in contrast to traditional trial-and-error methods. In

addition, comparisons with other non-heuristic methods have shown that genetic

algorithms prove to be superior in speed and e�ciency at navigating the design

search space. In addition to providing constructible design solutions, the developed

algorithm has taken shear and torsion e�ects, reinforcement schedules as well as

sizing constraints into consideration.

2. The choice of genetic parameters has also been evaluated for test problems from

which important patterns and observations have been made. In general, the choice

75

of these parameters is problem dependent, and should consider the size and com-

plexity of the structural topology, nature of the objective function and computa-

tional time. For small problems, it was observed that median values for mutation

probabilities and moderately large population sizes give acceptable results, whereas

large population sizes coupled with small mutation probabilities have been seen to

give stable simulations for large problems.

3. The computational complexity of the procedure has also been quanti�ed using pro-

�ling techniques. It was observed that for small to moderately large problems, the

procedure could be used to achieve local as well as global optimum solutions. For

large problems, achieving global optima is unlikely as a consequence of an expo-

nentially larger search space. However, the results obtained from such simulations

could be used as starting iteration points for non-heuristic mathematical methods

or could be coupled with other heuristic methods to achieve better results. One

can also conclude that studying the space and time complexity of these algorithms

sheds light on which procedures take up the most resource.

4. By using appropriate algorithms, the computation time and memory for the opti-

mization procedure could be greatly reduced. It has been observed that the bulk

of memory and computation time is consumed by structural analysis and the rest

by the evaluation of the design algorithms. To remedy this, utilizing more e�cient

storage and matrix processing schemes has proved to increase the e�ciency of the

optimization procedure. This aspect challenges the traditional notion that heuristic

methods are computationally ine�cient.

5. Value encoding of individuals has proved to be well suited for structural optimiza-

tion problems both in memory management and decode-encode schemes. The ease

of changing key-value pairs also makes it a valuable contender to other encoding

schemes such as binary encoding. The use of uniform crossover (in contrast to sin-

gle point crossover) has achieved stronger variance between solutions, helping the

algorithm e�ciently navigate several regions of the search space.

6. Though the incorporation of shear design and variable reinforcement schedules has

exponentially increased the size of the design space, it has allowed for economic

estimations of cost to be feasible and constructible designs be achieved.

6.2.2 Observations

Two veri�cation models have been constructed to test the viability developed algorithms.

The �rst involved a comparison between the GA simulation and results from previous

tests done using simulated annealing while the second was a direct cost comparison with

76

results obtained from ETABS. Comparisons show an improvement in cost with savings

of up to 5% when using the genetic algorithm based optimization.

A second series of tests involved determining which combination of genetic parameters

resulted in optimal results and achieved computational e�ciency through swift conver-

gence. Low mutation probabilities ranging from 2% up to 7% and population sizes ranging

from 100 to 250 have been observed to achieve low �tness-low cost results. High values

for the number of iterations, with a maximum of 200-250 have also been observed to

attain stable and realistic results.

The last series of tests involved studying the computational complexity of the algo-

rithm. Tests for memory consumption and overall computational times indicate that

when the size of the structure increases, the total amount of RAM utilized and time

taken increases exponentially. The consumption of 90% of these resources can be at-

tributed to the structural analysis algorithm, while the rest could be divided up between

determination of design actions and construction of interaction coordinates.

6.3 Future Work

The author of this research believes that the procedures discussed in this work could

be improved and extended far beyond what they are now. The subsections that follow

highlight some of these improvements.

6.3.1 Basics

Many of the restraints discussed in section 1.4 could be removed by any future researcher,

to enhance the capabilities of the current platform. Traditional tools and features could

also be incorporated into the software, such as loading options(loading patterns, case-

based loading), stress visualizers, solver options, advanced material and section de�nition

tools and many others. Important features such as dynamic and non-linear analyses

can also be added with e�ort. Support could also be extended for optimizing using

other materials such as structural steel, timber and composite materials. Cross-sectional

geometries other than rectangles could also be added with relative ease.

6.3.2 Multi-objective Optimization

The objective that has been considered in this research was cost. However, with a few

modi�cations of the GA �tness formulation, other objectives such as stress, weight and

displacement could be imposed along with cost.

77

6.3.3 Structural Analysis

In this work, the sti�ness method has been utilized for performing structural analysis.

While this allows for a major performance boost, it follows that only 1D frame or truss

elements can be processed with it. To incorporate a more general analysis procedure

for handling 2D and 3D elements for the analyses of slabs, foundations and other types

of structures, the �nite element method is a good candidate. The major advantage in

integrating FEM is that, since the sti�ness solver is identical as to that used in the

sti�ness method, only the pre-processor(mesh generator, load vector analyzer...) and

post-processor(Visualizer, Data Interpreter...) components need to be implemented. It

is also worth to note that the superior performance of the solver implemented in this

project can be harnessed for future endeavors.

On the �ip side, structural reanalysis could also be taken as an additional measure

for ensuring structures with similar cross-sections only get reanalyzed instead of getting

fully analyzed, eliminating most of the time consuming procedures used in the structural

analysis program.

6.3.4 Parallel Computing

Due to time constraints, HELIX was developed as a single-threaded application(i.e. only

a single processor core is utilized for all its computational needs). However, with some

modi�cations to the genetic optimization module, it can be made to utilize all available

computing resources present in a PC/Workstation. This can drastically increase the speed

of the simulation in that, instead of one instance of the application, n instances (for n

available processor cores) of the simulation would be running simultaneously, cutting the

total running time by a factor of n.

The daring researcher could also cook up a version of the algorithms that could run

on one/multiple Graphics Processing Units(GPUs) instead of regular CPUs. This could

allow for the program to run on hundreds of threads simultaneously, making it a lot faster

than it currently is.

6.3.5 Custom Constraint Formulation

Currently, only hard-coded constraints and objective functions can be used by the opti-

mizer to achieve results. If a change to these functions was desired, then the appropriate

portion of the code would need to be changed and the source code recompiled. This is

a grave inconvenience to any future user who wishes to make said changes but isn't in

possession of the complete source code for HELIX.

Thus, the author is making preparations for a feature to be augmented in the current

software architecture, which allows for the complete optimization formulation to be stated

78

symbolically and explicitly, and automatically be parsed and used by the optimization

package. This would consequently require an appropriate symbolic manipulation library

and an embedded language for interfacing with it.

79

Appendix A

Cost Evaluation for Benchmark

The following tables summarize the cost evaluation of the 2 bay by 5 story frame used

in the research by Vidosa et. al. The cost computations are based on equations 4.4, 4.5,

4.6 and 4.7.

A.1 Volume of Concrete

Columns A B Area Volume Beams B H Area Volume

C-1 0.25 0.25 2.25 0.1875 B-1 0.48 0.2 4.4 0.48
C-2 0.25 0.25 2.25 0.1875 B-2 0.5 0.2 4.5 0.5
C-3 0.25 0.25 2.25 0.1875 B-3 0.5 0.2 4.5 0.5
C-4 0.25 0.25 2.25 0.1875 B-4 0.51 0.21 4.65 0.5355
C-5 0.25 0.25 2.25 0.1875 B-5 0.54 0.22 4.9 0.594
C-6 0.25 0.45 3.45 0.3375 B-6 0.48 0.2 4.4 0.48
C-7 0.25 0.4 3.15 0.3 B-7 0.5 0.2 4.5 0.5
C-8 0.25 0.4 3.15 0.3 B-8 0.5 0.2 4.5 0.5
C-9 0.25 0.35 2.85 0.2625 B-9 0.51 0.21 4.65 0.5355
C-10 0.25 0.3 2.55 0.225 B-10 0.54 0.22 4.9 0.594
C-11 0.25 0.25 2.25 0.1875 Beam Total 3.30
C-12 0.25 0.25 2.25 0.1875
C-13 0.25 0.25 2.25 0.1875
C-14 0.25 0.25 2.25 0.1875
C-15 0.25 0.25 2.25 0.1875

Column Total 5.219 Total =3.30+5.219=8.519 m3

Table A.1: Total Concrete Volume

80

A.2 Quantity of Reinforcement Steel

Top Reinforcement Bottom Reinforcement
Beam ID Base φ Volume* Left φ Volume Right φ Volume Base φ Volume Extra φ Volume

B-1 2 20 3141.6 - - 0.0 1 25 490.9 3 12 1696.5 2 10 628.3
B-2 2 16 2010.6 1 10 78.5 2 20 628.3 3 12 1696.5 2 10 628.3
B-3 2 10 785.4 1 20 314.2 2 25 981.7 2 12 1131.0 1 20 1256.6
B-4 2 10 785.4 2 12 226.2 3 16 603.2 4 10 1570.8 1 16 804.2
B-5 2 10 785.4 1 16 201.1 2 25 981.7 4 10 1570.8 2 10 628.3
B-6 2 20 3141.6 - - 0.0 1 25 490.9 3 12 1696.5 2 10 628.3
B-7 2 16 2010.6 1 10 78.5 2 20 628.3 3 12 1696.5 2 10 628.3
B-8 2 10 785.4 1 20 314.2 2 25 981.7 2 12 1131.0 1 20 1256.6
B-9 2 10 785.4 2 12 226.2 3 16 603.2 4 10 1570.8 1 16 804.2
B-10 2 10 785.4 1 16 201.1 2 25 981.7 4 10 1570.8 2 10 628.3

Total 15016.81 Total 1639.91 Total 7371.75 Total 15331.0 Total 7891.7
* Volume is in mm2 −m

Table A.2: Flexural Reinforcement Schedule(Beams)

81

Column ID Base φ Volume Ext. A φ Area Ext. B φ Area Links Volume

C-1 4 12 1357.2 21 593.8
C-2 4 16 2412.7 21 593.8
C-3 4 12 1357.2 2 12 226.2 21 593.8
C-4 4 12 1357.2 2 12 226.2 21 593.8
C-5 4 16 2412.7 21 593.8
C-6 4 12 1357.2 2 12 226.2 21 593.8
C-7 4 12 1357.2 21 593.8
C-8 4 12 1357.2 21 593.8
C-9 4 12 1357.2 21 593.8
C-10 4 12 1357.2 21 593.8
C-11 4 12 1357.2 21 593.8
C-12 4 16 2412.7 21 593.8
C-13 4 12 1357.2 2 12 226.2 21 593.8
C-14 4 12 1357.2 2 12 226.2 21 593.8
C-15 4 16 2412.7 21 593.8

Total 24579.8 Total 452.39 Total 678.59 Total 8906.42

Table A.3: Reinforcement Schedule(Columns)

82

Beam ID φ Left Sp. Volume φ Mid Sp. Volume φ Right Sp. Volume

B-1 6 0.1 452.4 8 0.25 351.9 8 0.3 301.6
B-2 8 0.2 427.3 8 0.25 351.9 8 0.3 301.6
B-3 10 0.3 471.2 6 0.15 311.0 6 0.15 311.0
B-4 8 0.2 427.3 6 0.15 311.0 8 0.3 301.6
B-5 6 0.15 311.0 8 0.3 301.6 8 0.3 301.6
B-6 6 0.1 452.4 8 0.25 351.9 8 0.3 301.6
B-7 8 0.2 427.3 8 0.25 351.9 8 0.3 301.6
B-8 10 0.3 471.2 6 0.15 311.0 6 0.15 311.0
B-9 8 0.2 427.3 6 0.15 311.0 8 0.3 301.6
B-10 6 0.15 311.0 8 0.3 301.6 8 0.3 301.6

Total 4178.3 Total 3254.7 Total 3034.8

Table A.4: Shear Reinforcement Schedule(Beams)

A.3 Formwork and Sca�olding

Column ID B H Aformwork Beam ID B H Aformwork Ascaffold

C-1 0.25 0.25 2.25 B-1 0.48 0.2 4.4 2.4
C-2 0.25 0.25 2.25 B-2 0.5 0.2 4.5 2.5
C-3 0.25 0.25 2.25 B-3 0.5 0.2 4.5 2.5
C-4 0.25 0.25 2.25 B-4 0.51 0.21 4.65 2.55
C-5 0.25 0.25 2.25 B-5 0.54 0.22 4.9 2.7
C-6 0.25 0.45 3.45 B-6 0.48 0.2 4.4 2.4
C-7 0.25 0.4 3.15 B-7 0.5 0.2 4.5 2.5
C-8 0.25 0.4 3.15 B-8 0.5 0.2 4.5 2.5
C-9 0.25 0.35 2.85 B-9 0.51 0.21 4.65 2.55
C-10 0.25 0.3 2.55 B-10 0.54 0.22 4.9 2.7
C-11 0.25 0.25 2.25 Total 45.9 25.3
C-12 0.25 0.25 2.25
C-13 0.25 0.25 2.25
C-14 0.25 0.25 2.25
C-15 0.25 0.25 2.25

Total 37.65

Table A.5: Formwork and Sca�olding

83

A.4 Cost summary

Item Unit Quantity Cost/Unit Total Cost(¿)

Concrete m3 8.519 112.1 954.98
Reinforcing Steel m3 0.09233 10205 942.29
Beam Formwork m2 45.9 25.05 1149.80
Beam Sca�olding m2 25.3 38.89 983.92
Column Formwork m2 37.65 22.75 856.54

Total 4887.52

Table A.6: Cost Summary

84

Bibliography

[1] Aga, A. A. A., & Adam, F. M. (2015), Design Optimization of Reinforced Concrete

Frames, 74�83.

[2] Bhowmik, R. (2008), Building Design Optimization Using Sequential Linear Pro-

gramming. Journal of Computers, 58�64.

[3] Beeby, A. W., & Narayanan, R. S. (2009), Designers' guide to eurocode 2: Design

of Concrete Structures.

[4] Bekiro�glu, S., Dede, T., & Ayvaz, Y. (2009). Implementation of di�erent encoding

types on structural optimization based on adaptive genetic algorithm. Finite Ele-

ments in Analysis and Design, 826�835.

[5] European Committee For Standardization, (2004), Eurocode 2: Design of concrete

structures - Part 1-1: General rules and rules for buildings, Brussels, Belgium.

[6] European Committee For Standardization, (2004), Eurocode 2: Design of concrete

structures - Part 1-2: General rules - Structural �re design, Brussels, Belgium.

[7] Camp, C., Pezeshk, S., Cao, G. (1998), Optimized Design of Two-Dimensional Struc-

tures Using a Genetic Algorithm, Journal of Structural Engineering,Vol. 13, 551�559.

[8] Christensen, P. W., & Klarbring, A. (2009), An Introduction to Structural Opti-

mization, Springer,Linkoping,Sweden.

[9] Dede, T., Ayvaz, Y., & Bekiroglu, S. (2003), Optimization of Truss Structures using

Value Encoding in a Genetic Algorithm, 1�15.

[10] Fang, X.(2007), Engineering design using genetic algorithms.

[11] Ga�ney, J., Green, D., & Pearce, C. (2010), Binary Versus Real Coding for Genetic

Algorithms: A False Dichotomy?, ANZIAM Journal, Vol. 51, 347�359.

[12] Goldberg, D. (1989), Genetic algorithms in search, optimization, and machine learn-

ing (1st ed.). , Addison-Wesley Publishing Inc., Alabama

85

[13] Gere, J., Weaver, W.(1980), Matrix Analysis of Framed Structures, 2nd ed., Van

Nostrand Reinhold Company Inc., Wokingham, Berkshire

[14] Gundersen, G. (2002), The Use of Java Sparse Arrays in Matrix Computation, Mas-

ters Thesis, University of Bergen, Norway

[15] Guerra, A., & Kiousis, P. D. (2006), Design Optimization of Reinforced Concrete

Structures. Computers and Concrete, 313�334.

[16] Holland, J., Langton, C., Wilson, S. (1992), Adaptation in Natural and Arti�cial

Systems: An Introductory Analysis with Applications to Biology, Control, and Ar-

ti�cial Intelligence,The MIT Press,Cambridge, Massachusetts.

[17] Kaveh, A., & Jahanshahi, M. (2008). Plastic Limit analysis of Frames using Ant

Colony Systems, 1152�1163.

[18] Koza, J. R. (1998). Genetic Programming: On the Programming of Computers by

Means of Natural Selection (6th ed.). The MIT Press, Cambridge, Massachusetts.

[19] Kuhn, H. W., & Tucker, A. (1951), Nonlinear Programming, Proceedings of the

Second Symposium on Mathematical Statistics and Probability, 481�492.

[20] Lagaros, N. D., Papadrakakis, M., & Kokossalakis, G. (2002), Structural Optimiza-

tion using Evolutionary Algorithms, 571�589.

[21] Mahfouz, S. (1999), Design Optimization of Structural Steelwork: Design optimiza-

tion of steel frame structures according to the British codes of practice using a genetic

algorithm, University of Bradford.

[22] Mosley, B., Bungey, J., Hulse, R. (2007), Reinforced Concrete Design to Eurocode

2, Palgrave Macmillan Publishing, Houndmills, Hampshire.

[23] Patnaik, S. N., Guptill, J. D., & Berke, L. (1993), NASA Technical Report: Merits

and Limitations of Optimality Criteria Method for Structural Optimization,2�7.

[24] Perea, C., Baitsch, M., Gonzalez-Vidosa, F. H. (1997), Optimization of Reinforced

Concrete Frame Bridges by Parallel Genetic and Memetic Algorithms.

[25] González-Vidosa, F., Yepes, V., Alcalá, J. , Carrera, M., Perea, C. , Payá-Zaforteza

I. (2008) , Optimization of Reinforced Concrete Structures by Simulated Annealing,

School of Civil Engineering, Universidad Politécnica Valencia, Spain

[26] Rajeev, S., & Krishnamoorthy, C. S. (1998), Genetic Algorithm-based Methodology

for Design Optimization of Reinforced Concrete Frames. Computer-Aided Civil and

Infrastructure Engineering, Vol. 13, 63�74.

86

[27] Reynolds, G. (2009), Genetic Optimisation of Structural Systems., University of

Glasgow.

[28] Torregosa, R., & Kanok-Nukulchai, W. (2002). Weight optimization of steel frames

using genetic algorithms. Advances in Structural Engineering, 99�111.

[29] Wang, B. P., & Chen, J. L. (1996). Application of Genetic Algorithm for the Support

Location Optimization of Beams. Computers and Structures, 797�800.

[30] Yang, X.-S. (2010). Engineering Optimization (1st ed.). Wiley & Sons, Inc, Cam-

bridge, United Kingdom.

[31] Yousif, S. T. (2013). Optimum Cost Design of Reinforced Concrete Columns Using

Genetic Algorithms. Al-Ra�dain Engineering, Vol.22.,123-141.

87

