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ABSTRACT 

    
Metal forming is one of the most common metal manufacturing processes used, which is noted for 

its minimum waste and dimensional precision, and usually improves the mechanical properties of 

the formed part. Metal forming process is a process that causes changes in the shape of solid metal 

particles via plastic (permanent) deformations. Hence, knowledge of metallurgy and mechanics 

combine to provide an insight to its behavior. Its applications are wide in the manufacturing of 

machinery, automotive, aerospace and other hardware components. 

 

The material is modeled as a hyperelastic, viscoplastic solid. A constitutive model with a single 

scalar variable representing the isotropic resistance to the plastic flow is employed. Many finite 

elements exhibit the so-called ‘volumetric locking’ in the analysis of incompressible or quasi-

incompressible problems in metal forming. Nearly incompressible plasticity in metal forming 

displays severe volume locking problems when low order standard nodal-based displacement 

methods are used. This means that after deformation each small portion of the medium has the 

volume as before the deformation.  

 

In this thesis a finite element formulation for a frictionless large deformation contact problem in 

metal forming is presented. It is based on the formulation which introduces the contact constraints 

via Lagrange multipliers. The stabilized formulation which allows the use of low-order 

interpolation functions for both displacement and the pressure field is applied to eliminate 

volumetric locking effects and to circumvent numerical instabilities. Starting from the variational 

formulation of the constitutive and the kinematic problems, the linearization of the principle of 

virtual work relation, the contact potential energy, and finally the matrix formulation of the 

method is derived. To improve the convergence property of the method an augmentation step was 

included. Then the formulation is converted to a computer code written using Matlab. Finally the 

program is used to solve a benchmark example.  
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CHAPTER ONE 

    
 

1. INTRODUCTION 
 

The work that will be presented in this thesis consists two of interconnected parts: the first 

deals with the theoretical background related to the mathematical formulation of deformation and 

pressure fields in metal forming process considering incompressibility effects; and in the second 

part numerical computer analysis of the forming process using the finite element method is dealt 

with. 

 

The outline of this thesis is the following. First, a brief introduction of the metal forming problem 

is given. Then literature survey is presented in the second chapter. In chapters three and four, 

problem formulation in nonlinear solid mechanics which serves as the background to the finite 

element formulation of metal forming is discussed. In chapter five, the metal forming problem is 

solved using the finite element method. In chapter six an example and an application of the 

method is presented. And finally, in chapter seven, conclusions and recommendations for 

subsequent research are discussed. 

 

1.1 Background 

 

Metal forming is one of the most common metal manufacturing processes used. It is a widely 

used manufacturing process noted for its minimum waste and dimensional precision, and it 

usually improves the mechanical properties of the formed part. Starting with the work piece, 

knowledge of metallurgy and mechanics combine to provide an insight to its behavior. Metal 

forming process is a process that causes changes in the shape of metal particles via plastic 

(permanent) deformations.  

 

Its applications are wide in the manufacturing of machineries, automotive, aerospace and other 

hardware components. Some of the characteristics of metal forming processes are: (1) the work 

piece is metal or a part fabricated from metal; (2) the surfaces of the deforming material and of 
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the tools are in contact; (3) the deformation usually causes significant changes in shape, but not in 

total volume of the material; (4) in some cases, the magnitude of permanent plastic and 

recoverable elastic deformation is comparable, therefore elastic recovery or spring back may be 

significant(especially in sheet metal forming process). 

 

The high cost of forming critical components can be significantly reduced with the development 

of mathematically and physically sound computational methods for process design and control. 

The complicated nature of polycrystalline materials and the induced changes in their 

microstructure during processing are among the main challenges that one must consider while 

developing means for the design and control of bulk forming processes that result in products of 

desired shape and material state. A very important concern in metal forming process is the design 

of the process in such a way that a final product with a desired material state and geometry is 

achieved. A precise determination of the occurring final shapes, residual stress distributions, 

minimum forming force, minimum porosity in the final product, and the resultant strain 

distribution are key results which lead to products with the desired quality.  

 

The desired objectives for a metal forming operation, for example in a hot extrusion process, may 

include one or more of the following criteria: uniform deformation in the final product, minimum 

required work or extrusion pressure, desired microstructure in the final product, minimum or 

desired residual stress distribution, minimum deformation and wear of the die, desired shape of 

the final product, and minimum porosity in the final product. Any of these objectives can 

theoretically be achieved by appropriate design of the die surface, design of the preform, design 

of the material state (microstructure) in the initial billet, and appropriate selection of the process 

parameters (ram speed and pressure history, operating temperature, etc.). However, it is important 

to note that in a single step forming operation there is only a limited control of the material state 

in the final product that one can achieve using a single stage design and generally a multistage 

process design is required. 

 

Most deformation process design, like metal forming, is currently focused on trial and error 

techniques based on previous experience and the results of the direct analysis. It is considered as 

the design of the initial work-piece and the subsequent shapes at each of the forming stages 
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known as the preforms as well as the design of the dies for each stage of production. It also 

requires extensive experience to estimate these design variables with in an acceptable tolerance, 

and often costly trials and modifications are necessary to determine the final stage. 

 

Now-a-days, there is an increasing demand for high quality formed products with reduced 

material waste and low manufacturing costs. Finite element simulation plays a vital role in 

materials processing and accounts for coupled non-linear mechanisms like microstructure 

evolution, varying contact and incompressibility conditions, large deformation plasticity, thermal 

effects and dissipation. In contrast to direct analysis tools, most of the methods for industrial 

deformation process design are currently focused on traditional trial and error techniques which 

rely on handbooks and the experience of the design engineer. The high cost of manufacturing 

critical structural components can be greatly reduced with the development of mathematically 

and physically sound computational methodologies for process design and control. Metal forming 

design, hence, requires an accurate description of the thermo-mechanical deformation 

mechanisms in order to achieve the required design objectives [1].  

 

1-2 Locking in incompressibility 

 

Many problems of physical importance involve motions that essentially preserve volumes locally. 

This means that after some deformation each small portion of the medium has the same volume 

as before the deformation. Media that behave in this fashion are termed incompressible or nearly 

incompressible. Incompressibility in metal forming is characterized by a Poisson ratio (ν ) 

approaching 0.5 and a bulk modulus tending to infinity [10].   Many finite elements exhibit the 

so-called ‘volumetric locking’ in the analysis of incompressible or quasi-incompressible 

problems in solid mechanics. Nearly incompressible elasticity in metal forming displays severe 

volume locking problems when low order standard nodal-based displacement methods are used. 

This means that after deformation each small portion of the medium has the volume as before the 

deformation. Situations of this type are usual in most bulk metal forming processes, structural 

analysis of rubber materials and some geomechanical problems. Volumetric locking is an 

undesirable effect leading to incorrect numerical results. 
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 Let the displacement field in a bilinear element be described as  
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Figure1.1 Incompressible element with postulated displacement 

 

The requirements of incompressibility (volume-constancy condition) lead to  

0=+ yx εε &&                                                                                               (1.5) 

where the strain rates are given by 
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ε x
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This shows that the displacement of node 3 is zero which, contradicts our assumption and this  

indicates that volumetric locking has occurred. Therefore the use of special element formulation 

is required to have an improved result.  

 

To eliminate volumetric locking, two classes of techniques have evolved: 
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1. Multi-field elements in which the pressures or complete stress and strain fields are also 

considered as independent variables; 

2. Reduced integration procedures in which certain terms of the weak form for the internal 

forces are under integrated.   

In this thesis, the first technique is considered.                                                        

 

1.3 Research Objective 

 

The main objective of this thesis is to investigate the effects of contact in the analysis of metal 

forming processes using finite element method. In the analysis of problems using finite element 

method, low order elements like triangles or quadrilaterals with linear displacement 

interpolations turn out to present unsatisfactory results due to the fact that metal forming process 

incorporates so many contact, geometric and material nonlinearities, as well as presence of severe 

conditions such as incompressibility. Thus attempt is made to know these problems and their 

solution methods, in a way to prepare a springboard and stimulate further research activities in 

the area. Finally a finite element code will be developed for solving a specific problem and 

investigates the efficiency of the method.    
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CHAPTER TWO 

    

2. LITRETURE SURVEY 
 

In the last two decades computer modeling of metal-forming processes has been undergoing a 

continuous development. The finite element method has been applied extensively to simulate 

metal forming processes ([1]-[7]). Due to large deformations in metal forming, plastic strains 

usually outweigh elastic strains, so many researchers and engineers idealize the material behavior 

as rigid-plastic or rigid-viscoplastic, which is known as the flow formulation. A detailed 

presentation of the flow formulation for the finite element method in metal forming can be found 

in [17]-[19]. Numerical results obtained with this method compare quite well with experimental 

results. 

 

The rigid-plastic finite-element method [33] which is based on the variational principle for rigid-

plastic deformation is particularly suited for solving metal flow problems involving large plastic 

strains. The basic concepts of the method are the use of the Lagrange multiplier and linearization. 

The accuracy and convergence of the method has been shown to be excellent and it is applicable 

to the analysis of both the steady-state and the non-steady-state problems. 

 

Most deformation process designs are currently focused on trial and error techniques based on 

previous experience and the results of the direct analysis. A systematic review of such problems 

is given in reference [39]. The design approaches reported in this reference are not 

mathematically rigorous and/or realistic from a material representation point of view. However, a 

variety of important forming design problems were addressed. In the direct differentiation 

method, a set of field equations are developed by considering the variation of the continuum or 

discretized field equations of the direct problem with respect to small changes in design 

parameters [40-41]. The sensitivity field equations are linear and can be efficiently solved.  
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Researches have been conducted on the application of analytical techniques using the rigid-

viscoplastic finite element method. For example, reduced integration [33] was proposed to avoid 

element locking, which may occur using the analysis, especially with the specified condition of 

incompressibility of plastic flow. In order to resolve both the element and the shear locking 

behavior using this approach, the selective reduced integration technique (SRI) [23] was also 

applied. Some researchers [24, 25] have also suggested methods to control the hourglass mode, 

which can be generated easily when applying the reduced integration technique in order to 

integrate the element stiffness. Any nodal displacement that is not a rigid body motion but results 

in no straining of the element is a spurious singular (hourglass) mode. Such nodal displacements 

will not generate any nodal forces i.e., they will not be resisted by the element, since in the 

absence of strain, the stresses will also vanish. A vertical pair of elements in the x-mode or a 

horizontal pair of elements in the y-mode looks like an hourglass, an ancient device for 

measuring time by the flow of sand from the top element to the bottom. For this reason, this 

spurious singular mode is often called hourglassing or the hourglass mode. Hourglass modes are 

zero-energy modes, since they do not result in any strain at the points in the element which are 

sampled. Therefore they do no work. The directional reduced integration technique (DRI) was 

also proposed, to avoid both the shear locking and the zero energy modes during the solution of 

different metal flow problems when applying the rigid-plastic finite-element method. 

 

The computational modeling and analysis of contact problems have been important subjects of 

interest over the past several decades. Traditionally, the non-penetration condition has been 

enforced exactly by the Lagrange multiplier technique [46-52] or approximated by a penalty 

method [52]. The traditional Lagrange multiplier technique is essentially a two-field formulation. 

The Lagrange multipliers act directly as forces between contacting bodies. Recently, several 

researchers have proposed methods which formulate the so-called intermediate contact surfaces, 

over which contact quantities can be defined and discretized. Examples of such ideas are to be 

found in reference [47].  

 

Further extensions of these approaches can be found in reference [16] and in the mortar-like 

approaches in reference [47], which enforce pressure continuity on the contact surface. 

Specifically, in order to circumvent over constraining in the approaches of references [46-52], the 
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pressure continuity is enforced at selected surface nodes and for the remaining nodes kinematic 

gap continuity is enforced. Consequently, this leads in general to an unsymmetric formulation. 

 

The solution of the contact problem using the finite element method, in general, can be studied 

using the following three general approaches: adaptations of usual formulations using 

incremental and iterative schemes in order to take into account the contact conditions; 

formulation of variational inequalities (Duvaut and Lions, 1972; Glowinski, Lions and 

Trémolières, 1976), which can represent the contact problem, and the relationship of these 

inequalities with a mathematical programming method (Panayiotopoulos, 1975; Panayiotopoulos 

and Lazaridis, 1987); and the direct application of the mechanics minimum principles, and the 

solution through a constrained minimization problem (Haug, Chand and Pan, 1977; Klarbring 

and Björkman, 1988). 

 

Considerable efforts have been made in recent years to develop linear triangles and tetrahedral 

producing correct (stable) results under incompressible situations. Brezzi and Pitkäranta [23] 

proposed to extend the equation for the volumetric strain rate constraint for Stokes flows by 

adding a Laplacian of pressure term. A similar method was derived for quasi-incompressible 

solids by Zienkiewicz and Taylor [22]. Zienkiewicz et al. [24] have proposed a stabilization 

technique which eliminates volumetric locking in incompressible solids based on a mixed 

formulation and a characteristic based split (CBS) algorithm initially developed for fluids [26] 

where a split of the pressure is introduced when solving the transient dynamic equations in time. 

Extensions of the CBS algorithm to solve bulk metal forming problems have been recently 

reported by Rojek et al. [27]. Other methods that have been proposed to overcome volumetric 

locking are based on mixed displacement (or velocity)–pressure formulations using the Galerkin-

least-square (GLS) method [28], average nodal pressure and average nodal deformation [29] 

techniques and sub-grid scale (SGS) methods [11–14]. 

 

Volumetric locking in solids is present in all low-order elements based on the standard 

displacement formulation. The use of a mixed formulation or a selective integration technique 

eliminates the volumetric locking in many elements. These methods, however, fail in some 

elements such as linear triangles and tetrahedral, due to lack of satisfaction of the Babuska–
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Brezzi conditions [10; see also section 5.1 of this thesis] or alternatively the mixed patch test  not 

being passed. 

 

Zabaras et al [3-4] have developed a sensitivity analysis method for large deformations of 

hyperelastic viscoplastic solids that can be applied to various design problems in metal forming. 

Sensitivity analysis and optimization theory, provide a fresh look at these problems and can lead 

to realistic and accurate designs. Traditional forming design problems that can be analyzed as 

optimization problems are the optimum design of dies, preforms and process parameters. To 

mathematically address such problems, one needs to calculate the sensitivity of the material state 

and geometry at various stages of deformation with respect to infinitesimal changes in each of the 

design variables. 

 

In this thesis, the analysis of Zabaras et al for the design of metal forming processes is followed 

for the design of dies in bulk forming processes. Here, the algorithms for the solution of the 

independent problems, i.e. the constitutive problem, the kinematic problem, and the contact 

problem, are formulated and solved. A radial return method is employed to solve the governing 

equations by Euler-backward integration method. The consistent material moduli are employed 

while solving the linearized principle of virtual work. The contact problem is solved using 

Lagrange multiplier method. Unlike what Zabaras et al have done, this thesis concentrates on the 

analysis of frictionless contact problem. To check the accuracy and stability of the algorithm, a 

numerical example is worked out. 
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CHAPTER THREE 

    

3. PROBLEM FORMULATION IN NONLINEAR SOLID MECHANICS 
 

The theories that are described in this chapter are aimed at serving as the background to the 

following chapters, especially chapter four. It is meant to be a mathematical formulation of some 

of the important topics which are necessary for the finite element analysis of metal forming 

process. Metal forming operations are not trivial to model since they involve complicated 

processes such as large deformations, non-linear material behavior and complex contact 

conditions. 

 

The chapter starts with nonlinear behavior followed by the most comprehensive part, large 

material deformation. This topic is a link between the kinematics of a body and the specific 

material’s constitutive behavior, that is to say, a linkage between well known and relevant 

physical principles and a mathematical model of the internal constitutive behavior of a material. 

Finally, a short review of metal plasticity, with emphasis on the constitutive model used in the 

numerical analysis is presented.  

   

3.1 Nonlinear Behavior 

 

In metal forming, which is characterized by high loading conditions, a number of nonlinearities 

are encountered. In such problems, principle of superposition no longer holds true. Thus, in metal 

forming problems: 

 

− The strain is no longer small; hence finite (large) strain analysis is required to solve problems 

of metal forming. 

−  The strain-displacement relationship is no longer linear. The changes in the deformed shape 

can no longer be ignored. The physics of metal forming, among others, requires that either a 

quadratic relationship exits between the strain and displacement (Green-Strain) or a 
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logarithmic relationship exists, i.e., engineering stress is no longer appropriate because of 

geometric changes and the true stress or Cauchy stress should be used [5]. 

− The stress-strain law may become nonlinear. This can happen even within the useful stress 

range of the material. This behavior is typical of most metals, rubbers and elastomers, and 

certain composite materials whose properties are unequal in tension and compression. 

− The original equilibrium equations (relating stress to loads) may need updating. This is due to 

the geometrical changes in the shape of the structure. These relations mean that, in nonlinear 

FEA, the load is no longer proportional to the displacement, that is, 

K
u

F
=  

The three major types of nonlinearities encountered in metal forming process are: 

• Material Nonlinearity (plasticity) 

• Geometric Nonlinearity (large deformations, large strains) 

• Boundary Nonlinearity (opening/closing of gaps, contact) 

 

3.1.1 Material Nonlinearity 

 

Material nonlinearities cause deviations from the linear (proportional) stress-strain relationships. 

When stresses go beyond the linear elastic range, material behavior can be broadly divided into 

two classes: (i) Time-independent behavior (plasticity-applicable to most ductile metals; 

nonlinear elasticity-applicable to rubber, elastomers) and (ii) Time-dependent behavior (creep, 

viscoplasticity-applicable to high-temperature applications, concrete; viscoelasticity-applicable to 

elastomers, glass, plastics). This thesis concentrates on the time-dependent behavior of materials.  

 

Material nonlinearity itself may be subdivided in to some fundamentally different categories. In 

nonlinear elasticity the stress-strain relation is nonlinear but the behavior follows that of linear 

elasticity, i.e., no distinction is made between loading and unloading except for the sign. In the 

case of plastic or elasto-plastic materials, irreversible strains occur. The difference in behavior 

between these two materials is given in figure (3.1). For low stress levels both materials follow a 

linear stress-strain relation. This is followed by a decrease in stiffness as the stress increases. If 

however, the stress is reduced the nonlinear elastic material will follow the same stress-strain 
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curve as in loading, whereas unloading of the elasto-plastic material leads to a new branch on the 

εσ −  curve where the material is again elastic, often with a stiffness equal to the initial elastic 

stiffness. Furthermore, it is clear that when the material is completely unloaded, an irreversible 

plastic strain 
pε remains. The curved part above the elastic limit in figure3.1 suggests that the 

stress-strain relation may be of a rather complicated nature. An elastic-plastic material may be 

defined as a material, which, upon reaching a certain stress state, undergoes deformation, which 

is irreversible. This results in a behavior which is path-dependent. A basic assumption in elastic-

plastic analysis is that deformation can be divided into an elastic part and an inelastic (plastic) 

part.  

 

 

Figure 3.1 Material Nonlinearity 

 

3.1.2 Geometric Nonlinearity 

 

Geometric nonlinearities cause deformations of the structure that cannot be neglected and the 

calculation of stress and strain is based on the deformed configuration (Crisfield 1991, Fafitis 

1996, Blandford 1997). Change in geometry as the structure deforms is taken into account in 

setting up the strain-displacement and equilibrium equations. From the strain-displacement 

equations: 

e = Du                                                                                  (3.1) 

 

Unloading and 

Reloading Path 

Initial loading 

 

Elastic  

Region 

ε  

Nonlinear 

Behavior 

 

pε  

 

σ  
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where e is the strain and u is the displacement, the operator D is nonlinear when finite strains (as 

opposed to infinitesimal strains) are expressed in terms of displacements. And the internal 

equilibrium equations can be written as  

b = −
∗D σ                                                                                  (3.2) 

where b is the body force and σ  is the stress. From classical linear theory of elasticity, 
∗D  = 

TD  

is the formal adjoint of D, but that is not necessarily true if geometric nonlinearities are 

considered.  

 

The term geometric nonlinearity models many of the physical problems: The strains themselves 

may be large, say over 5% [3]. These strains are frequently associated with material 

nonlinearities. However, they can also be associated with geometric nonlinearities, for the strains 

may produce finite displacements and/or rotation. For instance slender structures undergo finite 

displacements and rotation, although the deformational strains may be treated as infinitesimal. 

Examples can be found in various structures like cables, springs, bars, thin plates. Figure 3.2 

shows graphical representation of sources of nonlinearities in solid continuum mechanics. 

 

 

    

Figure 3.2 Graphical depiction of sources of nonlinearities 

 in solid continuum mechanics. 
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^

u =prescribed Displacements,                        u = Displacements, 

b = Body forces,                                               e = Strains, 

σ  = Stresses, and                                             

^

t  = Prescribed tractions or forces 

 

Figure 3.2 is a general representation of nonlinearities in solid mechanics. The material 

nonlinearity arrow is used to indicate the deviations from the linear (proportional) stress-strain 

relationship discussed earlier. The geometric nonlinearity arrows represent equations 3.1a and 

3.1b graphically. Similarly, the contact nonlinearity arrows are graphical representations of 

equations 3.1c-3.3. 

3.1.3 Contact Nonlinearity 

 

A final type of nonlinearity we wish to consider in this thesis is that created due to contact with 

another deformable or rigid entity. Contact, by nature, is a nonlinear boundary value problem. 

During contact, mechanical loads and perhaps heat are transmitted across the area of contact. If 

friction is present, shear forces are also transmitted. As a simple model problem for this case, 

consider the rigid obstacle problem shown in figure 3.3 where a prescribed motion of the left end 

of the moving body is 
−

d and the unknown displacement of the right end is d subjected to the 

constraint  

      ( ) 0≤−= ogddg                                                                         (3.1) 

0g is the initial separation, or gap, between the right end of the moving body and the rigid 

obstacle. 

  

0g  

d  

Figure 3.3 Schematic of the rigid obstacle problem. 

 

Rigid 

Obstacle 

d  
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The equations governing the response of the body are nonlinear. To see this, we can choose d as 

unknown and construct the following residual for the system 

CFddMdR +−= )(*)()(  =0                                                 (3.2) 

where M(*) is a function of the cross section and elastic modulus of the material, and CF  is the 

contact force between the obstacle and the moving body (assumed positive in compression), 

subject to the following constraints:  

.0)(0)(;0 =≤≥ dgFanddgF CC                                         (3.3) 

Equations (3.3) are called Kuhn-Tucker conditions in mathematical parlance and physically 

require that the contact force be compressive, that the right end of the moving body and the 

obstacle do not interpenetrate, and that the contact force is nonzero when g=0; i.e., when contact 

between the rod and obstacle occurs. It can be seen that the boundary condition operating the 

right end of the body is neither a Dirichlet (displacement) nor Neumann (stress) boundary 

condition; in fact, both the stress and the displacement at this point are unknown but are related to 

each other through constraints (equation 3.1). 

 

3.2 Large deformation Problems 

 

 

In this section, concepts from continuum mechanics that are necessary for rigorous specification 

of large deformation problems in metal forming are discussed. This is an extension of the linear 

elastic problem to accommodate two important features: potentially large motions and 

deformations, and nonlinear material response. This can be done by introducing a more general 

notational framework and then by examining in a fairly nonrigorous fashion how, provided 

certain concepts are kept in mind, the equations governing large deformation initial/boundary 

value problems are similar in form to their familiar counterparts from the small deformation 

theory. Rigorous prescription and understanding of large deformation problems can only be 

achieved through a careful examination of the concepts of nonlinear continuum mechanics.                          
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3.2.1 Notational Framework 

The basic system which is considered here is depicted schematically in Figure 3.4. We consider a 

body, initially in a location denoted by Ω , undergoing a time-dependent motion ϕ  that describes 

its trajectory through the ambient space (assumed to be 3ℜ  ). The set Ω  is called the reference 

configuration and can be thought of as consisting of points X that serve as labels for the material 

points existing at their respective locations. 

 

For this reason the coordinates X are often called reference or material coordinates. We assume 

that the surface Ω∂  of Ω  can be decomposed into subsets σΓ (Neumann boundary condition) and 

uΓ (Neumann boundary condition) obeying the following 

 

Ο/=Γ∩Γ

Ω∂=Γ∪Γ

σ

σ

u

u
                                                                                       (3.4) 

 

 

Figure 3.4 Notation for Large Deformation Initial/boundary value Problem 

 

The general interpretation of these surfaces is: traction or Neumann boundary conditions will be 

imposed on σΓ , and displacement on Dirichlet boundary conditions will be imposed on uΓ .  

σΓ  

uΓ  

Ω  
•  

x  

•  

3ℜ  

ϕ  

X  

×  

×  
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It has been mentioned that the motion is, in general, time dependent. In fact, we could write this 

fact in mathematical terms as the transformation 3),0(: ℜ→Ω TXϕ . If we fix the time argument 

ofϕ , we obtain a configuration mapping tϕ , summarized as 3: ℜ→Ωtϕ , which gives us the 

location of the body at time t given the reference configuration Ω . Coordinates in the current 

location )(Ωtϕ of the body will be denoted by x. The current location is often called the spatial 

configuration and the coordinates, x, spatial coordinates. Given a material point Ω∈X  and a 

configuration mapping tϕ , we may write 

(X)x tϕ=
           

                                                       (3.5) 

A key decision in writing the equations of motion for this system is whether to express the 

equations in terms of (ΩΩxΩX tor ϕ=∈ , material or spatial frame of reference, respectively. 

 

The choice of whether to use reference coordinates X or spatial coordinates x in the problem 

description is generally highly dependent on the physical system to be studied.  

In metal forming descriptions, the identity of specific material particles is of central interest in 

modeling a system. For example, the plastic response of metals is history dependent, meaning 

that the current relationship between stress and strain at a point in the medium depends on the 

deformation history associated with that material point. To use such models effectively requires 

knowledge of the history of individual particles, or material points, throughout a deformation 

process. Furthermore, many physical processes we wish to describe do not lend themselves to an 

invariant Eulerian frame. In a forging process, for example, the metal at the end of the procedure 

occupies a very different region in space than it did at the outset. For these and other reasons, the 

predominant approach to solid mechanics systems is to write all equations in terms of material 

coordinates or to use the Lagrangian frame of reference [1]. 

Therefore, in this thesis, the formulation is performed using the updated Lagrangian reference 

system where configurations will be updated after each incremental time step. 
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3.2.2. Measures of deformation 

 

 

Referring to figure 3.4, restricting our attention to some time ),0( Tt ∈ , and considering the 

corresponding configuration mapping  tϕ , the deformation gradient F is given by the gradient of 

this transformation, i.e.: 

           F = 
X

x

X ∂

∂
=

∂

∂ tϕ

           
                                                                (3.6) 

Or in indicial form: 

j

i

j

ti

ij
X

x

X
F

∂

∂
=

∂

∂
=

ϕ
  , i, j =1, 2, 3                                                   (3.7) 

When written in expanded form the above deformation gradient components will have the 

following form: 

























∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

X

x

X

x

X

x

X

x

X

x

X

x

X

x

X

x

X

x

F                                                                   (3.8a) 

Considering a cube of material in the reference configuration whose sides can be assumed to be 

aligned with the coordinate axes iX , i =1, 2, 3, the initial differential volume of this cube is given 

by 

321 dXdXdXd =V                                                                             (3.8b) 

If we now consider the condition of this cube of material after the deformation tϕ is applied, we 

notice that its volume in the current configuration is dv spanned by the three vectors jt Xd )(
r

ϕ , 

here the notation jXd
r

is used to indicate a reference vector in coordinate direction j with 

magnitude jdX . This volume can be written in terms of the vector triple product: 

( ))Xd()Xd().Xd(d ttt 321

rrr
ϕϕϕ ×=v                                                    (3.8c) 

Then we can write 
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( )
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ijt

r
ϕ                                                          (3.8d) 

We can write equation (3.8c) in indicial notation by first noting that the cross product of two 

vectors a and b is written as 

kjijki bae=× )( ba                                                                                (3.8e) 

where ijke  , the permutation symbol, has the following interpretation 

 








=−

=

=

otherwise0

)2,3,1(or)3,1,2(or)1,2,3(),,(if1

)2,1,3(or)1,3,2(or)3,2,1(),,(if1

kji

kji

eijk                            (3.8f) 

Equation (3.8c) is then reexpressed via 

VF d

dXdXdXFFFe

dXFdXFedXFdv

kjiijk

kjijki

)det(

)(

321321

332211

=

=

=

                                                   (3.8g) 

Introducing the notation J=det(F), called the Jacobean of the transformation, we can write 

dv=JdV                                                                                (3.8h) 

 

Where dV = the initial differential volume of the body, and 

           dv = the current differential volume of the body 

Equation (3.8h) tells us that the deformation converts reference differential volume dv to current 

volume dV according to the determinant of the deformation gradient.  

 

Because the deformation x can be determined up to a rigid body motion, it can be written as 

x = X + u                                                                                    (3.9) 

where, u represents the displacement field. This leads us to another quantity called displacement 

gradient tensor which is defined by the following. 

     
X

u
G

∂

∂
=                                                              (3.10) 

Or in indicial form: 

j

i

ij
X

u

∂

∂
=G   , i, j =1, 2, 3                                                        (3.11) 



          21 

The relationship between F and G is noticeable by writing 

X-xXGu ∂∂=∂=∂                                                                 (3.12) 

and 

XXGXFx ∂+∂=∂=∂                                                              (3.13) 

so 

IFGIGF −=+= or                                           (3.14) 

Where, I is the identity matrix. But F and G contain rigid-body rotations that do not contribute to 

the deformation of the continuum. And since only straining deforms the body and some other 

measures of deformation is required. One possibility is to define a stretch ratio between initial 

and current configuration for the material vector. It is the ratio of current length and initial length 

and can be written as   

jj

ii

dXdX

dxdx

dL

dl
==λ                                                             (3.15) 

When the displacement gradients are finite, the symmetric and skew parts of the displacement 

gradient matrix no longer provide an additive decomposition of displacement gradient into the 

sum of pure strain and pure rotation, since the displacement gradient components are not small 

compared to unity the two matrices no longer represent pure strain and rotation, respectively. 

 

The basic properties of the local behavior of deformation emerge from the possibility to 

decompose the deformation in to a rotation and stretch which is a change of the volume element. 

This decomposition is called the polar decomposition of the deformation gradient [2] (see figure 

3.5). With the definition of F and G in hand, let’s turn our attention to the quantification of local 

deformation in a body. For the matrix F, whose determinant is positive, the following 

decompositions can always be made: 

 

F = RU = VR                                                                           (3.15) 

 

 where   R is the rotation tensor 

             U is the right stretch tensor and 

              V is the left stretch tensor 

 



          22 

The significance of the polar decomposition is made clearer in Figure 3.5, where we consider the 

deformation of a neighborhood of material surrounding a point Ω∈X . By considering the polar 

decomposition, we see that this deformation of material neighborhoods can always be conceived 

as consisting of two parts. Considering the right polar decomposition as an example, U contains 

all information necessary to describe the distortion (stretch) of a neighborhood of material, while 

then R maps this distorted volume into the current configuration through pure (right-handed) 

rotation. In consideration of the left decomposition, the rotation R is considered first, followed by 

the distortion (stretch) by V. In developing measures of local deformation, we can then 

concentrate our attention on either U or V. The choice of which decomposition to use is typically 

based on the coordinates in which we wish to write strains: the right stretch U most naturally 

takes reference coordinates as arguments, while the left stretch V is ordinarily written in terms of 

spatial coordinates. We might indicate this explicitly via 

 

F(X) = R(X) U(X) = V ( tϕ (X)) R(X).                                     (3.16) 

 

Figure 3.5 Polar Decomposition 
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The particular factors given above have the following properties: 

1. The tensor R is orthogonal, R. TR  = TR .R = I, i.e., R is a rotational tensor. 

2. The tensors U and V are symmetric and positive definite. [The necessary and sufficient 

condition for any tensor T to be positive definite is that all its eigenvalues be positive, i.e., 

the tensor T is positive definite if vTv ⋅⋅ >0 for all vectors v ≠ 0]. 

3. U, V and R are uniquely determined. 

4. The eigenvalues of U and V are identical; if e is an eigenvector of U, then R.e is an 

eigenvector of V. 

 

In characterizing large deformations, it is convenient also to define the right and left 

Cauchy-Green tensors, respectively, via 

        C = TF F                                                                           (3.17) 

and 

B = F TF                                                                            (3.18) 

Since F is assumed to be non-singular (det F ≠ 0) and 0≠⋅ Fv  if 0≠v , it follows that 

F)vF(v ⋅⋅⋅ () is a sum of squares and hence greater than zero. Thus  

           vCvvFFvF)vF(v T ⋅⋅=⋅⋅=⋅⋅⋅< ()0 ,                                              (3.19) 

and C is positive definite. By the same argument, we may show that Finger’s deformation tensor 

B = F. TF is also positive definite. The right Cauchy-Green tensor is ordinarily considered to be a 

material object (i.e., C(X)), while the left Cauchy-Green tensor is a spatial object (B ( tϕ (X))). 

Since R is orthogonal, one can write 

TT RRRR ⋅=⋅ = I                                                              (3.20) 

where I is the 3x3 identity tensor. Using this fact and manipulating Equations (3.16)-(3.20) also 

reveals that 

 

           CU =                                                                             (3.21) 

and 

                         BV =                                                                     (3.22) 
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3.2.3. Strain Measures 

 

As a body deforms, various points in it will translate and rotate. Strain is a measure of the 

“stretching” of the material points within a body; it is a measure of the relative displacement 

without rigid-body motion and is an essential ingredient for the description of the constitutive 

behavior of materials. The easiest way to distinguish between deformation and the local rigid-

body motion is to consider the change in distance between two neighboring material particles. 

We will use this to establish our strain measures. 

If two material points before deformation have the coordinates ( iX ) and ( ii dXX + ) and after 

deformation have the coordinates ( ix ) and ( ii dxx + ), the initial distance between these 

neighboring points is given by 

     2
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2 )()()( dXdXdXdXdXdS
i ii ++==∑                            (3.23) 

and the final distance between the points by 
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Only in the event of stretching or straining is 2
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is a measure of the relative displacements. It is insensitive to rotation as can be easily 

demonstrated by considering a rigid-body motion. These equations can be written as 
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by introducing the strain measure ijE . It is easy to observe that ijE  is a symmetric tensor of the 

second order. It is called the Lagrangian strain tensor. It is convenient to deal with displacements 

and displacement gradients instead of the deformation gradient. These are obtained by using the 

relations 

im
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uXx δ+
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=

∂
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+= ,                                                  (3.27) 

Or from the small strain theory by considering the Green strain tensor E, defined with respect to 

the reference configuration: 
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)(
2

1
ICE −=                                                                        (3.28) 

Working in indicial notation, we can write E, the Lagrangian strain tensor, in terms of the 

displacement tensor u as follows: 
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Where IJδ , the Kronecker delta, satisfies 
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Expressing IJE  in unabridged notations  
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3.2.4 Rates of deformation 

 

Most of the industrial metal forming processes is characterized by a complex deformation 

history, which is composed of successive strain paths that may vary considerably in their 

orientation. Changes in strain path directions have a significant effect on the mechanical response 

of metals. Therefore, in order to cope up with path-dependence property of a material, a rate form 

definition of strain is necessary. 

 

The material velocity V’ can be obtained by fixing attention on a particular material particle (i.e., 

fixing the reference coordinate X), and then considering partial time derivatives of the motion. 

This can be written mathematically as 
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t

t XXV' ϕ
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∂
=

          
                                                  (3.32) 

The gradient grad(v) is taken with respect to spatial coordinates and is, therefore, called the 

spatial velocity gradient or rate of change of deformation gradient. It is denoted as L: 

 L = grad (v)                                                                             (3.33a) 

Here the differential velocity between two neighboring particles in the current configuration 

becomes 
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Comparing the above two equations reveals that the rate of change of deformation gradient, L, 

can be computed as 

1−= FFL &                                                                                 (3.33c) 

From the rate of change of deformation gradient L defined in (3.33), we can define two tensors, 

considering the polar decomposition theorem, and known respectively as the rate of deformation 

tensor, D, (or the stretching tensor) and the spin tensor, W, (or vorticity   tensor): 

[ ] [ ]LLWLLD −=+=
2

1

2

1
and                            (3.34) 

It is clear that D is merely the symmetric part of the velocity gradient, while W is the 

antisymmetric, or skew, portion. The quantities D and W are spatial measures of deformation. D 
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is effectively a measure of strain rate suitable for large deformations, while W provides a local 

measure of the rate of rotation of the material. It is of interest at this point to discuss whether 

appropriate material counterparts of these objects exist. Toward this end let us calculate the 

material time derivative of the deformation gradient F, noting in so doing that if F is an analytic 

function, then the order of partial differentiation can be reversed: 
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Recalling the definition for the right Cauchy-Green strain tensor C (equation 3.17), we compute 

its material time derivative via:
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From equation 3.36, we can conclude that 

),()),((),(2),( tttt T XFXDXFXC
.

ϕ=                                                          (3.37) 

Recalling the definition of Green’s strain E given in Equation (3.28), we can easily see that 

DFFC
2

1
E

..
T==                                                                                 (3.38) 

 

3.2.5 Stress and Stress measures 

 

 

Stress is the force per unit area. Just as the strain, it can be defined in the deformed or the 

undeformed state. We consider an element of a material body shown in figure 3.7 which is 

subject to resultant forces Td and Td in the initial and final configurations, respectively. In 

Figure (3.7a) the force vector Td  is shown for an initial surface element 0dA , with normal 

on directing perpendicular to the surface element 0dA . And the force vector Td  for a current 
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(final) surface element
 
dA , with normal n directing perpendicular to the surface element dA  is 

shown in figure (3.7b).   

 

 

 

 

 

 

 

 

 

 

configuration 

 

The Cauchy stressσ , which is the most useful measures of stress, is defined by the actual force 

on the deformed surface. Hence it is also called the true stress. It is an objective tensor, which is 

symmetric when distributed moments or couple stresses are absent.  

 

From Nanson’s formula, 

00 dAdA
T
nFJn

−=                                                     (3.39a) 

which can be written as                     dAdA o

TσnJFn =                                                          3.39b) 

we find the following definition:  

( ) ( ) ( )( ) ( )( )XFXσxJxP t

T

t ϕϕ −=                                    (3.39c) 

where ( )xP  is called the (First) Piola-Kirchhoff Stress and J is the determinant of the 

deformation gradient F as discussed earlier. 

Equation (3.39c) allows us to write           oodAd nST =                                                      (3.39d) 

The stress S  is called the second Piola-Kirchhoff stress and it is a purely reference object. The 

product oSn represents traction. It means the stress by referencing the force acting on areas to the 

magnitude of these areas in their undeformed configuration. It is neither a pure spatial nor 

(a) Initial Configuration 
(b)Final Configuration 

Figure 3.6 Force vectors and surfaces with normal in the initial and final 

configuration 

Td  

on  

odA  

Td  

n  

dA  
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reference object. Such an object can be constructed by performing a pull-back of the spatial 

Cauchy tress tensor σ  to the reference configuration:  
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To consider changes of a body from an initial state to a current state, a lagrangian view is used 

because strain is usually measured from the former state. That corresponding to the Green-

Lagrange strain is the second Piola-Kirchhoff symmetric stress tensor, often abbreviated to “PK2 

stress” (equation 3.39e). The three-dimensional component expression of this tensor in Cartesian 

coordinates is 
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The relation between the Cauchy stress and the Piola-Kirchhoff stresses are, 
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For small deformations all stress measures coincide with the Cauchy stress. In plasticity it is 

convenient to split the stress tensor into two parts, one called the spherical stress tensor and the 

other the stress deviator tensor. The spherical stress tensor ijH  is the tensor whose elements are 

given by ijmδσ , where mσ  is the mean stress, i.e. 
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and         )(
3

1
321 σσσσ ++=m                                                                            (3.43) 

Since mσ  is the same in all directions, it can be considered to act as a hydrostatic stress. From 

experimental observations of metal alloys, it is shown that the mean, hydrostatic, or spherical 

pressure on the process of shape changing is negligible [3]. Therefore, in plastic flow 
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considerations, one considers only the difference between the stress tensor and the spherical 

stress tensor. This is termed the stress deviator tensor, given by ijp , where  
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Every stress measures used must be complementary (work conjugate) to the strain measures used. 

i.e., an increment of strain multiplied by the current stress must be a valid infinitesimal increment 

in work per unit of volume of material. Therefore, the work conjugate strain measure related to 

the above stress measure is the rate of lagrangian strain, 
•

E previously defined. Now, the power P 

per unit initial volume is  

ES dP :=                                                                                         (3.45) 

and the increment of work is, with dtd
•

= EE , 

ES ddW :=                                                                                       (3.46) 

A transformation from one stress measure to another can be readily done. The measures are 

related according to  

TT JorJ FSFσFσFS 111 )( −−− ==                                              (3.47) 

The above mentioned stress and strain measures are commonly used. 

 

3.3. Fundamentals of Metal Plasticity 

 

The adjective “plastic” comes from a Greek word meaning “to shape”. If we take the weak 

(Cauchy) definition of an elastic body as one in which the strain at any point of the body is 

completely determined by the current stress at the point, then an obvious definition of a 

plastically deformed body is one in which there is something else, besides the current stress, 

which determines the strain. That “something else” may be thought of, for example, as the past 

history of the stress at the point.  

 

The theory of plasticity makes use of some fundamental concepts: the yield criterion defining the 

limit; the flow rule describing the relationship between stresses and strains once the material has 

become plastic; and the consistency condition which prevents stresses from exceeding the yield 
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limit. From experimental observations made on metal alloys it is found out that shape changes 

occur in the plastic shaping process. In metal plasticity the theory necessary to describe plastic 

flow is particularly simple since metals are generally incompressible, and insensitive to the 

influence of hydrostatic pressure.  

3.3.1 The yield criterion 

 

A material yields when it exhibits an irreversible straining which is sustained once a certain level 

of the stress distribution is reached. A yield criterion indicates for which combination of stress 

components transition from elastic (recoverable) to plastic (permanent) deformations occurs. In 

one-dimension yielding occurs when the uniaxial stress reaches the value of the yield stress Yσ  

in tension, i.e. at σ = Yσ . When does ‘yielding’ occurs in multi-axial stress states? The answer is 

given with phenomenological theories called ‘yield criteria’. Here only the two most important 

yield criteria for isotropic materials will be discussed. 

 

Since plasticity is the study of materials under stresses exceeding the yielding point, one needs to 

understand the concept of yield surface for a more expanded view of the subject. The yield 

surface is defined in the stress space as the separator convex surface between elastic and plastic 

regions. Any point within the region will cause no permanent deformation upon unloading. No 

points are considered outside the surface, but inside and on it only. When a point is considered on 

the surface, three different conditions are possible to occur: unloading, neutral loading, and 

loading. If unloading, the state of stress will go back into the surface again, causing it to move 

back to the elastic domain. In this condition, plasticity will not occur. If neutral loading occurs, 

the state of stress will move on the yield surface, causing no plasticity to occur. In plastic loading 

with perfect plasticity, the state of stress can only be altered by redistribution between the 

different stress components. 

3.3.1.1 The von-Mises yield criterion 

 

According to the von-Mises yield criterion, in a general multi-dimensional stress state, yielding 

occurs when the von-Mises equivalent stress becomes equal to the yield stress Yσ  in tension, i.e. 

yield occurs when: 
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YEQ σσ =  

where EQσ   is an equivalent stress defined, in terms the principal components and in terms of the 

stress components in the 1, 2,and  3 coordinate systems respectively, by 
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             (3.48) 

 

where iσ  is a principal stress and ijij ,τσ  are stress components. Note that the two equations 

above are equivalent (i.e. the right hand side of the second equation of Equation (3.48) is 

invariant – does not change as we ‘rotate’ the stress components from one coordinate system to 

another). 

As expected (and by an obvious design of the von-Mises criterion), for uniaxial tension the von-

Mises yield criterion predicts that yielding occurs when: 

                     yEQ σσσ == 1                                                                        (3.49)   

 The von-misses yield criterion is better and more accurate because it considers all the three 

principal shear stresses, i.e., the maximum shear stress and the two lesser shear stresses. 

 

3.3.1.2 The Tresca (the Maximum shear stress) criterion 

 

According to Tresca, in the general multi-dimensional stress state, yielding occurs when: 

κτ =max              Where κ is the yield stress in shear                             (3.50) 

Recall that: 
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The yield stress κ  in shear is not independent of the yield stress Yσ  in uniaxial tension. To 

compute their relation, we have to apply the Tresca criterion to uniaxial tension. For this case, 

01 ≠σ  and 032 =σ=σ . So we can write: 

κ
σσσσ

τ ==
−

=
−

=
22

0

2

11minmax

max

                                                 (3.52) 

From this we can conclude that in uniaxial tension yielding occurs when κ=σ 21 , i.e. 

For the Tresca criterion:       
2

Yκ
σ

=                                                                            (3.53) 

Using the above expression, we can summarize the Tresca yield criterion as follows: 

In a general stress state yielding occurs when:  
22

Yminmax

max κ
σ

==
σ−σ

=τ                          (3.54) 

 

3.3.2   Hardening 

 

Metals exhibit some degree of hardening as an accompaniment to plastic straining. In general this 

means that the shape and size of the yield surface changes during plastic loading. These changes 

may be rather arbitrary and extremely difficult to describe accurately. Therefore, hardening is 

often described by a combination of two specific types of hardening, namely isotropic hardening 

and kinematic hardening see figure (3.7). For the von Mises criterion isotropic hardening implies 

an increase in the yield strength during plastic loading such that the yield criterion may be written 

as [21] 

 
0)()( 0 =− ασσf

                                                                (3.55) 

Where f is loading function and α  ,which has a positive value, is a hardening parameter. The 

stress can be related to the strain by the introduction of a tangent modulus tE  as 

εσ dEd t=
                                                                          (3.56) 



          34 

 

The representation of the total strain as the sum of the elastic and plastic strain leads to  

)( pe

t ddEd εεσ +=
                                                                (3.57) 

For the elastic part of the strain increment Hook’s law is used to give 

)( P

t d
E

d
Ed ε

σ
σ +=                                                                  (3.58) 

This relates the stress increment to the plastic strain increment by 
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Assuming isotropic hardening, an increase in stress above the elastic limit is equivalent to an 

increase in yield stress, and hence 
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This means that α  in equation (3.55) should be replaced by
pε . In multidimensional case, 

however, some equivalent plastic strain must be used. For the von Mises criterion a suitable 

equivalent plastic strain is [21] 
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Figure 3.7 (a) Isotropic    (b) Kinematic   Hardening 
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Since isotropic hardening is irreversible, once the material has experienced a certain degree of 

hardening the yield limit is shifted permanently. It is easily included into the elasto-plastic stress-

strain relation by considering the appropriate consistency condition. The consistency condition 

states that during plastic loading the change in stress, if any, occurs tangent to the yield surface. 

And this results in  
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∂
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                                                                    (3.62) 

This conditions leads to the following elasto-plastic constitutive relation 
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where D
e
 is the elastic constitutive matrix. 

 

3.3.3 Incremental Elastic-plastic Stress-Strain Relations 

 

 

The basic premise in the formulation of all elastic-plastic constitutive models is that certain 

materials are capable of undergoing small plastic (permanent) strains as well as small elastic 

(recoverable) strains during each loading increment (Baladi and Akers 1981). This may be 

expressed mathematically as 

p

ij

e

ijij ddd εεε +=
                                                                              (3.64) 

Where     ijdε
= components of the total strain increment tensor,  

   
e

ijdε
= components of the elastic strain increment tensor, and  

p

ijdε
= components of the plastic strain increment tensor.  

This equation simply states that the total strain increment is equal to the sum of the elastic and 

plastic strain increments. 
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The loading or yield function ƒ for a general work- or strain-hardening elasto-plastic model may 

be rewritten as [21]: 

0)()(),( =−= εσασ KFf ijij                                                              (3.65) 

where (in matrix format) ijσ  is the vector of normal and shear stresses and α  is the hardening 

parameter that controls the expansion of the yield surface.  

Equation 3.56 may be differentiated to give: 
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Or, in another form 
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Owen and Hinton refer to the vector ija as the flow vector. The scalar A will be identified as the 

plastic hardening modulus. 

Drucker (1951) has shown that the plastic strain increment tensor for a work-hardening material 

may be written as 
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The term λd  is a positive factor of proportionality that is nonzero only when plastic 

deformations occur. 

In its most general form, the elastic strain increment tensor may be expressed as 

klijkl

e

ij dCd σε =
                                                                                  (3.70) 

where ijklC = the material response function, which may be a function of stress. 

By substituting for both the elastic and plastic strain increments, i.e., using the matrix equivalents 

of Equations 3.69 and 3.70, the following expression is obtained: 
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Where D is the matrix of elastic material constants and the inverse of the material response 

function. After multiplying Equation 3.71 by T

ija one obtains: 

λddd TTT aDaσaεDa +=                                                                     (3.72) 

This may be refined further by eliminating σa d
T with the use of Equation 3.71 to produce: 
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This leads to an expression for the scalar term dλ : 
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This term gives the magnitude of the plastic strain increment vector. Having defined an 

expression for dλ , it may be substituted into Equation 3.71 to give: 
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where   DadT

D
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Multiplying both sides of Equation 3.75 by D gives: 
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This is an expression for the elastic-plastic incremental stress-strain relation. If we 

substitute DadT

D

T= , then the elastic-plastic constitutive matrix epD  may be expressed as: 
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3.4 Frame Indifference 

 

An important concept to be considered in the formulation of constitutive theories in metal 

forming is that of frame indifference, alternatively referred to as objectivity.  

 

When we write constitutive laws in metal forming problems, in their most general forms, we seek 

to express tensorial quantities, such as stress and stress rate, in terms of kinematic tonsorial 

quantities, most commonly strain and strain rate. The basic physical idea behind frame 

indifference is that this constitutive relationship should be unaffected by any rigid body motion 

the material may be undergoing at the instant in question. Mathematically we describe this 

situation by defining an alternative reference frame that is rotating and translating with respect to 

the coordinate system in which we pose the problem. For our constitutive description to make 

sense, the tensorial quantities we use in it (stress, stress rate, strain, and strain rate) should simply 

transform according to the laws of tensor calculus when subjected to this transformation. If a 

given quantity does this we say it is material frame indifferent, and if it does not we say it is not 

properly invariant. 

 

Consider again a motion ),( tXϕ  . We imagine ourselves to be viewing this motion from another 

reference frame, denoted in the following by *, which can be related to the original spatial frame 

via 

xZcx )()( tt +=∗                                                                      (3.78) 

 where ),( tXx ϕ= . In equation (3.78) )(tc is a relative rigid body translation between the original 

frame and observer *, while a relative rotation is produced by the proper orthogonal tensor Z(t). 

To observer * the motion appears as defined by 

),()()(),( tttt XZcXx ϕϕ +== ∗∗                                       (3.79) 

Then for the * frame, we can define an appropriate deformation gradient: 

  ZFX
X

Z
X

F =
∂

∂
=

∂

∂
= )(** ϕϕ                                          (3.80) 

and a spatial velocity gradient *L : 
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                                             (3.81) 

For L to be objective, it would transform according to the laws of tensor transformation between 

the two frames, so that only the first term on the right-hand side of equation (3.36) would be 

present. Clearly L is not objective. 

Examining the rate of deformation tensor, on the other hand, we can find: 

( )

( ) TTT
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ZDZZLLZ

)ZZZZLZZZLZ
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=+=

+++=

+=

2

1

(

)(
2

1 ***

&&                                        (3.82) 

which shows that D is objective. 

Therefore, we have a spatial rate-of-strain object, D, that is objective. The question arises about 

whether corresponding reference measures of rate are objective. It turns out that such material 

rates are automatically objective, since they do not change when superimposed rotations occur 

spatially. Considering, for example, the right Cauchy-Green tensor C: 

ZFZFZFZFF)FC TTTT === ∗∗ )((*                                       (3.83) 

In view of equation (3.83) it is obvious that 

CC =*                                                                                          (3.84) 

Turning our attention to stress rates, let us examine the material time derivative of the 

Cauchy stress T: 
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TT
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(
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d
tt

1) ϕϕ&                                            (3.85) 

Now T is itself objective by its very definition as a tensorial quantity. Thus we can write 

TZTZT =                                                                                       (3.86) 

Computing the material time derivative of equation (3.86) we find 

TTT ZZTZTZTZZT &&&& ++=                                                            (3.87) 

Since the first and third terms on the right-hand side of equation (3.87) do not, in general, cancel, 

we see that the material time derivative of the Cauchy stress is not objective. It, therefore, 

becomes critical, when a constitutive description requiring a stress rate is to be formulated, to 
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consider a frame indifferent measure of stress rate. The subject of objective rates is a 

controversial one in continuum mechanics. By far the most common choice in plasticity theory is 

the Jaumann rate or corotational derivative, which is the time derivative with respect to a 

corotating reference frame (Neale, 1981).  

 

Now let us consider the Jaumann rate which rely on roughly the same physical idea: rather than 

taking the derivative of the Cauchy stress itself, we rotate the object from the spatial frame before 

taking the time derivative, so that the reference frame in which the time derivative is taken is the 

same for all frames related by the transformation equation (3.78). The Jaumann rate of stress, 

which we denote here as T̂ , definition is given as follows: 

TWWT-TT += &ˆ                                                                      (3.88) 

where W and T are the spin and Cauchy stress tensors, respectively.  

We can verify that this rate of stress is truly objective by direct calculation, by considering the 

object as it would appear to observer *: 

****** WTTW-TT += &ˆ                                                            (3.89) 

After some calculation we arrive at 

[ ] TT QTQZTWWT-TZT* ˆˆ =+= &                                            (3.90) 

Which ensures us that, indeed, T̂ is objective. 
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CHAPTER FOUR 

    

    
4. METAL FORMING PROBLEM FORMULATION 

 

In forming processes, a piece of material called a work piece is formed into a specific shape by 

employing tools. The formed material is called the work piece, and the manner in which it is 

supported determines the type of the forming process. The forming is achieved trough the 

interaction between the work piece and the tools. The interaction forces are the contact forces 

which consist of normal components which prevent the objects from interpenetrating and 

tangential components, which are also known as the frictional components. The forming process 

hinges on the transfer of these forces from the work piece to the tool, and vice versa. Thus we 

need to determine these forces as accurately as possible if we wish to simulate the problem 

correctly. 

 

In this section, implementation of a FEM analysis for finite elasto-plastic deformations and 

frictionless contact in metal forming processes is presented. The analysis of a continuum 

described in the previous chapter involves seeking the solution to equations governing the 

balance of linear momentum (equilibrium) and the conservation of energy, subject to appropriate 

initial and boundary conditions. In metal forming, there is a thermo-mechanical system which can 

be algorithmically divided into two sub-problems that are highly coupled, the mechanical sub 

problem (balance of momentum) and the thermal sub problem (energy conservation). Each of 

these sub problems is generally non-linear (geometric and/or material). In this thesis we consider 

an isothermal, isotropic problem; i.e., the deformation gradient due to temperature change is 

neglected and the material properties are independent of direction. The mechanical sub problem 

can be further divided into three main problems which represent distinct physical aspects of the 

deformation process, namely the kinematic, the constitutive and the frictionless-contact problems. 
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4.1 The Constitutive Problem  

 

The constitutive model used in any analysis of metal forming process must represent properly the 

complex deformation and elasto-plastic properties of the material. The elasto-plastic constitutive 

model used in this thesis is that developed by Zabaras and Arif [2]. In the description of large 

elasto-plastic deformations, the multiplicative decomposition of the deformation gradient tensor 

F into its elastic eF  and plastic part pF  is assumed. The model is developed in stress-free 

intermediate configuration, and then all the constitutive relationships are transformed to the 

deformed configuration. 

 

 In the deformed configuration the following additive decomposition of the Almansi strain tensor 

e into the elastic and plastic parts, e
e  and p

e , respectively, is obtained: 

pe
eee +=                                                                      (4.1) 

The Almansi strain tensor, and its elastic and plastic parts, e, e
e  and p

e , can be expressed by the 

deformation gradient tensor F and its elastic eF  and plastic pF  parts in the following form [1]: 
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−=

−=

−=

FFIe

FFFFe

FFIe
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eTee

                                                (4.2) 

 

This indicates that the constitutive model consists of evolution equations for the Cauchy stress T 

and an internal scalar (or tensorial state variable), s, called the isotropic deformation resistance. 

Assuming a hypoelastic form of elasticity, the Jaumann rate,
∆

T , of the Cauchy stress is given as a 

linear isotropic function of the elastic rate of deformation, D
e
 , which is here assumed to be the 

difference of the total, D, and plastic, D
p
, deformation rates, respectively. Using the continuum 

mechanics notation of Zabaras [21] , we can write the following evolution equation: 

][ˆ pDDT −= e
l                                                                            (4.1) 

With the elastic isotropic moduli e
l defined as  
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II ⊗
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
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
−+ℑ= GKG

e
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2
2l                                                         (4.2) 

and where G and K are the shear and bulk moduli, respectively, and ℑ  and I denote unit fourth 

and second order tensors, respectively. In this thesis, the symbol ‘[ ]’ is reserved for the dot 

product between any fourth order tensor and any second order tensor, ‘.’ Is used for the dot 

product of any two second order tensors and ‘ ⊗ ’ is used for the dyadic product of two same 

order tensors. 

 

A flow rule describing the plastic rate of deformation is defined as follows [2]: 

)~,(
2

3
.

σε TND ′= ppp                                                                         (4.3) 

The unit direction p
N of the plastic rate of deformation is given using the normality rule 

σ
σ ~2

3
)~,(

'
' T

TN =p                                                                               (4.4) 

where T′ is the deviatoric part of the Cauchy stress and the equivalent stress is defined as 

T.T ′′=
3

2~σ                                                                                         (4.4) 

In addition, the equivalent plastic strain rate is prescribed as a function of the current values of 

equivalent stress and state variable 

),~(~

.
.

sfp σε =                                                                                        (4.5) 

To complete the flow rule for rate-dependent plasticity, the evolution equation of a scalar state 

variable takes the form  
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                                                                             (4.6a) 

where h(s) denotes a positive hardening function. 

The selection of both functions ),~( sg σ  and ),~( sf σ  is based on phenomenological theories 

usually related to micromechanics. Equations 4.4 and 4.6 can also be written as  
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Let us assume that at time nt , the configuration Bn of the body and the pair of variables (Tn, Sn) 

are known. At time ttt nn ∆+=+1 , the continuum is assumed to occupy the know 

configuration 1+nB . Then the problem is to determine the state ( 11 , ++ nn sT ) at each material point 

in 1+nB , based on the given constitutive relations. From now on, 1+nF  will denote the relative 

deformation gradient of the configuration 1+nB  with respect to the configuration     nB ( IF =n ).  

 

4.1.1 Review of objectivity requirements 

 

Two motions x(X, t) and x*(X, t) are called objectively equivalent if and only if 

x* (X, t) = Z(t)(x(X,t)-0)+c(t)                                                                  (4.7) 

where 0 is a fixed point in space and the rigid body rotation Z(t) and translation c(t) are functions 

of time alone, of which Z(t) is subject to  

Z
T
Z = I    and         det Z= 1                                                                  (4.8) 

Now, it can be shown that  
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                                                                   (4.9) 

where F, D, W and L represent the deformation gradient, rate of deformation, spin and velocity 

gradients in the x(X,t) motion, respectively and F*, D*, W* and L* represent the corresponding 

star quantities, respectively. In summary, a tensorial quantity is said to be objective or material 

frame-indifferent, if in any two objectively equivalent motions it obeys the appropriate tensor 

transformation law as given below for a vector a, second order tensor B and fourth order tensorξ : 
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)ZZ(Zξ(ξ
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                                                                      (4.10) 
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Rotational –neutralized form of the constitutive model 

 

Let us define the incremental rotation tensor Q(t), as the solution of the following initial value 

Problem: 

IQ

WQQ

=

≤≤= +

)(

)()()( 1

t

tttttt nn

T&
                                              (4.11) 

where the spin tensor W is defined as the antisymmetric part of the velocity gradient L.  

 

The following bar transformations, the stress-free intermediate configurations, of x, F, A (any 

second order symmetric tensor), andΘ (any fourth order isotropic tensor) are also defined as 
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                                                                         (4.12) 

These pull back (rotation-neutralized) quantities (equation 4.12) with Q would be used to define a 

convenient framework to perform the integration of the constitutive model defined by equations 

(4.1) - (4.6). 

Following the previous definitions, the pull back Cauchy stress with Q can be defined as  

TQQT T=                                                                                     (4.13) 

Then, equation (4.1) takes the following simplified form: 

]D-D[]D[QTQT peeeT
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where for material obeying isotropic elasticity ee
ll = .  
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Finally, the evolution equation for the state variable (s) remains the same as in equation (4.6). 

4.1.2 Generalized mid-point rule 

 

To derive the generalized mid-point integration rule, we can start from the following objective 

identity: 

dt

t

t

nn ∫
+

+=+

1n

n

TTT
&

1                                                                         (4.16) 

thus, by using equation (4.14), equation (4.16) can be written as: 
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DDTT ll1                                              (4.17) 

Using the generalized mid-point rule to calculate the two integrals on the right side of the 

equation above, we can write 

[ ]pe

nn EETT ∆−∆+=+ l1                                                            (4.18) 

where the strain increments E∆ and pE∆  are defined as  

t
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pp ∆=∆

∆=∆
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n

n

DE

DE
                                                                          (4.19) 

where βα and  are constants and with 1),(0 ≤≤ βα , and  
p

and βα ++ nn DD  are defined as the 

total and plastic rate of deformation at some intermediate configurations βα ++ nn and BB between 

1+nn and BB   respectively. As will be discussed later, such a generalized two parameter mid-

point rule includes a scheme that is second order accurate in the integration of both the total rate 

of deformation and the plastic rate of deformation )5.05.0( == βα and , and a scheme which is 

second order accurate in the integration of the total rate of deformation, while still maintaining 

the efficiency of the radial return method )15.0( == βα and . 

Finally, upon calculation of  1+nT  from equation (4.18), we can calculate the stress 1+nT       as  

1n1n QTQT ++++ = T

nn 11                                                                         (4.20) 

To effectively use the above algorithm in order to calculate the stress 1+nT  corresponding to a 

given 1+nF  , we should assume an objective interpolation scheme for the calculation of the rate of 

deformation α+nD and the rotation tensor 1+nQ , and also a scheme for the iterative calculation 
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of p

β+nD . The first two of these issues are undertaken in the next section, while a discussion of the 

last one follows. 

 

Calculation of the plastic rate of deformation p

β+nD  requires the knowledge of the material state 

( ββ ++ nn s,T ). Assuming an iterative approach, one can calculate the right side of equation (4.19) 

using the following approximations for β+nT  and β+ns :   
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                                                                     (4.21) 

where 1+nT  is calculated through an iterative process. Note that the generalized mid-point rule for 

the calculation of the plastic strain increment pE∆  may be considered as a return mapping 

algorithm which corrects the elastic predictor trial

n 1+
T  along a flow direction evaluated at the mid-

point ( ββ ++ nn s,T ), where  

[ ]α+∆+=
+ n

e

n

trial
T

n
ET l

1
                                                                        (4.22) 

 

4.2 Kinematic approximations  

 

Equations (4.18)-(4.19) will be incrementally objective when for the motion x* (X, t) defined 

earlier (equations (4.7) – (4.10)), the algorithm predicts that  

1n1n

*
ZTZT ++++ = T

nn 11                                                                      (4.23) 

and  

11 ++ = nn SS
*                                                                                      (4.24) 

To derive a family of incrementally objective integration schemes based on the generalized mid-

point rule proposed earlier, an approximation of α+nD and 1+nQ  are required. This interpolation 

scheme must be such that  

αα ++ = nn DD
*                                                                     (4.25a)  

and     111 +++ = nnn QZQ
*                                                                (4.25b) 
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Indeed, from equations (4.18), (4.19), (4.21) and (4.25) it can be concluded that  

11
*

++ = nn TT                                                                       (4.26) 

or using the definition of the bar transformed tensors 

11111
*
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∗

+ = nn

T

nnn

T

QTQQTQ
*

1n                                                      (4.27) 

which, using equation (4.25), leads to equation (4.24).  

 

It is then our task to generate interpolation schemes which satisfy equations (4.25) for any 

rotation Z(t) defined such that IZZ =≡ nn )(t . Since the deformation gradients are given in the 

beginning I)(F =n  and end ( 1+nF ) of the time step, our goal is to derive an interpolation scheme 

of the following form: 

                                      ( )αα ,ˆ
1++ = nn FDD     

             with             ( ) 0ˆ =+ αα I,Dn                                                                          (4.28a) 

                  and              ( )11

ˆ
++ = nn FQQ       

with              ( ) 0
ˆ

1 =++ nn UQ α                                                                        (4.28a) 

 

Certain restrictions have to be imposed on the functions α+nD̂  and α+nQ
ˆ

 in order to satisfy the 

objectivity constrains given by equations (4.25). Since these two equations are true for any proper 

rotation Z, let us select T

nn 11 ++ = RZ  where the rotation, 1nR +  is defined from the polar 

decomposition of 1nF + , i.e.  111 +++ = nnn URF .Then equations (4.28a, b) give  

),(ˆ),(ˆ),(ˆ
1111 ααα ααα +++++++ == nnnnnnn UDURDFD     (4.29a) 

and   

  11111 ),(
ˆ

)(
ˆ

+++++++ == nnn
T

nnnn RFRQRFQ ααα               (4.29b) 

Equations (4.29a) and (4.29b) define the final required interpolation forms. Here, α+nD̂  is a 

function only of the right stretch tensor at the end of time step l 1+nU  and α while α+nQ
ˆ

 is equal 



          49 

to the known rotation tensor α+nR . A derivation of the present interpolation scheme to α+nD̂ is 

now given. The rotation-neutralized configuration at time α+nt  (see Figure 1) is assumed as 

1)1( ++ +−= nnαn xxx αα                                                             (4.30) 

where the rotation – neutralized configuration at time 1+nt is approximated as 

α++ ∆+= nnn txxx &
1                                                                     (4.31) 

With the configuration nB selected as the reference configuration (i.e. In =F ), we can derive 

from equation (4.30) that  

1)1( ++ +−= nαn FIF αα                                                              (4.32) 

From equation (4.31), one can derive that  

α+++ −
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= n
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nαn
t

1
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1

FIFL                                                        (4.33) 

 

Figure 4.1 Schematic of a deforming depicting the ‘rotation-neutralized’ states as described by 

the assumed kinematic approximations 
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Following equation (4.29b), the rotation 11 ++ = nn RQ  which modifies equations (4.32) and (4.33) 

to the following form [2]: 

1)1( ++ +−= nαn UIF αα                                                                     (4.34a) 

α++++ −
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== n
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nαnαn
t

1

1 )(
1

FIUDL                                                   (4.34b) 

From the above equations it becomes clear that the proposed integration scheme falls in the 

category of equations (4.29a) and (4.29b), and so it is an objective scheme for any value ofα . 

Out of the several combinations of α and β , it is found that for a wide range of strain increments 

the most efficient and accurate algorithm is the one with 5.0=α  and 1=β  [2]. Thus, it is quite 

interesting to observe that the present interpolation for 5.0=α  takes the following form: 

1
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2

1 ))((
2 −

+++
+−

∆
= IUIUD nnn t

                                                     (4.35) 

This form has been proposed independently by Weber et al. More specifically, Nagtegaal and 

Veldpaus proposed that  

)ln(
1

1++
∆

= nαn
t

UD                                                                            (3.36) 

This was modified by Weber et al using a pade approximation of )ln( 1+nU . In the end, they 

independently arrived at the approximation given by equation (4.35). Also note that, for 0=α , 

( )tαnαn ∆=∆ ++ DE  becomes the incremental Biot strain, while for 1=α , αn+∆E takes a form 

similar to an Eulerian strain. 

 

 

4.3 Variational Formulation and Solution Procedure 

 

Let us suppose that the configuration nB  of the body at time ntt = is known and under 

equilibrium. Then the incremental quasi-static boundary value problem at time 1+= ntt is to find 

the incremental (with respect to configuration nB ) displacement field 11),( ++ ≡ nnn t uxu . The 

equilibrium equation is expressed in the reference configuration nB  as: 

nnnn BxfS ∈∀=+⋅∇ 0  



          51 

where S  is the Piola-Kirchoff I stress and f is the internal body forces. 

The weak form of the above equation is written as: 

( ) 0)(~,1 =+ nn xuuG                                                                                  (4.37b) 
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for each test vector field )(~
nxu , is zero on the portion of the boundary where kinematic boundary 

conditions are applied. The above equation is a mixed form of the principle of virtual work. The 

internal work is expressed in the reference configuration nB using the Piola-Kirchhoff I 

stress, T

nnnn

−
++++ = 1111 )(det FTFS , while the external work is expressed in the current configuration 

where the applied surface tractions, t̂ , and body forced, b
~

,are given. 

In order to solve the above set of non-linear equations for the incremental displacement 

field, )( 1+nn t,xu , an iterative scheme must be used. In this thesis a Newton-Raphson scheme is 

adopted, which requires linearization of equation (4.36) about the last obtained solution for 1U +n .  

Denoting the estimate of 1+nu at the th
k  iteration as k

n 1+u , one can write equation (4.36) in 

linearized form as 
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The above equation can be used for the calculation of k

n 1+u , given 1

1

−
+

k

nu . The derivative of G with 

respect to 1+nu  is calculated at the present (prescribed) value 1

1

−
+

k

nu , and is known ass the global 

Jacobian. To calculate this, we can take the variation of equation (4.36) with respect to 1+nu , as 

shown below:  

( )













⋅−⋅−















∂

∂
⋅= ∫ ∫∫

+∂

++

1

11

n nn

dv~ˆds~ˆdd
~

dd)(~,d
n

nnn

B BB

ubutV
x

u
SxuuG            (4.38) 

 

In this thesis the contribution of body forces to the internal stiffness matrix are neglected. For the 

linearization of the internal work term we strictly follow the procedure of Zabaras and Arif [5]. 

Using the definition of Piola-Kirchhoff I stress, T

nnnn

−
++++ = 1111 )(det FTFS , we can show that     
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T
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++++ ++= 1111111111 )(det)det)det dFTF FTF FTF dS           (4.39) 

The main part of the following analysis is to express all differentials in the equation above in 

terms of 1+ndF , which will then be expressed in terms of 1+ndu . 

Using the identities  
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Equation (4.39) can be further simplified as 
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The calculation of 1+ndT  must be consistent with the integration scheme used earlier for the 

calculation of 1+nT . With variation of equation (4.20) and after some tensor algebra we can show 

that  
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nnn dddd 1111111111 ++++++++++ ++= RRTRTRTRRT                     (4.42) 

To complete the linearization process in the equation above, it remains to calculate 
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nn danddd TRRRR  

Taking the variation of the relative deformation gradient )( 111 +++ = nnn URF , we can finally derive 
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1111 ) ++++++++ −= RUU(RFFRR                           (4.43) 

To compute 1+ndU  in terms of 1+ndF , we can use the identity 

1111 ++++ = n

T

nnn FFUU  

to derive that  
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Here “sym” refers to the symmetric part of the tensor. 

Introducing Biot’s strain, IUE −= ++ 11 n

B

n , we have 
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Substitution of equation (4.45) in to equation (4.44) gives 
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Taking the transpose of equation (4.46) and adding to equation (4.46), the following linearized 

approximation of 1+ndU  is obtained: 
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Substitution of equation (4.47) in to equation (4.43) gives the following approximation: 
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To complete the calculation of the right hand side of equation (4.42) in terms of 1+ndF , we must 

calculate 1+ndT . 

From the constitutive part, we have 

[ ]ET ∆ℑ=+ dd
ep

n 1                                                               (4.49) 

E∆ is defined from equation (4.19) and the calculation of the consistent elasto-plastic moduli 

epℑ will be will be undertaken later. As discussed earlier, it will be necessary to express  E∆  

in terms of 1+ndF . From equation (4.33) and using the definition of B

n 1+E , the following 

approximation of E∆  is obtained:  
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n +++ +−=∆ EOEIEE α                                                (4.50) 

The differential of equation (4.50) can be shown to take the form 
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n

B
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B
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which, using equations (4.33), (4.47) and the definition of  B

n 1+E ,is modified as 
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Finally, substitution of equation (4.42), (4.48) and (4.49) in equation (4.41) leads the 

following form: 
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This equation shows that the incremental internal nodal work consists of two distinct parts. 

However, the nodal forces can also be extracted from the equation. 

1. The first term involves the incremental stress ( 1+ndT ) and thus depends on the material 

response and leads to what is called the material tangent stiffness matrix which we 
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denote by matK . This term reflects material response, it changes with deformation 

since nB  depends on 1+nF . 

 

2. The other terms involve the current state of stress ( 1+nT ) and accounts for rotation of 

the stress with the motion. This term is called the geometric stiffness because it 

represents the geometric nonlinearities associated with rotation of the stress. It is also 

called the initial stress matrix to indicate the role of the existing state of stress. It is 

denoted by geoK . 

 

4.4 The Contact Problem 

 

Contact problems fall into two general classes: rigid-to-flexible and flexible-to-flexible. In 

rigid-to-flexible contact problems, one or more of the contacting surfaces are treated as rigid 

(with a much higher stiffness relative to the deformable body/bodies contacted). In general, 

any time a soft material comes in contact with a hard material, the problem may be assumed 

to be rigid-to-flexible. Many metal forming problems fall into this category. In flexible-to-

flexible contact problems, both (or all) contacting bodies are deformable. (i.e., have similar 

stiffness). An example of flexible-to-flexible analysis is the case of bolted flanges. In this 

thesis rigid-to-flexible contact of metal forming is studied. The work piece is considered to be 

flexible and that of the dies are considered to be rigid. 

 

Contact problems, in metal forming, are among the most difficult nonlinear problems because 

the response in contact problems is not smooth. The displacements normal to the contact 

interface are discontinuous in time when contact occurs. These characteristics of contact 

problems introduce significant difficulties in the time integration of the governing equations 

and impair the performance of numerical algorithms.  

 

A typical forming process employs one or more tools with which a work-piece is deformed in 

to a desired shape, from which we can conclude that there exists an interaction between 

different solid components during the process. Once the modeling of contact problems is 
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considered, two research areas can be distinguished, namely the constitutive modeling of 

contact and development of numerical methods for contact problems. Therefore, the 

appropriate choice of methodologies and algorithms is crucial in the successful treatment of 

contact problems. Techniques such as regularization are highly useful in obtaining robust 

solution procedures.  

 

4.4.1 Frictionless Contact Description 

 

 

Two bodies that come in contact are depicted in Figure 1. Contact algorithms in general purpose 

software can treat the interaction of many bodies, but for purposes of simplicity, we limit 

ourselves to two bodies, the die and the work-piece. Let’s denote the configurations of the two 

bodies by AΩ and BΩ , for the work piece and the die, respectively, and the union of the two 

bodies by Ω . The boundaries of the bodies are denoted by AΓ and BΓ .  Although the two bodies 

are interchangeable with respect to their mechanics, it is sometimes useful to express the 

equations in terms of one of the bodies, which is called the master. Body A (the work piece) is 

designated as the master, body B (the die) as the slave. To distinguish field variables that are 

associated with a particular body, we append a superscript A or B; when neither of these 

superscripts appears, the field variable applies to the union of the two bodies. Thus the 

displacement field u(X, t) refers to the displacement field in both bodies, whereas u
A
(X, t) refers 

to the displacement in body A. 

 

As indicated in figure 4.2, the reference configurations of the die and the work piece are 

represented by the open sets AΩ and BΩ . The bodies undergo motions denoted 
)( A

tϕ and
B)

t

(ϕ , 

which cause them to contact and produce interactive forces during some portion of the time 

interval H= [0.T]. These motions can be expressed via the following mappings: 

( ) ( ) 2,1, =→×Ω idnii RH:ϕ                                                   (4.54) 

i)(Ω  indicates the closer of i)(Ω , or the union of the open set with its boundary. It is assumed for 

simplicity that i)(Ω  (i=1, 2) correspond spatially to the initial positions of the bodies, and that 
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these reference configurations are such that if the bodies contact at t=0, no interactive forces are 

produced.   

 

For any time H∈t , the configuration obtained by fixing the time argument of 
i)(Ω  is denoted 

as 2,1,
(

=Ω i
i)

t . Following a frequently used convention, geometric objects and tensor quantities 

defined on )(
( ii)

t Ωϕ  will be referred to as spatial objects, while quantities defined on the 

reference states i)(Ω  will be referred to as material objects.  

Accordingly, material points of A)(Ω  are denoted as A)(X , and material point of B)(Ω  are 

denotedas B)(X

 

Figure 4.2 Notation for the finite deformation Contact in metal forming 

 

The contact interface consists of the intersection of the surfaces of the two bodies and is 

denoted by CΓ . 

BAC Γ∩Γ=Γ                                                                       (4.44) 
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This contact interface consists of the two physical surfaces of the two bodies which are in 

contact. In those cases, CΓ refers to the master surface. Moreover, although the two bodies 

may be in contact on several disjoint interfaces, we designate their union by a single symbol 

CΓ . The contact interface is a function of time, and its determination is an important part of 

the solution of the contact problem. 

 

The dimension of the contact surface CΓ is one lower than the number of space dimensions. 

Thus, for a 2D problem, CΓ  is a curve, and for a 3D problem CΓ is a surface. Furthermore, 

without loss of generality we assume that CΓ  is simply connected. As a consequence of the 

connectivity, all the points in CΓ  can be continuously mapped onto a unique point in 

1−ℜ dn
and vice versa. The mapping in itself is not unique. 

 

In construction the equations, it is convenient to express vectors in terms of local components 

of the contact surface. A local coordinate system is set up at each point of the master contact 

surface as shown in Figure 4.3. At each point, we can construct unit vectors tangent to the 

surface of the master body A

x

AA

x

A
and eeee ˆˆˆˆ

21 ≡≡ .  The normal for body A is given by 

AAA

21
ˆˆ een ×=                                                                         (4.45) 

 

 

 

Figure4.3 Contact interface showing local unit vectors 
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A

xê  An  

A
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The dimension of the contact surface ( )iΓ  is one lower than the number of space di-mensions. 

Thus, for a 2D problem, ( )iΓ  is a curve, and for a 3D problem ( )iΓ  is a surface. Furthermore, 

without loss of generality we assume that ( )iΓ  is simply connected. As a consequence of the 

connectivity, all the points in ( )iΓ  can be continuously mapped onto a unique point in 1−dn
R  

and vice versa. The mapping in itself is not unique. 

 

 

 

 

Figure4.4 Parameterization of contact surfaces 

 

On the contact surface 

BA nn −=                                                                              (4.46) 

that is, the normal of the two bodies are in opposite directions. 

 

The displacement fields can be expressed in the local coordinates of the contact surface by 

A

T

AA

N

AAAA

N

A
uu unenuu +=+= αα

ˆˆ                                         (4.47a) 

A

T

BA

N

ABAB

N

B
uu unenuu +=+= αα

ˆˆ                                         (4.47b) 

 

( )1Γ

• regionAdmissible
 

( )2Γ

• regionleInadmissib
 

     

    ξ•  

( )2

tψ  

( )1

tψ  

3R  

( )1
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As can be seen in the above, the components are expressed in terms of the local coordinate 

system of the master surface. The normal displacements are given by  

ABB

N

AAA

N uu nunu ⋅=⋅=                                              (4.48) 

The two bodies, the die and the work piece, are governed by the standard field equations: 

conservation of mass, momentum and energy, a strain measure, and the constitutive equations 

as discussed before. Contact adds the following conditions: the bodies can not interpenetrate 

and the tractions must satisfy momentum conservation on the interface. Furthermore, the 

normal traction across the contact interface cannot be tensile. We classify the requirements on 

the displacements as kinematic conditions and the requirements on the tractions as kinetic 

conditions. 

 

4.4.2 Contact constraints 

 

In this section, contact constraints are discussed, which are constraints for               

impenetrability and tractions. These constraints pair the traction in normal direction with the 

normal displcement. Stated in another way, the impenetrability condition simply states that two 

bodies can not occupy the same space at the same time and the compressive interaction 

requirement excludes the possible adhesion of contacting bodies. This capacity to separate at the 

slightest pull is sometimes emphasized by referring to the problem under consideration as 

unilateral contact problem. In expressing these constraints, it is convenient to choose one contact 

surface as slave (contactor) and the other as master (target). Here, AΓ is chosen as master and 

BΓ as slave. 

 

4.4.2.1 Impenetrability   Condition  

 

In a continuum model, it is not allowed that two points occupy the same location in space. For the 

interior points within an object, this is taken care of by choosing appropriate candidate functions 

for the solution of the problem. For multiple bodies this problem reduces to stating that no 

boundary point of the first body may penetrate the other. 
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 The impenetrability condition for a pair of bodies can be stated as  

0=Ω∩Ω BA                                                                                (4.49) 

That is, the intersection of the two bodies is the null set. In other words, the two bodies are not 

allowed to overlap, which can also be viewed as a compatibility condition. The impenetrability 

condition is highly nonlinear for metal forming problems, and in general cannot be expressed as 

an algebraic or differential equation in terms of the displacements.  

 

In many implementations of contact, as can be seen in figure 4.4, the impenetrability 

condition is relaxed [5], i.e. a certain amount of interpenetration is permitted. When the points 

of two contact areas have interpenetrated, it is useful to write the interpenetration ),( tg N

αζ  

in the form of an explicit equation. Consider a situation such as shown in Figure 4.4, where 

point P has penetrated body A.  

 

The interpenetration is defined as the minimum distance from point P on body B to a point on 

body A. The distance between P and any point on A is given by  

[ ]2

1
222 )()()(

),(),(

ABABAB

AB

AB

zzyyxx

ttl

−+−+−≡

−= ζζ xx
                                  (4.50) 

 

)( BodySlaveBΩ  

P  

( ) 0<pNg x  )( BodyMasterAΩ  

Aζ  

Bζ  

Figure 4.5 Interpenetration of point P on body slave B defined as orthonormal 

projection from master body A 
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The referential coordinates Aζ  and Bζ  pertains to bodies A and B, respectively. The 

interpenetration ),( tg N ζ  is then defined as the minimum distance of point P to the surface of 

work piece when point P has penetrated the die: 

( ) ( ) ( )t,t,t,g
AABBB

N A
ζζζ

ζ
xxmin −=                                            (4.51a) 

 

if    ( ) ( )[ ] 0≤⋅− AAABB t,t, nxx ζζ                                                  (4.51b) 

Otherwise     ( ) 0=t,g
B

N ζ                                                                                   (4.51c) 

According to this definition, ( )t,g
B

N ζ  is positive when interpenetration occurs and vanishes 

when the bodies have not interpenetrated. 

 

To evaluate the ( )t,g
B

N ζ , the referential coordinate Aζ  which minimizes the interpenetration 

must be found, i.e. we must find location of the point ( )t,AA ζx on  the work piece which 

corresponds to the stationary point of the distance, so we take the derivative of ABl  with 

respect to Aζ   and set the result to zero. This yield 

( ) ( )
( ) ( )

( )

0=⋅=

∂

∂
⋅

−

−
=

∂

α

AA

AABB

AABB

AB t,

t,t,

t,t,l

ae

x

xx

xx
αα ζ

ζ

ζζ

ζζ

ζ                                              (4.52) 

 

where B,A=α and αa  is given by  

( ) A
AA

α ,x
t,

ααζ

ζ
=

∂

∂
=

x
a                                                                          (4.53) 

 and
AB

AB

x-x

x-x
e = , so e is a unit vector from the work piece to the die surface. The last term in 

the above shows that the distance is minimum, i.e. the derivative vanishes, when e is 

orthogonal to the two tangent vectors αa . This implies that e is normal to the surface of the 

work piece. Thus ( )t,AA ζx  is the orthogonal projection of the point P with coordinates 

Bx onto the work piece.  
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For the case of metal forming problems, the subject of the thesis, we can define the range of 

deformation space as admissible and non admissible. Here using this definition, in this thesis 

the non admissible range is the space which is occupied by the die and the rest is the 

admissible one. 

 

Implication of nonconvexity 

 

One difficulty with the definition of equation (4.51) is that the projection may not be unique. 

This can occur when the admissible region boundary by AΓ is nonconvex, as depicted in 

figure 4.4. In other words, it is possible that more than one point of AΓ will accomplish the 

minimization of equation (4.51). 

 

In practice, however, this problem is not o major consequence. This is true for two reasons. 

First, it is really only local convexity that is of concern in gap determination. When even this 

weaker condition is violated, the number of points achieving the minimization is generally 

small in the discrete case. Of these, usually only the worst offender of the constraints 

(equation 4.51a) needs to be considered and corrected. Second, with regard to the kinematic 

descriptions discussed earlier, the key point with regard to the projection is its normality to 

the master (work piece) surface, which will hold for many local minimizer of the distance in 

equation (4.51). Thus, although the potential lack of uniqueness must be accounted for in 

contact detection, it poses little difficulty with regard to contact formulation.  

 

4.4.2.2 Traction Conditions.  

 

The tractions must observe the balance of momentum across the contact interface. Since the 

interface has no mass, this requires that the sum of the tractions on the two bodies vanish. 

0=+ BA
tt                                                                              (4.54) 

And             ),(),( )()()( tt iii XNXPt =                                                             (4.55) 

Where ( ) ( )t,i XP  and ( ) ( )t,i XN are the first Piola–Kirchhoff stress tensor and reference normal 

vector determined at the particular contactor point X respectively.  
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The tractions on the surfaces of the two bodies are defined by Cauchy’s law 
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The normal tractions are defined by   
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The normal components, like all local components on the contact surface, refer to the work 

piece. The momentum balance condition on the normal tractions can be obtained by taking a 

dot product of Equation (4.54) with the normal vector An , which gives  

0=+ B

N

A

N tt                                                                                   (4.58) 

We do not consider any adhesion between the contact surfaces in the normal direction, soothe 

normal tractions can not be tensile; the normal tractions must be compressive, although the 

normal tractions can also vanish. This can be stated as 

0),(),( ≤−=≡ ttttt
B

N

A

NN xx                                                           (4.59) 

 

4.4.2.3 Constitutive Contact Laws  

 

The constitutive contact laws relate the kinematic and static contact variables discussed 

before. In general, these laws can be formulated using both the spatial and nominal contact 

tractions. However, in metal forming, it seems that a physically acceptable and natural way is 

to derive or postulate these laws in the spatial description and later to transform them to the 

material description.  

 

In fact, the whole contact problem can be reduced to a boundary based problem, by 

demanding that the signed distance of any point on the first body is non-negative with respect 

to the other, where the signed distance between a point and a boundary is defined as in the 

previous section. That is, the normal gap between a point and a boundary is positive when 

interpenetration occurs and vanishes when the bodies have not interpenetrated. 
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Conditions (4.51) and (4.59) can be combined to: 

0),(

0

0),(

=⋅

≤

≥

NN

N

N

ttg

t

tg

x

x

                                                                 (4.60) 

The first condition, in equation 4.60, states that no penetration may occur. Hence, this is the 

form in which the impenetrability constraint is cast. Using this, the normal traction can be 

characterized. The second condition states that the contact normal traction should be 

compressive. Finally, the third condition states a complementarity condition. It is called the 

unitary contact condition. This equation also expresses the fact that the contact forces do no 

work. That this condition must hold on the contact surface can be seen as follow: when the 

bodies are in contact and remain in contact, 0),( =tg N x , whereas when contact ceases, 

0),( ≤tg N x  but the normal traction must vanish, so the product always vanishes. It will also 

be seen that this is a Kuhn-Tucker condition when a Lagrange multiplier approach is used, for 

the normal traction is then equivalent to a Lagrange multiplier, and the unitary condition 

states that product of the Lagrange multiplier an the constraint on the velocities vanishes. 

 

 4.5 The Weak Form of Contact    

 

The weak formulation of contact is obtained from the strong formulation of contact by 

applying the principle of virtual work. The strong form is given by the constraints given in 

equation (4.60) and an equilibrium model. The equilibrium model presented here is a quasi-

static one, although no additional difficulty is to be encountered if a dynamic model would be 

used. 

The model is commonly given as: 

                    Ωσ ini 0=⋅∇  

   iii
in

~
. σ= Γtnσ    , Neumann boundary                                              (4.61) 

                     i

u

ii
in~ Γuu =      , Dirichlet boundary                                                

In the equilibrium equation iσ  is the Cauchy stress tensor in body i and if represents the body 

forces acting on body i. There is furthermore boundary conditions prescribed on i

σΓ , which is 

that part of the boundary on which tractions are prescribed. The prescribed tractions are i
t
~

. 
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Also boundary conditions are prescribed on i

uΓ , which is that part of the boundary on which 

displacements are prescribed. The prescribed displacements are given by i
u~ . 

 

 

4.5.1 Forming the Contact Integrals 

 

 If the equilibrium equation holds, then upon taking the inner-product with some arbitrary 

weighing function i
w , which is interpreted as virtual displacements, it follows that: 

[ ] 0=⋅+⋅∇ iii wfσ                                                                  (4.62) 

To see that this is true, choose for i
w  consecutively 21 ,ee and 3e  to regain the equilibrium 

equations. 

Integrating the above equation yields: 

[ ] 0=Ω⋅+⋅∇∫Ω d
iii wfσ                                                           (4.63) 

Integrating the previous equation by parts by applying the divergence theorem, yields: 

[ ]

[ ] 0

~
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=Γ⋅−Γ⋅⋅−

Γ⋅−Ω⋅−∇

∫∫

∫∫

ΓΓ

ΓΩ

dd

dd

i
c

i
u

i

iiiii

iiiii

wtwnσ

wtwfwσ
σ

                   (4.64) 

Introducing the compatibility condition 0=i
w on i

uΓ , does not change the solution of the 

original problem. It will however cause the integral over the prescribed displacement 

boundary to vanish. By using the following shorthand: 

( ) [ ] ,
~

, Γ⋅−Ω⋅−∇= ∫∫ ΓΩ
dd

i

iiiiiiiii

σ

wtwfw:σwuG                (4.65a) 

( ) Γ⋅−= ∫Γ d
i
c

iiiii

c wtwuG ,                                                         (4.65b) 

We can also write 

( ) ( ) 0,, =− iii

c

iii
wuGwuG                                                       (4.66) 

Up until this point, nothing was really done to obtain the work conjugate pairs as was 

suggested in the introduction. To obtain these, an interpretation is to be made on the meaning 

of i
w . On the one hand, i

w  are often interpreted as virtual displacements. The interpretation 

of the above weak equations is then that of virtual work.  
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4.5.2 Weak Form with Virtual Work 

 

Here frictionless contact is considered. We restrict the following developments to the case 

where all traction or displacement components are prescribed on a traction or displacement 

boundary, respectively. The contact surface is neither traction nor a displacement boundary. 

Thus the total boundary of work piece A is given by  

cA

u

AA ΓΓΓΓ ∪∪= σ                                                                          (4.67a) 

00,0 =∩=∪=∩ cAcA

u

A

u

A
and ΓΓΓΓΓΓ σσ                              (4.67a) 

Similar relations hold for slave body B. 

In order to derive the weak form of the contact problem in metal forming, we use the 

Lagrange multiplier approach as regularization method for the impenetrability conditions. 

While alternative approaches are available (Penalty technique, augmented Lagrangian 

method, cross constrain method, etc), the Lagrange method is very popular despite the 

disadvantage that it is needed to set up a nodal and element topology for the Lagrange 

multipliers. However, there are no user-set parameters and the contact constraints can be met 

almost exactly when nodes are contiguous. 

 

 A common approach to imposing the contact constraints is by means of Lagrange 

multipliers. We will follow the description given by T. Belytschko (1998). Let the Lagrange 

multiplier trial functions ( )t,αζλ  and the corresponding test functions be in the following 

spaces  

( ) ( ){ }
( ) ( ){ }c

c

onctJJt

andonctJJt

Γ≥∈=∈

Γ≥∈=∈
−−−

−++

0,/,,,

0,/,,,

1

1

δλδλζδλζδλ

λλζλζλ
αα

αα

                    (4.68) 

The weak form is:  

 ( ) −∈∀∈∀≥+≡ JUif CL ,,0,,, 0 δλδδδδλλδδ uGGuuG            (4.69) 

Then     ∫
Γ

Γ=
C

dg NC )(λδδG                                                                                (4.70) 

Where CΓ is the part of the boundary which potentially comes in contact with die. This weak 

form is equivalent to the momentum equation, the traction boundary conditions and the 

following contact interface conditions: impenetrability (4.51) and momentum balance on 
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normal tractions (4.59). The restriction of the normal interface fraction to be compressive will 

result from the constraints on the trial set of Lagrange multipliers.  

The term ( )ii

n

i
uuG δ,1+  is given as 

( ) 0)( =Γ−Ω−−= ∫∫ ΓΩ
dtudubuG

i
C

iiiijii

i

L δρρσδδ &                               (4.71) 

All integrals in the above apply to the union of both bodies, i.e. 

BABAA
c σσσσ ΓΓΓ ∪=Ω∪Ω=Ω , . The first step is to integrate the internal virtual work by 

parts and apply Gauss’s theorem: 
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                  (4.72) 

We have used the fact that the integral over the displacement boundary uΓ  vanishes 

because 0=iuδ on uΓ and Cauchy’s law (equation 4.57) has been applied to obtain the 

expressions in the last integral. The first integral on the right hand side of the above applies to 

both the master and slave bodies. The contact surface integral appears for each body when 

Gauss’s theorem is applied, so to express the result as a single integral, the field variables 

associated with the two bodies have been specifically indicated the superscripts A and B. 

 

The integrand of the second integral on the RHS of the above is now broken up in to 

components normal and tangential to the contact surface. In indicial notation this gives  

A
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N

A

N
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N tututu ˆˆδδδ +=                                                          (4.73) 

Where Nt  is the normal tractions between the contacting bodies; and 

tt is tangential traction between the contacting bodies. 

Substituting Equations (4.72) and (4.73) in to equation (4.71) gives 
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                 (4.74) 

Now consider Equation (4.70) 
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Combining Equations (4.74) and (4.75) yields 
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CHAPTER FIVE 

    
 

5. FINITE ELEMENT IMPLEMENTATION 

 

In this chapter, the metal forming problem is solved using the finite element method. The analysis 

of metal forming processes leads to a nonlinear problem where the iterative solution procedure 

can become very slow or may even diverge [38]. The non-linearities observed can be categorized 

as geometrical non-linearities, material non-linearities due to plastic deformation, and contact 

mode changes. In a static finite element program, high mesh resolution can cause convergence 

problems, especially for large deformable elements [34]. But a sufficiently fine mesh must be 

generated so that reasonable results are captured. According to K. C. Ho et al. [39], in order to 

obtain optimal and reliable convergence, it is essential that the rigid tool surface representation be 

smooth. 

 

The above mentioned nonlinearities make the metal forming problem more complicated and 

hence equations that describe the solution must incorporate conditions which are not fully known 

until the solution is found. Therefore the solution can not be obtained in a single step of analysis. 

Rather we must take several steps, update the iterative solutions after each step, and repeat it until 

convergence test is satisfied. 

 

Theoretically, the iteration may begin with either contact iteration or elasto-plastic iteration and 

go on till the contact status of all contact nodes does not change and there is no increase in new 

failure points. In practice, it seems to work better that the procedure begins with contact iteration. 

The corresponding iterative procedure in a load step is illustrated in Figure 5.2. 
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Figure 5.1 Iterative procedure 

 

5.1 Incompressibility condition 

 

With the previous weak formulation, the incompressibility condition ( ) 1== εΘ tr can be 

introduced by a proper choice of the energy function ( )ΘU . However the energy function 

( )ΘU must satisfy the following two conditions. 

• ( ) 0≥ΘU . This condition is imposed by the fact that the energy must be positive or zero 

function. 

• ( ) 10 =≡= ΘΘU . This condition is required by the incompressibility condition. 

 

It is known that standard displacement-based finite element methods are known to behave poorly 

for nearly incompressible elasto-plastic media, like metal forming exhibiting volumetric locking 
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effect and failing to correctly reproduce ultimate loads in limit state analyses. Well-known finite 

element processes which overcome these difficulties include the family of B  elements [10], 

enhanced-assumed strain (EAS) elements [41] or high-order mixed displacement–pressure 

formulations [10]. In this thesis, we consider an alternative approach based on the stabilization of 

a mixed displacement–pressure low-order finite element formulation. 

 

In this thesis we are dealing with elasto-plasticity. Hence, a residual-driven iterative scheme is 

needed. Therefore, at step (n+1) we have the following volumetric–deviatoric split of the 

constitutive equations discussed in chapter 4: 

∫
Ω

++ =Ω ext

nn

T
d 11 FTB                                                                                          (5.1a) 

                                                                             

                                               (5.1b)                                        

 

Equation (5.1a) represents the general constitutive equations and equation (5.1b) is representation 

of the volumetric–deviatoric split of the constitutive equations discussed in chapter four. Pressure 

shape functions are denoted by N
~

, and B  is the standard strain–displacement operator including 

spatial derivatives of displacement shape functions and 1 is the vectorial representation of 

Kronecker’s delta ijδ . Applying a full implicit integration scheme for plastic strains the 

constitutive equation can be expressed in its integrated form (as given in chapter 4) at step (n+1), 

as: 
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where  D  is the deviatoric projection of the elastic constitutive matrix D defined as: 

 and 
)(

)
3

1

111 +++ ∆+=

=

nn

p

nn
p

T

fand Tεε

11-D(ID

γ

                                                                 (5.3) 

where  γ  is the plastic multiplier. 

The stress correction is expressed as  
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Rearranging the terms we get 

( ) p∆+∆∆=∆ ∗∗ Cr-εDT γ                                                                   (5.5) 
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The increment of plastic multiplier γ∆  appearing in Equation (5.5) can be expressed through 

total strain and mean pressure increments via consistency condition 0=f& , that is 
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Introducing γ∆  into equation (5.5) we get the final form of the stress correction T∆ : 
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which we can express in compact form as: 
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                                                               (5.9) 

Hence the final form of the linearized equation takes the following form, at step (n+1) and 

iteration (i+1): 
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During the iterative process, the accumulated values of the displacement and the pressure are 

updated as follows: 
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Here, 1

1

+
+

i

n∆p  can be viewed as the mean pressure of the stress increment 1

1

+
+

i

n∆T  if and only if the 

step converges. During the iterations, 1

1

+
+

i

n∆p does not always coincide with the hydrostatic part of 

the hydro static-deviatoric split of the stress increment tensor [29], i.e. it may not be exactly the 

mean of the stress increment. 

 

The linearized form of the pressure constitutive equation is expressed in the form: 
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with the residual term i

n 1, +θR expressed as follows: 
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If we restrict our consideration to the Drucker–Prager model then the term 

T
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or in compact form  
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In the case of J2-Plasticity (von Mises), puD is reduced to T1  and ppD reduces to 
K

1
as r is 

orthogonal to 1 and therefore 0=r1T . 

By grouping Equations (5.10) and (5.15), we get: 
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with the left-hand side: 
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and the right-hand side: 
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The second line of equation (5.16) is the multiplied by -1 in order to achieve positive-

definiteness: 
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5.2. Stabilization techniques 

 

Stabilized methods are generalized Galerkin methods where terms are added to enhance the 

stability of the method. Those terms are typically functions of the residuals of the Lagrange 

equations multiplied by a differential operator acting on the weight space, and evaluated element- 

wise. Therefore, we have to add appropriate terms to the matrix equation (5.19) in order to 

enhance its stability. These terms take the form: 
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where, τ  is a stabilization factor matrix, with Iτ τ=  and  τ  is defined as: 
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eϑ  is a dimensionless scalar factor and e
h  is a characteristic length of the element and K is the 

element’s material shear modulus.  

The weighting part and the residual part of equation (5.20) will now be addressed separately. In 

the elasto-plastic case, the weighting part of the stabilization term (equation (5.20)) can be 

written as: 
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We modify the standard (Galerkin/least-squares) GLS scheme by dropping the plastic 

contribution, avoiding therefore linearization of the weighting part of the stabilizing terms, and 
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Expressing the residual part of the stabilizing term at step (n+1), iteration (n+1): 
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where the incremental constitutive equation (5.9) can be used in order to derive an expression for 
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Collecting weighting and residual parts of the stabilizing term leads to 
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Adding these terms to the matrix equation (5.19) we end up with the following system of 

equations: 
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The scheme of the iterative solution of equation (5.27) is given below. 
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Figure 5.2 Algorithm of Nonlinear System Solver 
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5.3 Solution Procedure 

 

The finite element method is accompanied by a large number of numerical procedures such as: 

numerical integration, numerical algorithms for solving nonlinear problems. In this thesis we 

mention briefly some of these methods which play an important role in the analysis of the metal 

forming problem. Since we will use MATLAB, we limit our presentation to numerical methods 

related to this code. Here, the following shape functions are used for displacement field 

modeling. 
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where ηξ and are the local coordinates of the node i as is shown in Figure 5.1. 

 
Figure 5.3 Two dimensional constant strain triangular finite 

element. 
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The procedure is a 22 × Gauss-type integration. Here we distinguish two types of integrals: 

volume integrals and surface integrals. A volume integral on the element e is calculated as 

follows 
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where ηξ and are the Gauss point coordinates and iw and jw  are the Gauss weights.J is the 

surface Jacobian [1] 
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in which 
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The unit normal to the surface of the element e is 
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5.4 Iterative algorithm 

 

Solving equation (5.27) implies calculation of the tangent stiffness matrix tanK  at every iteration. 

This iteration method is called full Newton-Raphson. This is very expensive in the finite element 

analysis and therefore a modified procedure is usually used. One way is to use the tangent matrix 

from the first time step. This method is called the initial stress method and it usually leads to 

more iterations as the solution advances in time. The contact algorithm is based on the Lagrange 

multiplier method with augmentation steps in order to increase the accuracy and efficiency of the 

algorithm. 
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In the updated Lagrangian FEM formulation, sequences of incremental problems are defined 

from time nt  to 1+nt ; n=0, 1, 2… Within each time increment, as discussed in chapter 3 and 4, the 

deformation problem is further divided into three incremental sub-problems: (1) the constitutive 

problem, (2) the kinematic problem and (3) the contact problem. 

 

In the constitutive incremental problem, we calculate ( p

nnn s 111 , +++ F,T ) given the incremental 

deformation gradient trialF  from nt  to 1+nt  and ( p

nnn s F,T , ). In the kinematic problem, one 

calculates the incremental displacements from nt  to 1+nt  given the triad ( ps F,T, ) at 1+nt . In the 

contact sub-problem, given the configuration 1+nB , the die location and shape at 1+nt , as well as 

estimates of the contact tractions from a previous time step or Newton iteration, we have to 

compute (update) regions of contact as well as the contact traction component Nλ . The overall 

solution method for the large deformation problem with contact can be divided in to two main 

steps. The first one is solving of the principle of virtual work relations for the incremental 

displacements. Then the next step is updating of the stresses and state variables based on the 

incremental displacements calculated before.    

 

In the algorithm below, k refers to the augmentation index and j refers to the Newton–Raphson 

iteration index. The terms G and CG  in the kinematic problem refer to the principle of virtual 

work and contributions from the internal work/non-contact related boundary terms and contact 

terms, respectively [28]. 

 

1. Initialization: 
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Here, the above equation is non-linear and is solved iteratively [28]. A Newton–Raphson 

algorithm is used to solve this system and the computation of the linearized stiffness 

matrix and residual is dependent on the solution of the kinematic, constitutive and contact 

sub-problems. The solution of this non-linear equation predicts estimates of the body 

configuration jn
k

,1+B  at 1+nt and finally the converged solution 1+n
k

B .  

 

The contact traction k

j-1λ used in the solution of the linearized principle of virtual work 

(based on the estimate k

jn )1(),1( −+B  ) is calculated as follows: 

Normal traction: 

k

NN λλ =  

         Tangential traction: 

            Compute trial state: 

    
N

trial

T

trial

k

TT

trial

T n

µλλ

λλλ

−=Π

+= ∆

 

       Radial return update: 

             IF   ( )0≤Π trial  

THEN   )(sticktrial

TT λλ =  

ELSE  

  )(slip
trial

T

trial

T

NT
λ

λ
µλλ =  

 Complete contact traction description: 

   )()( 11 yτyv TN

k

j λλλ −=−  

3.  Check for contact constraints satisfaction: 

 IF        g

k

n TOLg ≤+ )( )(

1x  

CONVERGED 

 ELSE  

AUGMENT ( Γx ∈∀ n ) 
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IF         ( )0≤Π trial  

THEN 

 ( ) ( )k

T

k

T λλ ∆=∆ +1  

ELSE 

 ( ) ( )
( )

( ) nTtrial

T

trial

Tk

N

k

T λ
λ

λ
λµλ −∆=∆ ++ 11  

END 

k=k+1 

GO TO STEP2 

END 

 

4.   Post-process operation: 

Use the converged solution of the configuration 1+nB to update the triad ( ps F,T, ) as well 

as the contact traction component ( Nλ ) at time 1+nt . 

The three sub-problems (constitutive, kinematic and contact) are solved in an iterative manner. 
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CHAPTER SIX 

    

6. NUMERICAL EXAMPLE AND DISCUSSION OF RESULTS  

 

6.1 Axisymmetric open-die forging  
 

Open die forging is a process in which products are made through repeated, incremental plastic 

deformations of a work piece using dies of relatively simple shapes. It is commonly used to 

reduce large ingots or billets into square or round bars of smaller dimension, or for forging large 

high-value parts with limited geometric complexity. In a typical open die forging system the 

work piece is held by a forging manipulator that positions it between the dies of the press. In 

contrast to the more common closed die forging process, the dies only deform a limited region of 

the work piece surface, so that many programmed forming increments are needed to bring the 

work piece to its final shape. 

 

Open die forging is of interest for theoretical studies as a model process since it represents a basic 

process which can be varied in many ways to analyze different types of forming problems. In 

addition to a large segment of the industry depends primarily on the predominant application of 

open die forging processes. Parts produced using this process includes forging ingots, large and 

bulky forgings, preforms for finished forgings, etc. 

 

The actual problem can be described schematically as shown in figure 6.1. Here the work piece is 

placed on the fixed lower die and the desired shape will be imparted to the work piece by the 

downward movement of the moveable upper die. In this thesis the one which is indicated in part 

(b), uniform deformation of the billet without friction, is considered. 
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Figure 6.1 (a) Solid cylindrical billet between two flat dies.  (b) Uniform 

                          deformation of the billet without friction.   (c) Deformation 

 with friction. 

 

In order to minimize the complexity of the problem and to get results close to what is obtained in 

practice with minimum computational cost, we have made assumptions that are relevant to the 

given problem. Thus, the assumptions considered during the formulation of the problem and the 

material models used for the implementation of the formulation using the finite element method 

are described below.    

 

• Dies are assumed to be rigid and will not experience any deformation. 

• Contact between die and work piece is taken as frictionless. 

• The displacements are two dimensional. 

• The process is considered to be isothermal. 

• The work piece material is isotropic. 

• The process is assumed to be quasi-static. 
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Die 

Fixed Die 

Work piece 

Friction 

Forces 

(a) (b) (c) 
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6.2 Material model 

 
In this section, we will present a rate-dependent plasticity model proposed by Anand [35]. 

This rate-dependent model differs from the rate-independent model in that there is no explicit 

yield condition, and no loading/unloading criterion is used. Instead, plastic flow is assumed to 

take place at all non-zero stress values, although at law stresses the rate of plastic flow may 

be immeasurably small. Further, the equivalent plastic strain rate needs to be prescribed by an 

appropriate constitutive function in the rate-dependent model.  

 

Here are two basic futures in Anand’s model applicable to isotropic rate-dependent 

constitutive model for metals.  

I. There is no explicit yield surface; rather the instantaneous response of the material is 

dependent on its current state. 

II. A single scalar internal variable “s”, called the deformation resistance, is used to 

represent the isotopic resistance to inelastic flow of the material. 

The specifics of this constitutive equation are the flow equation 

mR
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~
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== &                                              (6.1) 

and the evolution equation: 
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Equation (6.2) allows modeling of both strain hardening and strain softening. 
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where                f =effective inelastic deformation rate 

                         σ~ =effective Cauchy stress 

   s =deformation resistance 

   ∗
s =saturation value of deformation resistance 

   s&=time derivative of deformation resistance 

   θ =absolute temperature 
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The remaining parameters are defined in Table 6.1. The inelastic strain rate in Anand’s 

definition of material is stress dependent as well as dependent on the rate of loading. A 

consistent stress update procedure which is equivalent to Euler backward scheme is used to 

enforce the consistency condition and the evolution equation (6.2) at the end of the time step.  

Table 6.1 Material Parameter Units for Anand Model [2] 

 Parameter Meaning Units 

1 
os  Initial value of deformation resistance Mpa 

Q=Activation Energy 2 

R

Q
 

R=Universal gas constant 

 

KJ/(mole* Ko )] 

3 A Pre-exponential factor 1/second 

4 ξ  Multiplier of stress Dimensionless 

5 m Strain rate sensitivity of stress Dimensionless 

6 
oh  Hardening/softening constant Mpa 

7 s~  Coefficient for deformation resistance 

saturation value 

Mpa 

8 b Strain rate sensitivity of saturation 

(deformation resistance) value 

Dimensionless 

9 a Strain rate sensitivity of hardening or 

softening 

Dimensionless 

 

 

Here, as an example of a large deformation metal forming problem, the open-die forging of a 

cylindrical 1100-Al billet is considered between parallel dies. This benchmark problem is 

examined with the quadrilateral elements to address incompressibility [3]. 
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Principal Design Features of 1100-Al 

 

1100-Al is a relatively low strength, essentially pure aluminum alloy. It is noted for excellent 

formability and welding characteristics along with good corrosion resistance. It cannot be 

hardened by heat treatment. It has also excellent forming capability by cold or hot working with 

commercial techniques. The chemistry data of 1100-Al is given in table 6.2 below. 

Table 6.2 Chemistry data of 1100-Al [45] 

Material Value (%)  Material Value (%) 

Aluminum 99.6 min  Titanium 0.03 max 

Copper 0.05 max  Vanadium 0.05 max 

Iron 0.35 max  Manganese 0.03 max 

Magnesium 0.03 max  zinc 0.05 max 

Remainder Each 0.03 max  silicon 0.25 max 

 

The specific values of the material parameters are given in table 6.3 below. 

 

Table 6.3 Material parameters for Al 1100-O at 673 K [2] 

Material Parameter Value 

A 171075.4 −−× s  

ξ  7.0 

m 0.23348 

os  29.7 Mpa 

oh  1115.6 Mpa 

s~  18.92 Mpa 

n 0.07049 

a 1.3 

µ  20.2 Mpa 

k 66.0 Mpa 
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6.3 Finite Element Model 
 

In this forging example, the initial cylindrical billet is 5mm in diameter and 7.5mm high. The 

dimensions given in Zabaras et al. were 2mm and 3mm, respectively [2]. The forging die is 

modeled as a rigid surface and there is no friction between the die and the workpiece, as 

mentioned before. The deformation is highly non-homogeneous with variable rates of straining at 

material points and time-varying/unsteady contact. The symmetry of the problem allows 

modeling one half of the geometry. 

 

 A nominal strain rate of 0.01 is applied during the forging process. Rather coarse uniform grids 

of 10×10 four-nodded quadrilateral finite elements are used to discretize the domain. A 

stabilizing parameter of 410−=ε  is used in the analysis.   

 

 

 

 

Figure 6.2 Geometry and Boundary condition for the open die forging of a cylindrical billet 
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The finite element decartelization involves quadrilateral elements to address incompressibility 

[39]. The domain of the problem is discretized by a finite element mesh and the displacement 

field is expressed by means of finite element shape functions. The nodal displacements along 

with the finite element shape functions describe the displacement field. The boundary conditions 

are either fixed displacements or tractions. The finite element model of the problem with 

respective boundary conditions is shown in the figure 6.3 [2].  

 

 

Figure 6.3 The Axisymmetric finite element model of open die forging problem 

 

 

The deformed mesh after 56.3 percent height reduction is shown in figure 6.4 along with the 

undeformed mesh. This is obtained in 25 minutes using a fixed time step of one second. If the 

number of iterations is reduced, the intermediate configuration looks like that given in figure 6.5 

after 300 iterations with initial assumed displacement of 0.1 times the value of the nodal 

displacements calculated while the element loaded elastically and assumed value of zero stress 

and zero internal variables. Figure 6.6 shows the contour of the equivalent plastic strain at the end 

of the open die forging (upsetting) process. As can be seen from the figure, the maximum 

equivalent plastic strain is found around the middle of the work piece and decreases to wards the 
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ends. This is due to the fact that, at the middle of the workpiece, there is an additive nature of the 

equivalent plastic strain due to the applied force at the top by the moveable die causing a 

downward and horizontal plastic strain components to occur and the reaction force at the bottom 

by the lower fixed die which produces an upward and horizontal plastic strain components. But to 

wards the ends, this additive nature decreases causing the equivalent plastic strain to decrease. 

The results are in good agreement with the numerical solutions of Zabaras et al [2].   

 

 

 

 

 
 

 

Figure 6.4 Initial and deformed meshes after 56.3 percent height reduction in axisymmetric open    

               die forging. (Owing to the symmetry of the problem only a half of the billet is modeled). 
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Figure 6.5 Initial and deformed configuration of the work-piece after 300 iterations 

                    with initially assumed displacement of 0.1 times the value of nodal  

                    displacements calculated while the element is loaded elastically and 

                     assumed value of zero stress and zero internal variables  

 

 

 

 
 

Figure 6.6 Contours of the equivalent plastic strain in the final forged product. 
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6.5  Summary  

In this thesis, finite element implementation and evaluation of the performance of a family of 

objective integration schemes based on the hyperelastic-viscoplastic constitutive equations of 

large deformation of a metal forming process has been developed. Also the integration of the 

contact integral was discussed. One of the key factors that arise in this process is that of 

geometric incompatibility when the problem under consideration is discretised. Geometric 

incompatibility between the slave and master surfaces can cause the traction approximations to be 

inaccurate. However, incompatibility can result from non-smooth master surface, which again 

affects convergence of the scheme. 

 

The hyperelastic constitutive equations and the formulation of the finite element system of 

equations used in the program are dealt with in this thesis. The contact boundary conditions have 

been dealt with using a Lagrangian multiplier method. This method is implicit, stable and 

accurate for relatively big time steps. It is also relatively easy to implement within the finite 

element program. Further more, it incorporates some of the well known constraint optimization 

techniques which are specifically useful for metal forming problems. The nonlinear system of 

equations arising from the discretized form of the principle of virtual work is solved using a 

Newton-Raphson method. To overcome incompressibility problems, the assumed strain method 

is adopted. Linearization of the principle of virtual work relation, which is useful for the 

computation of the tangent stiffness matrix, has been treated in detail. Also the updating 

procedure for the stress and state parameters using the radial return method has been discussed.  

 

Using the developed computer code, an attempt is made to solve a specific metal forming 

problem under specific conditions. Also the effects of different input parameters on the 

correctness of the output and the convergence property of the formulation have been investigated. 

 

Finally, in order to account for history of loading of the updated Lagrangian method, which 

updates the reference configurations after a successful iteration, is considered. Then the 

formulation is converted to a computer program written using MatLab. Finally the program is 

used to solve a benchmark problem, an open die forging (upsetting) problem to investigate the 

efficiency of the formulation. 
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CHAPTER SEVEN 

    

7.  CONCLUSION AND RECOMMENDATIONS 

 

7.1 Conclusion  

 

As can be seen from the results given in chapter 6, it is possible to find the distribution of any 

required parameter such as stress, equivalent plastic strain, elastic strain, internal resistance of the 

material, etc throughout the work-piece, which is a very important step towards the design of 

effective and robust metal forming process. Having the above information at hand it is possible to 

design the metal forming equipment such as presses and dies with high reliability and minimum 

cost. And the design of the formed part can be performed in such a way as to get every quality 

parameters within the maximum achievable tolerance throughout the work-piece. Also using this 

method is possible to model material properties of the work-piece with any degree of complexity 

to represent actual condition as much as possible. Therefore the usefulness of the method for 

designing of a metal forming process cannot be overemphasized. 

 

7.2 Recommendations for Future Work 

 

The following are suggestions for future work of this research: 

• This thesis has not included friction, which is the main process governing parameter in the 

case of metal forming processes. Therefore to model metal forming problems, more 

accurately, frictional contact should be considered. Then additional considerations are 

necessary regarding the update of the active contact set including stick and slip areas for 

the Lagrange multiplier formulation. 

•  Furthermore this thesis has considered upsetting through Axisymmetric dies, which 

eliminates the need for contact searching algorithm. But to make the formulation more 

flexible to solve a wide variety of metal forming problems, the incorporation of contact 

searching algorithm is crucial. 
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• In this thesis an isothermal process, is assumed. Thus, consideration of thermo-

mechanically coupled problems, which include the effect of heat generation during 

plastic deformation and heat supplied from external source are important factors for 

future work. 

 

• To solve more practical and complicated problems, the program must be refined in such a 

way as to minimize the CPU time. This can be achieved by applying more advanced 

solution techniques, such as Line Search method, Quasi-Newton methods and Conjugate 

Gradient methods, which increase the convergence rate and reduce the possibility of 

divergence of the Newton Raphson iterative scheme. 
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APPENDIX  

    
Appendix A: Linearized moduli for rate-dependent plasticity 

 

To derive the Linearized material moduli, we take the variation of equation (4.18) with respect to 

1+nu as follows: 
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where from equations (4.15 and 4.19), it follows that 
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The equivalent plastic strain increment p

n βε +
&~ was defined in equation (4.15) from which using the 

chain-rule and equation (4.21), we can derive 
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where 
T∂

∂σ~ is the flow vector for 2J plasticity and is related to the unit vector p
N as follows: 
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Similarly, we can derive that 
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Variation of equation (4.21) leads to 

ββ β ++ ∆= nn stdds &                                                                              (A-6) 

This, using equations (4.7 and 21), leads finally to following expression for β+nds : 
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Finally, substituting equation (A-7) in equation (A-3 and A-4), and then equations (A-3, A-4 and 

A-5) in equation (A-2) and taking the common terms together yields 
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Note that, in order to calculate p

n

~
β+N and

β+∂
∂

nT
N

p~
 in the equation above, one must assume the 

stress 1nT + , and so an iterative scheme is required.   
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Now, using equation (4.15) we have 
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where for plane and axially symmetric problems 
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For plane problems only the upper 3x3 portion is employed while for axially symmetric 

situations the complete matrices are utilized. 

Finally, 
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The linearized modulus for the particular case of β =1 takes a simplified from which depends 

only on the trial stress trial

n 1+T . In summary, the material modulus for this case takes the following 

form:                             ( ) pp

n

eep ~~~
NNG ⊗−−= + µη 12lD                                                   (A-16) 
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and 
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Appendix B:  A solution to the simultaneous equations of equation (4.6b) by a    

modified Newton-Raphson scheme 
 

In order to solve the nonlinear simultaneous system of algebraic equations arising out of the 

radial return method, the following method is employed [2]. 

 We have to solve the following two equations: 
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( ) 03
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=σ∆µ+σ−σ

=σ∆−−
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nn*n

nnnn

s,~tf~~

s,~tgss
                                                 (B-1)   

    

These equations can be solved only by iterative means and because of their highly non-linear 

nature, the choice of the algorithm will heavily influence the number of iterations needed for 

convergence. To start with, an initial estimate of the solution is needed and starting from that 

point, linearization followed by solving the linear equations will provide the answer. The 

Newton-Raphson method is not applied on both equations simultaneously but for one equation at 

a time. A concise algorithm is given below. 

� Level 1 iterations are performed to obtain subsequent values for 1+ns .   

� level 2 iterations are performed to obtain subsequent values for 1
~

+nσ . 

 

1. First, the tolerances required for the convergence on 1
~

+nσ  and sn+1 are fixed. A good 

choice is  

                                             TOLS  = 1X10
-5 

ns  

                                             TOLσ   = 1X10
-5

 ∗σ~                                                         (B-2) 

where  ns  is the value of the internal resistance variable at time nt  

and   ∗σ~  is the vale of the equivalent deviatoric stress at time nt  
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2. Make an initial estimate of ( 11 ,~
++ nn sσ ) by solving the equations obtained by forward 

gradient approximations of the governing equations. The functions f and g are 

approximated by Taylor series expansion about ( nn s,~σ ). This results in  
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             and 
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However, with certain models, (specifically, the sin hyperbolic model for Aluminum at 

673 K) the value of 1
~

+nσ calculated by the above equation becomes so high that further 

substitution in the functions f and g blows up. Hence in such cases the value of 1
~

+nσ  is 

taken to be equal to 0 or nσ~ .  

 

3. Now level 1 iterations are performed to obtain subsequent values for 1+ns .  The iterations 

are performed till convergence is obtained on 1+ns . Consider a generic th
k

 
step. Assume 

that the function f is invertible to give flow stress. i.e., assume that there exists a function 

1−f such that  

 

          ( )sfp ,~~ σε =&                                                                            (B-6) 

implies 
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( )sf p ,~~ 1 εσ &−=                                                                          (B-7) 

(a) Calculate an upper bound on 1
~

+nσ , by evaluation the smaller of  




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s
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                 and *
~σ . Assign this value to uσ~ . 

(b)  Fix the lower bound, assigning as l
~σ , for 1

~
+nσ  as 0. 

(c)  Do level 2 iterations to update 1
~

+nσ  and to evaluate 
1

1
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+

+

n
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ds

dσ
 (described below). 

(d) Evaluate the error associated with 1+ns  
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(e) Compare this error with the tolerance TOLs. Iteration is assumed to be                         

      converged if  

   sTOL≤k

sE                                                                         (B-10) 

Then k

nn ss 11 ++ =  and k
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++ = σσ . Otherwise the iteration is continued.  

(f) If the iteration continues, the correction k
s∆ is calculated. 
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were k

n

k

n

ds

d

1
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+σ
calculated during the level 2 iterations. 

(g) The estimate for the next level iteration is  
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(h) The initial estimate of 1
~

+nσ  to start the next level 2 iterations is  
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4. Level 2 iterations are performed to obtain the updates on k

n 1
~

+σ .  Consider the generic step i 

within the k
th

 loop above. 

 

(a) Evaluate the error associated with 1
~

+nσ  
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(b) Compare this error with the tolerance. If 
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for using in level 1 iterations.  

(c)  If the scheme does not converge, calculate the Newton-Raphson correction factor 
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(d)  Depending upon the sign of ik

NR

,~σ∆ , update either the upper bound uσ~ or the  
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lower bound lσ~  for k

n 1
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+σ and then calculate the maximum allowable             correction.   
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(e) Determine the correction to be used. 
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(f) The estimate for the next iteration is  
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