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Abstract

Gravitational wave science is one of direct observation of the waves predicted

by Einstein’s general theory of relativity and opening the exciting new field of

gravitational wave astronomy. In this thesis work we study gravitational waves

and we also present some of the general relativity test of gravitational wave such

as linear approximation of Einstein field equation which is Einstein equation for a

weak gravitational field simply �hµν = 0, thus, the metric perturbations satisfy

the flat space wave equation and the solutions can therefore be interpreted as

gravitational waves polarization(plus and cross polarization). In this thesis We also

found that gravitational wave emites when BBHs are spiraling with each other. We

suggested that high amplitude of gravitational waves are formed around merger of

BBHs, the amplitude of GWs large for high masses and also the amplitude fails

when the waves moves away from the source like standard siren’s of h ∝ 1
r
. We

also checked that SEOBNR and IMRPhenom models are matched with pridiction

of GR simulated by NR and the waveform observed from LIGO. These waveform

comparison tells us Einstein general theory of relativity passes the test of GW.

xvi



CHAPTER 1
Introduction

Gravity governs the structure and evolution of the whole Universe, and it’s successfully

described by Einstein’s general theory of relativity. General theory of relativity is

the geometric theory of gravity published by Albert Einstein in 1915. Einstein’s

theory of relativity generalizes Einstein’s spacial theory of relativity and Newton’s

law of universal gravitation, providing a unified description of gravity as a geometrical

property of space and time (or space-time). According to the Einstein field equations

the curvature of space-time is directly associated with the mass, momentum and

energy of the matter and/or radiation. In fact, the predictions of GR are extremely

well tested within the "local" universe, both within the weak field limit (as in

the Solar System) and more recently for strongly self-gravitating bodies in pulsar

binary systems. General relativity theory has passed many tests, including scheme,

binary pulsar, and cosmological ones. What all of those tests have in common

is that they sample the quasi-stationary, quasi-linear weak-field regime of GR

that’s, they sample the regime of space-time where the field is weak relative to the

mass-energy of the system, the characteristic velocities of gravitating bodies are

small relative to the speed of light, and therefore the field is stationary or quasi-

stationary relative to the characteristic size of the system [1]. Tests of general

theory of relativity serve to ascertain observational evidence for the speculation of

general theory relativity.

The largest deviations from GR are expected within the strongest gravitational

fields around black holes (BHs), where different theories of gravity make significantly

different predictions. The recent detection of gravitational waves by LIGO seems to

indicate that even events related to very strong gravitational fields, like the merger

of two stellar-mass BHs, fulfill the predictions of GR. This extremely exciting discovery

entails additional verification using observations within the electro- magnetic spectrum.

In fact, astronomical observations and gravitational wave detectors may soon provide

us with the chance to review BHs very well, and to probe GR within the strong-field

1
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regime, where tests are currently lacking.

The explore for gravitational waves has many motivations. First is easy, fundamental

scientific curiosity about new phenomena. More prosaically, one can use gravitational

radiation to check Einstein’s general theory of relativity. for instance, one can

test the expected transverse and quadrupolar nature of the radiation, and one can

test whether or not the radiation travels at the speed of light, in concert would

expect for a mass less graviton. One can even directly probe highly relativistic

phenomena, like black hole formation. Perhaps more intriguing, though, is that

the entirely new view one gains of the universe. Gravitational waves can not be

appreciably absorbed by dust or stellar envelopes, and most detectable sources

are a number of the foremost interesting and least understood objects within the

universe. More generally, gravitational wave astronomy release a completely new

non-electromagnetic spectrum [2].

Gravitational waves are traveling perturbations within the fabric of space-time

from accelerating masses, very similar to electromagnetic waves are perturbations

in electric and magnetic fields from accelerating charges. Gravitational waves are

a natural consequence of the theory of general relativity(TGR). Einstein predicted

the existence of them (Einstein 1916), but he also claimed that the perturbations

would be so small that we must always not bother searching for them[3].

The GW measurements made by LISA will probe the most extreme and violent

manifestations of gravity and thus are probably the best way to test the fundamental

nature of gravity. In particular, GW test the theory of gravity in the limit of

very high velocities (approaching the speed of light) and very strong space-time

deformations. The two key factors that make LISA a very good instrument to test

our current understanding in the form of Einstein’s general relativity are the high

signal-to-noise detection’s and the in-spiral and merger of the two black holes. This

complements the (most likely) earlier tests of general relativity using GWs from

ground-based detectors such as LIGO/Virgo and the Einstein telescope. In the in-

spiral phase of the detection, the measurements can be examined for evidence of a

massive gravitation as predicted by several alternative gravity theories, that would

show up as a frequency-dependent phase shift. In addition, the in-spiral phase

can be compared in great detail with predictions from general relativity using

numerical relativity simulations and thus expose any hints of the incompleteness
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of general relativity. The merger and ring-down phases can be used again to test

GR, because the accurate determinations of the masses and spins of the two black

holes during in-spiral, together with numerical relativity simulations to predict

the signature of the merger and the properties of the final remnant and compared

directly with the observations. Finally, the properties of the ring-down, in general

relativity, are completely determined by the pre-merger binary and the mass and

spin of the final black hole, again providing a consistency check for general relativity.

Gravitational-wave observations from binary coalescence and inference of source

properties are made through waveform models built solving Einstein’s field equations.

Waveform models can also be built in theories of gravity alternative to GR [4].

Solving the complete Einstein equations on the computer is that the subject of

numerical relativity, which could even be called computational theory of relativity.

Computers also play a task in algebraic computations and in approximation schemes,

and such calculations are important topics in numerical relativity. But the distinguishing

feature of numerical relativity is that, in theory, the Einstein equations fully generality

can and must be solved numerically. Numerical relativity spans an outsize range

of various topics including mathematical general relativity theory, astrophysics,

numerical methods for partial differential equations, programming, and simulation

science. Current research in numerical relativity is in a very transition from

a self-contained topic in theoretical physics to a physical theory with numerous

connections to observational astronomy [5].

In Our work we use the LIGO GW150914 data, linear approximation of Einstein

field equations, effective one body formalism, in-spiral-Merge-Ring down Phenomenological

wave model, numerical Relativity, python package and PyCBC catalogue.

The purpose of the PyCBC search is to identify gravitational wave signals from

binary neutron star and black hole mergers and measure the statistical significance

of candidate events. PyCBC is an open-source computer program bundle fundamentally

composed within the Python programming dialect which is outlined for utilize

in gravitational-wave cosmology and gravitational-wave data analysis. PyCBC

contains modules for signal preparation, matched filtering, gravitational waveform

generation, among other assignments common in gravitational-wave data analysis.

The program is created by the gravitational wave community nearby LIGO and

Virgo researchers to analyze gravitational wave data [6].
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1.1 Objective of the thesis

1.1.1 General objective

To study gravitational waves which are one of verefication of General Theory of

Relativity.

1.1.2 Specific objectives

•Analayzing gravitational-wave signals by using Spin-Effectve-One-Body-Numerical-

Relativity(SEOBNR) and In-spiral-Merg-Ringdown phenomenological(IMRPhenom)

models.

• Comparing gravitational wave detected by the LIGO and numerical relativity

solution of general relativity to the SEOBNR and IMRPhenom models.

1.2 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 deals with the theoretical

background of general relativity and its foundation of the equivalence principle

and the special relativity, the prediction of GR, direct and generic tests of general

relativity. Source of gravitational wave, the properties of gravitational wave, the

speed, the polarization and some use of gravitational wave are presented in this

chapter.

Chapter 3 presents the methodology used to study in this thesis, derivation of

Einstein field equation in empty space and linear approximation of gravity, the

quadrapol formalism including the two body problem and effective one body models

and also methods used in this thesis like; numerical relativity, and phenomenological

waveform models are presented.

Chapter 4 presents discussion of results, this includes data analysis of gravitational

wave with different parameters like; mass, frequency, distance from source and

the agreement of LIGO gravitational wave signal to the phenomenological and

SEOBNR wave models and also agreement to the general relativity simulated by

numerical relativity. Finally, conclusions are presented in Chapter 5.



CHAPTER 2
General theory of relativity and gravitational

waves

2.1 Introduction

Einstein’s theory of general relativity has passed a large number of tests over

100 years since its conception. The observation of gravitational waves emitted

by two coalescing black holes was one in all the foremost accepted discoveries

within the history of theory of relativity, and Einstein was proven right again.

Einstein’s general theory of relativity predicts the existence of gravitational waves,

disturbances of space-time itself that propagate at the speed of light, and have

two transverse quadrupolar polarization. Gravitational waves will allow us to find

out about the gravitational interaction in regimes that are currently inaccessible

by more conventional, electromagnetic means. Binary black hole and neutron

star mergers, for example, cause gravitational fields that are intensely strong and

highly dynamical, a regime where Einstein’s general theory of relativity has not

yet been tested [7]. In this chapter we will discuss the theory of GR and GWs.

2.2 General theory of relativity

General relativity rests on two foundation stones: the equivalence principle and

special relativity.

2.2.1 Equivalence principle

According to the principle of equivalence, it is impossible to distinguish between

the gravitational field and the acceleration reference system[8]. within the theory

of Einstein’s general theory of relativity, the equivalence principle is that the equivalence

of gravitational and mass. It states that the result of any local non-gravitational

experiment in a very freely falling laboratory is independent of the speed of the

5
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laboratory and its location in space-time. Equivalence principle originates in Galileo’s

observation that every bodies fall in an exceedingly gravitational field with the

identical acceleration, no matter their mass. From the trendy point of view, which

means if an experimenter were to fall with the acceleration of gravity (becoming

a freely falling local inertial observer), then every local experiment on free bodies

would give the identical results as if there is no gravity at all: without the usual

acceleration, the particles will move at a constant speed, and conserve energy and

momentum. The principle of equivalence naturally leads to the view that gravity

is geometry. If all bodies follow the identical trajectory, just looking on their initial

velocity and position but not on their internal composition, then it’s natural to

associate the trajectory with the spacetime itself instead of with any force that

depends on properties of the particle. The equivalence principle can only hold

locally, that’s in a very small region of space and for a brief time [7].

2.2.2 Special theory of relativity

The second cornerstone of general relativity is special relativity. Indeed, this is

what caused the downfall of Newtonian gravity: as an immediate theory, Newtonian

gravity changed into identify as out of date as soon as special relativity changed

into accepted. Many of the most distinctive predictions of general relativity come

from their Conforms to the special theory of relativity. General relativity consists

of special relativity thru the equivalence principle: local freely falling observers

see special relativity physics. That means, in particular, not anything moves faster

than light, that mild moves on the same velocity c with respect to all local inertial

observers on the identical event, and that phenomena like time dilation and the

equivalence of mass and energy are a part of general relativity. Gravitational

waves themselves are of course the result of the unique theory of relativity applied

to gravity. Any alternate to a supply of gravity (e.g. the position of the star) must

alternate gravitational fields, and this conversion cannot move outward faster than

light. Far enough from the source, this transformation is only a ripple within side

the gravitational field. In the general theory of relativity, this wave moves at the

speed of light.. In principle, all relativistic gravitation theories have to encompass

gravitational waves, despite the fact that they might propagate slower than light

[7]. A general-relativistic space-time is a pair (M, g) where; M is a four-dimensional

manifold; local coordinates will be denoted (x0 ,x1, x2, x3) and Einstein’s summation

convention will be used for Greek indices µ, ν, σ, ... = 0, 1, 2, 3 and for latin indices

i, j, k, ... = 1, 2, 3.
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g is a Lorentzian metric on M , i.e. g is a covariant second-rank tensor field. The

metric contains all information about the space-time geometry and thus about the

gravitational field.

ds2 > c2dt2 → space-like (A - C)

ds2 = c2dt2 → null (light cones)

ds2 < c2dt2 → time-like (A - B)

Where ds is flat spacetime and given by

ds2 = −(cdt)2 + dx2 + dy2 + dz2 (2.1)

Figure 2.1: The causal structure of spacetime [10]

Time-like curves describe motion at subluminal speed and light-like curves describe

motion at the speed of light. Space-like curves describe motion at superluminal

speed which is forbidden for signals [9, 10]. General theory of relativity is a

nonlinear theory. The laws of general relativity are described by Einstein’s field

equations at any point x on a four-dimensional manifold (which we shall call spacetime)

with x = (x0 = ct, x1, x2, x3), t denotes the time coordinate.

Rµν −
1

2
gµνR =

8πG

c4
T ′µν (2.2)

or equally (taking the trace and replacing R with T ),

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
. (2.3)

Here, c is the speed of light, G is Newton’s gravitational constant, Rµν = Rσ
µσν is

the Ricci tensor, R = Rµνg
µν is the Ricci scalar, Tµν is the energy-momentum tensor
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which gives the energy density, TµνUµUν for any observer field with 4-velocity Uµ

normalized to gµνUµUν = −c2. To our present understanding, all physical processes

in the macroscopic universe are governed by these equations. The left-hand side of

Eq.2.3 renders information about the local curvature of spacetime while the right-

hand side incorporates the local energy-momentum density [9, 11, 12].

Einstein’s theory has passed each test or observational test it has ever been subjected

to. One of the predictions of general relativity was gravitational waves. In reality,

Einstein himself came up with this expectation only a year afterward in 1916.

According to general relativity, gravity is portrayed by the ebb and flow of spacetime

[13]. General relativity is our current prevailing description of gravity. GR describes

gravity as a geometric property of spacetime, the four-dimensional fabric of our

Universe. The curvature of spacetime is dictated by the energy, momentum, and

angular momentum of the matter present. And in response, the evolution of the

matter is dictated by the curvature of spacetime. As John Wheeler eloquently put

it: "Spacetime tells matter how to move; matter tells spacetime how to curve." For

example, when the Earth orbits the Sun, according to GR it is not being pulled by

a gravitational force, but instead is merely following the straightest possible path

in the curved spacetime around the Sun [14].

Figure 2.2: The curvature of space-time caused by the sun and the earth, represented
by a grid. The spacetime around the Sun is warped due to its mass.
The Earth then merely follows a geodesic, or a locally straight path, in
this curved spacetime. However, since the spacetime itself is curved, this
locally straight path becomes a curved path on a global scale; an ellipse
in this instance. The Earth also warps the spacetime around itself, which
causes the Moon to orbit it [14].
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As it were view points of GR required to accepted the presence of gravitational-

waves are that information cannot travel faster than the speed of light which mass

bends space-time. Consider two black holes, each irritating space-time, orbiting

around each other. The curvature at any specific point in space must alter in

reaction to the moving mass, but the space- time distortion cannot travel faster

than the speed of light. The gravitational wave is the changing curvature engendering

through space-time, a perturbation within the metric transmitting the news that

the mass has moved.

2.2.3 Prediction of general relativity

The main predictions of Einstein’s general theory of relativity includs: perihelion

precession of Mercury, bending of light(gravitational lenssing), the existence of

black holes, gravitational waves from compact object. All this tests of general

relativity which incorporate solar system tests and tests concerning double pulsars,

deal with the regime where the gravitational fields are weak, speeds are small, and

particles are quasi-static. Our concern in this thesis is gravitational wave test of

general relativity. When electrons vibrate, how electromagnetic force emits light;

in general relativity, when we shake massive objects, gravitational waves are also

generated. For the first time, gravitational wave perception of binary black hole

coalescence given us with an opportunity to test gravity and test general relativity

within the strong field, large velocity and a highly dynamical regime which was

blocked off sometime recently.These waves carry information about black holes

that cannot be obtained by other means, because the telescope cannot see non-

luminous objects. For each event, we are able to measure the black hole, masses,

their rate of rotation or "spin," and details about their locations and orientations

with varying degrees of certainty. This information allows us to find out how these

objects formed and evolved in cosmic time. General relativity tells us that, among

other things, some stars can become so dense that they are isolated from the rest

of the universe. These extra ordinary objects are called black holes. General

relativity also predicted that when pairs of black holes orbit tightly around each

other in a binary system, they stir up space-time, the very fabric of the cosmos.

This disturbance of space-time that sends energy across the universe in the form

of gravitational waves. That loss of energy causes the binary to tighten further,

until eventually the two black holes smash together and form a single black hole.

This spectacular collision generates more energy in gravitational waves than all

stars in the universe combined, and more energy than light [3, 13].
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2.3 Direct and generic tests of general relativity

Gravitational-wave tests of Einstein’s theory can be classed into two distinct subgroups:

direct tests and generic tests.

2.3.1 Direct test

Direct testing follows a top-down approach, starting with specific modifications.

The gravitational theory of known action, deriving and solving modified field equations.

They are used in specific gravitational wave radiation systems. Direct testing is

a standard method for testing general relativity with gravitational wave, inside

the prototype here is a test of Jordan Fier-Brans-Dicke theory, other Examples

of direct testing include testing of a modified secondary gravity model. And non-

commutative geometry theory[1].

2.3.2 Generic tests

Generic tests adopt a bottom-up approach, where one takes a particular feature of

GR and asks what type of signature its absence would leave on the gravitational-

wave observable; one then asks whether the data presents a statistically-significant

anomaly pointing to that particular signature [1].

2.4 Gravitational waves

Einstein’s general theory of relativity predicts that a dynamic system in a strong

gravitational field will release a large amount of energy in the form of gravitational

radiation. These gravitational “waves” are among the most elusive signals from the

deepest reaches in the Universe. They can be thought of as ripples in the curvature

of spacetime [14].

Gravitational waves are disturbances in the curvature of space-time, generated

by accelerated masses, that propagate as waves outward from their source at the

speed of light. In Einstein’s theory of general relativity, the geometry of space-time

is a dynamic physical observable that supports wave-like excitation, propagating

at the speed of light. These are known as gravitational waves; their elementary

excitation, or normal modes, have the properties of mass less, spin 2 particles with

two linearly independent polarization states they are called gravitation. Like all

sorts of waves, gravitational waves carry the energy and in fact transport, it away
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from the source. In this process, since energy is preserved, the binary system is

losing energy. In a Newtonian description, the energy of our binary system is given

by

E =
1

2
M
(a

2
Ω
)2

× 4− GM2

a
= −GM

2

2a
(2.4)

where the last form follows from Kepler’s third law, Ω2a3 = G(M1 + M2). The loss

of energy from the binary leads to a reduction in the separation a, or in-spiral.

It is clear that this is a run-away process: the closer they get together, the more

they radiate; and the more they radiate, the closer they get together. In general

relativity, binary systems are inherently unstable and undergo a slow in-spiral and

eventual merger to a single object [15].

2.5 Sources of gravitational waves

The two primary categories of gravitational waves sources for LISA are the galactic

binaries and therefore the massive black holes(MBHs) expected to exist within the

centers of most galaxies. Because the masses involved in typical binary systems are

small (a few solar masses), the observation of binaries is proscribed to our galaxy.

Galactic sources which will be detected by LISA include a large sort of binaries,

such as pairs of close white dwarfs, pairs of neutron stars, neutron star and black

hole (5-20 M�) binaries, pairs of contacting normal stars, normal star and white

dwarf star (cataclysmic) binaries, and possibly also pairs of black holes [7].

In spite of the fact that each accelerating non-symmetric system emanates GWs,

as it were the ones that are able to perturb the metric enough can be detected

with current innovation. Actually, we are looking for those frameworks that are

massive, compact, and/or violent enough to actuate a sufficiently strong gravitational

field. It turns out that such sources are as it were of astrophysical origins, such as

black holes (BHs) and neutron stars (NSs) or violent events like supernovae and

gamma-ray bursts. In this area, we are going to see a few of the foremost promising

sources for detection by ground-based detectors [16].

2.5.1 Compact binary coalescence

Binary system are composed of two objects orbiting around their common center

of mass. When black holes orbiting each other, an outer ring of gas surrounds the

whole system and mini disk surrounds each black hole, streams of gas connect

the disks, so that magnetic and gravitational forces heat up the gas producing UV
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and x-ray light, the amount of gas flowing in the system and our viewing angle

can alter what we will see, intense gravity bends space time. The light follows

warped path and is distorted as with a lens. this also creates an "eyebrow" next

to one black hole caused by light from glowing gas immediately out side the other.

Compact binary coalescence (CBC) may be a class of sources during which two

Figure 2.3: Orbits of binary system around their comen center of masses [17].

compact objects, either a NS or a BH, orbit around one another. CBC sources are

further subdivided into binary neutron star (BNS), black hole neutron star(BHNS)

and binary black hole (BBH). The emission of GWs carries energy and momentum

off from the system, causing the two objects to spiral towards one another. the

foremost famous CBC system is probably the Hulse-Taylor binary pulsar. The

orbital evolution of the Hulse-Taylor binary pulsar provided the primary evidence

of the emission of GWs [16]. The phenomenon bringing these system to coalescence

is that the back-reaction in in-spiraling systems. The energy emitted influences the

source motion, and successively the new motion affect the GW emission. within the

quadrupolar approximation the change in frequency is given by:

d ln(fgw)

dt
= 0.126(

Mc

M�
)5/3(

fgw
100Hz

)8/3 (2.5)

and then the frequency before coalescence is given by:

fgw(t) ' 134Hz

(
1.21M�
Mc

)5/8(
1s

τ

)3/8

(2.6)

Where τ = (tcoal− tret) is the time remaining before coalescence,tcoal denotes time of

coalescence and tret is retarded time. We define also the chirp mass Mc [18]:

Mc =
(m1m2)3/5

(m1 +m2)1/5
(2.7)
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Wherem1 andm2 are mass of black hole one and black hole two. The chirp indicates

that as gravitational waves are emitted, they carry energy faraway from the binary.

The gravitational binding energy decreases, and also the orbital frequency increases.

one among the simplest samples of CBC source of gravitational waves are black

holes. Black holes are one of the most imperative sources of gravitational waves.

For the case, it’s assumed that matter being gulped by a black hole can produce

this kind of waves. looking at Eq.2.8, the fact that the radius is raised to a power

of -5 tells us that when matter reaches the black hole it can emit a robust burst.

LGW ∼
(
GM

Rc2

)5

L0 (2.8)

It has been estimated that the energy out-put E of such burst would be;

E ≈ 0.0104m2

M
c2. (2.9)

m being the mass of the matter falling, and M the mass of the black hole. However,

matter falling into black holes is not the only way for black holes to emit gravitational

waves. If there are two massive black holes colliding against each other, they

will also produce radiation [19]. GWs from CBC sources can be divided into three

stages, the in-spiral, the merger and the ring down phase.

a) In-spiral phase

The in-spiral is the orbit of two bodies about a common center of mass where in

the orbital radius decreases with time due to energy loss from sources including

gravitational radiation [20]. The in-spiral stage lends itself to a natural perturbation

approach. To illustrate with a simple, concrete example, consider two stars of equal

mass M in a circular orbit of instantaneous radius R(t) and angular velocity ω(t)

(assumed slowly changing), where the stars are treated as point masses far enough

apart that tidal effects can be neglected. From simple Newtonian mechanics, we

obtain Kepler’s 3rd Law:

Mω2R =
GM2

(2R)2
⇒ ω2 =

GM

4R3
(2.10)

The total energy of this system (potential + kinetic) is

E = −GM
2

2R
(2.11)

and the decrease in E with time is

dE

dt
=
GM2

2R2

dR

dt
(2.12)
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as the orbit shrinks.

For conveniencGravitational wave signal for different mass of binary system for

the IMRPhenomB model. We see that the amplitude, as well as the frequency are

modified, from the in-spiral to the ring-down phase. The left panale constructed

from two equal masses of black holes the amplitude of wave is small compaired

to the right one. The right panale one mass of the black hole kept fixed(10 M� )

whereas the second masses free to change.e define the origin at the orbit’s center

and the x − y plane to coincide with the orbital plane, with one star at x1 = R at

time t = 0:

x1(t) = −x2(t) = R cos(ωt); y1(t) = −y2(t) = R sin(ωt); z1 = z2 = 0 (2.13)

using equations I ij =
∫
d3xµ(t, ~x)xixj and Iij = I ij − 1

3
δijIkk , for the total energy

luminosity for waves in the radiation zone depends on the third time derivative of

a modified inertia tensor I ij:

L =
G

5c5
〈
...
Iij

...
I ij〉 (2.14)

where <> represents an average over several cycles, and I is the trace-less quadrupole

tensor:

L =
128

5

GM2

c5
R4ω6 (2.15)

Notice that the expression for Lgw is dimensionless when c = G = 1. It can be

converted to normal luminosity units by multiplying by the scale factor L0 = c5/G =

3.6 × 1052 W. This is an enormous luminosity. By comparison, the luminosity of

the sun is only 3.8 × 1026 W, and that of a typical galaxy would be 1037 W. All the

galaxies in the visible universe emit, in visible light, on the order of 1049 W. We will

see that gravitational wave systems always emit at a fraction of L0, but that the

gravitational wave luminosity can come close to L0 and can greatly exceed typical

electromagnetic luminosity. Close binary systems normally radiate much more

energy in gravitational waves than in light. Black hole mergers can, during their

peak few cycles, compete in luminosity with the steady luminosity of the entire

universe![21] puting dE/dt = −L and using Eq.2.10, one obtains a differential

equation for R

R3dR

dt
= −4

5

G3M3

C5
(2.16)

Integrating from a present time t to a future coalescence time tcoals when R → 0,

one finds the orbital radius [2].

R(t) =

[
16

5

G3M3

c5
(tcoal − t)

] 1
4

(2.17)
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The signals that the simplest waveform predictions are available have well-defined

frequencies. In some cases the frequency is dominated by an existing motion, like

the spin of a pulsar. But in most cases the frequency are going to be associated

with the natural frequency for a self-gravitating body, defined as

ω0 =
√
πGρ̄ or f0 = ω0/2π =

√
Gρ̄

4π
(2.18)

where ρ̄ is the mean density of mass-energy in the source. This is of the same order

as the binary orbital frequency and the fundamental pulsation frequency of the

body. The mean density and hence the frequency are determined by the size R and

mass M of the source, taking ρ̄ = 3M/4πR3. For a neutron star of mass 1.4 M� and

radius 10 km, the natural frequency is f0 = 1.9 kHz. For a black hole of mass 10

M� and radius 2M = 30 km, it is f0 = 1 kHz. And for a large black hole of mass

2.5 × 106M�, such as the one at the center of our galaxy, this goes down in inverse

proportion to the mass to f0 = 4 mHz. In general, the characteristic frequency of

the radiation of a compact object of mass M and radius R is [21]

f0 =
1

4π

(
3M

R3

)1/2

' 1kHz

(
10M�
M

)
(2.19)

from which the gravitational wave frequency [fGW = ω/2π] is derived via Eq.2.10.

fGW =
1

8π
[2.53]

1
8

[
c3

GM

]5/8
1

(tcoal − t)
3
8

(2.20)

As expected, the frequency diverges as t → tcoal. Now consider the amplitude h0 of

the circularly polarized wave observed a distance r away along the orbital axis of

rotation is:

h0(t) =
1

r

[
5G5M5

2c11

]
1

(tcoal − t)
1
4

(2.21)

Note that if the distance to the source is known, the common stellar mass of this

system can be derived from either the frequency or amplitude evolution [2].

b) Merger phase

Merger phase is a short-lived stage that takes after the in-spiral stage and happens

when the two objects are so near to each other that they begin to merge into a single

object. The gravitational fields are now very strong and the GW emission can as it

were be computed by considering the complete EFE numerically. Because it turns

out, the merger stage can cause a GW emission that surpasses the electromagnetic

emission of the whole Universe. Once the two objects have merged and formed a

single object, it will further emit GWs as the object tries to reach a quiescent state.
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The GWs emitted during this phase can be described by a superposition of damped

sinusoidal, also referred to as quasi-normal modes [16].

c) Ringdown phase

The ultimate black hole that’s formed as a results of a merger is usually within

the excited state. The deformations of the black hole faraway from the stationary

Kerr setups are radiated away. The perturbations pass away down because of the

emission of gravitational waves and therefore the waveform looks just like the

superposition of damped sinusoidal. This stage is understood as the ring down

[13, 22].

Figure 2.4: Coalescence of binary black holes. The loss of energy and angular
momentum via the emission of gravitational radiation drives compact-
binary coalescence, which proceeds in three different phases. The
strongest gravitational-wave signal, illustrated here because the
gravitational-wave amplitude h, accompanies the late in-spiral phase and
therefore the plunge and merger phase; for that a part of the coalescence,
post-Newtonian and perturbation methods break down, and numerical
simulations must be used [23].

2.5.2 Continuous wave sources

Continuous-wave (CW) sources are those that emit GWs with generally constant

frequency and amplitude compared to the recognition time. The prime candidates

to emit such signals are quickly rotating, non-asymmetric NSs. Such deformations

can emerge due to, for example, strain build-up within the crust or within the core,

or growth of matter. The GW signal from CW sources is relatively simple due to
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their slow variation of amplitude and frequency. Although the GW amplitude is

generally weaker compared to CBC sources, a longer integration time means that

CW sources may also achieve detectable SNR. Finally, the analysis of such sources

can be simplified if some of its characteristics can be determined through means

other than GWs, e.g. rotational frequency of an NS through the observation of a

pulsar [16].

2.5.3 Burst sources

Burst sources are related to galactic temporal phenomena, such as supernovae,

gamma-ray bursts, or instabilities in NSs. Supernovae happen when massive

objects collapse under the impact of gravity. At the end of their lives, some stars

collapse on themselves because of their gravity fields and generate core-collapse

supernovae of type Ib, Ic, or II. If this process deviates from spherical symmetry, it

can create gravitational waves. The physics of core-collapse supernovae is highly

complex and contains a lot of different factors (electromagnetic fields, neutrino

physics, relativistic hydro-dynamical shock fronts, general relativity effects) and

their modeling heavily relies on numerical simulations [24]. Estimations say that

the power output of the explosion of a star of mass M is

E ≈ 0.1Mc2. (2.22)

However, a large part of this probably happens through neutrino emission. Supernova

are a good gravitational source. They are compact and have large accelerations.

Initial density and temperature fluctuations and other factors may direct asymmetric

collapse. If a supernova, which is exceptionally bright, is observed in gravitational

wave, we will be able to test a prediction of general relativity which states that

the speed of gravitational wave is the same speed as light [19]. Within the process

that follows, NSs or BHs are formed, and GWs are radiated through dynamical

processes. On the opposite hand, GRBs are flashes of gamma-rays, that the progenitors

are still uncertain. Possible progenitors are supernova-like events (causing future

delicate spectrum GRBs, moreover called long delicate GRBs) additionally as the

merger of compact objects (causing brief hard GRBs). These sources are generally

difficult to model due to the complicated physics associated with such phenomena.

Therefore, the explore for GWs from such sources often happens with un modeled

filters, where un modeled implies that there’s no astrophysical model related to the

GW. An example of such a filter may be a sine- Gaussian signal [16].
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For scale, consider a supernova a distance r away in our galaxy that emits energy E

in gravitational waves, with a characteristic duration T and characteristic frequency

f . One expects a detectable strain amplitude at the Earth of about;

h ∼ 6× 10−21

(
E

10−7M�c2

) 1
2
(

1ms

T

)(
1kHz

f

)(
10kpc

r

)
(2.23)

expression, the initial LIGO interferometric ought to have been able to detect a

galactic supernova in gravitational waves. But no supernova was detected electro-

magnetically in our galaxy during initial LIGO data taking. One interesting situation

in which a core-collapse supernova may be seen in gravitational waves to much

bigger separations is through a bar mode instability, in which differential rotation

in a collapsing star leads to a huge, rapidly spinning quadrupole moment, generating

waves detectable from well exterior our own galaxy. An other sort of instability(r-

mode) may develop within the birth of a neutron star, but its lifetime is expected

to be long enough. An other potential temporal source of ineffectively known

gravitational waveform shape is the sudden release of vitality from a profoundly

magnetized neutron star (magnetar). In spite of the fact that "conventional" neutron

stars are characterized by extremely strong surface magnetic fields (∼ 1012G),

many magnetars appear to have fields ∼ 100 − 1000 times still stronger, implying

enormous pent-up magnetic energy. It is thought that soft gamma-ray repeaters

(SGRs) and anomalous X-ray pulsars (AXPs) are different observational manifestations

of the identical underlying system a highly magnetized star which sporadically

converts magnetic field energy into radiation. An other possible transient source is

an emission of bursts of gravitational radiation from "cosmic string cusps". Cosmic

strings could be defects remaining from the electroweak (or earlier) state change

or possibly primordial super strings red shifted to enormous distances. A general

consideration in burst searches is that the energy release implicit for a given source

distance and detectable strain amplitude. As the distance of the source increases,

the energy required for its waves to be detectable on Earth increases as the square

of the distance. Specifically, rewriting Eq.2.23, one obtains the relation:

E ∼ (3× 10−3M�c
2)

(
h

10−21

)2(
T

1ms

)(
f

1kHz

)(
r

10Mpc

)2

(2.24)

Hence for a source distance much beyond 10Mpc and for initial LIGO sensitivities

to transients, one needs sources emitting significant fractions of a solar mass in

gravitational radiation in frequency bands accessible to terrestrial detectors, such

as is expected in the case of coalescing binary systems [2].



19

2.5.4 Stochastic background

Stochastic background comes from the density fluctuation of the early stage of the

universe and the superposition of numerous unresolved GW sources. Measuring

the background would tell us about the nature of the Plank-size universe and

provide clues for testing the various cosmological models. Although stochastic

background is interesting, it is so weak that modern technology is far from achieving

this task. It is divided into two classes: the primordial background and the astrophysical

background. The primordial background consists of radiation originating from

the early Universe, such as the Big Bang. The astrophysical background comes

from the GW radiation from astrophysical sources such as CBC systems or cosmic-

string cusps and kinks. The detection of a stochastic background is some what

different compared to the sources described above. Since random radiation is

indistinguishable from instrume- ntal noise, at least for short observation times, it

cannot be detected with a single detector. Instead, the output of several detectors

are combined to calculate the cross-correlation between detectors. An excess in the

cross-correlation can then be an indication of a stochastic background [16].

A primordial isotropic gravitational wave background is predicted by most cosmolo-

gical theories, although the predicted strengths of the background vary enormously.

It is customary to parametrize the background strength versus frequency f by its

energy density per unit logarithm normalized to the present-day critical energy

density ρcrit = 3H2
0c

2/8πG of the universe, where H0 is Hubble’s constant, taken

here to be 70.5 km/s/Mpc

Ωgw(f) =
1

ρcrit

dρgw(f)

d ln(f)
(2.25)

The associated power spectral density can be written

SGW =
3H2

0

10π2
f−3Ω(f) (2.26)

Note that, for the cosmic microwave background radiation, the primordial gravita-

tional waves would be highly red-shifted from the expansion of the universe, but

likely to a much greater degree, since they would have decoupled from matter

at vastly earlier times. A more convenient reformulation in amplitude spectral

density can be written as:

h(f) = [SGW (f)]
1
2 = (5.6× 10−22)h100(Ω(f))

1
2

(
100Hz

f

) 3
2

Hz−
1
2 (2.27)

where h100 ≡ H0/(100km/s/Mpc).
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A key question is what range of values are expected for Ω(f)? Fig.2.5 shows a

range of expectations versus frequency (28 orders of magnitude in frequency and

12 in Ω). The bottom curve is a rough estimate expected from standard inflationary

scenarios. This graph also shows direct limits on gravitational wave energy density

from comparison of observed abundances of elements with predictions from Big

Bang nucleosynthesis (BBN), in addition to limits derived from measurements of

anisotropies in the CMBR. For reference, the normalized total energy density of the

CMBR itself is about ΩCMBR = 5 × 10−5, and the energy density from primordial

neutrinos is estimated to be bounded by Ωνν̄ < 0.014. The Ω(f) sensitivity of

the initial LIGO and Virgo detectors to this isotropic background is 10−6), with

an expected improvement of more than three orders of magnitude for advanced

detectors [2].

Figure 2.5: Comparison of different stochastic gravitational wave background
measurements and models [2].

2.6 Gravitational radiation as a tool for testing

general relativity

2.6.1 Tests of scalar-tensor gravity

Scalar-tensor theories generically predict dipole gravitational radiation, in addition

to the standard quadrupole radiation, which results in modifications in gravitational-

radiation back-reaction, and hence in the evolution of the phasing of gravitational

waves from in-spiraling sources. The effects gives a more detailed picture of the

SNR in the detectors around the time of the event. One clearly sees the presence

of two peaks in the signal with a time delay between them corresponding to the
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time needed for the wave to travel from one detector to the other, from the second

figure we see that the gravitational wave is first detected in Livingston detector.

For both sets of parameters, we see that the two LIGO detectors present a clear

peak above the noise.are strongest for systems involving a neutron star and a black

hole. Binary neutron star systems are less promising because the small range of

masses near 1.4M� with which they seem to occur results in suppression of dipole

radiation by symmetry. Binary black-hole systems turn out to be observationa-lly

identical in the two theories, because black holes by themselves cannot support

scalar "hair" of the kind present in these theories. Dipole radiation will be present

in black-hole neutron-star systems, however, and could be detected or bounded via

matched filtering. Interesting bounds could be obtained using observations of low-

frequency gravitational waves by a space-based LISA-type detector. For example,

observations of a 1.4M� NS in-spiraling to a 103M� BH with a signal-to-noise ratio

of 10 could yield a bound on ω between 2.1×104 and 2.1×105, depending on whether

spins play a significant role in the in-spirai [25].

Scalar-tensor theories are very popular in unification schemes such as string theory

or quantum gravity. Moreover, scalar fields are used to provide a model for cosmolog-

ical inflation. In addition to the metric tensor, such theories contain a scalar

function ϕ(x) that can be incorporated into the Einstein-Hilbert action using minimal

coupling, where a potential V (ϕ) and a coupling function A(ϕ) are used [12].

S =
1

16π

∫
d4x
√
−g[R− 2(∂µϕ)(∂µϕ)− V (ϕ)] + Sm[ψm, A

2(ϕ)gµν ]. (2.28)

This expression is in the so-called Einstein frame, and in it, gµν is not the physical

metric. In this expression, ϕ represents the scalar field, V (ϕ) is a potential function,

ψ represents the matter degrees of freedom, and Sm is the action for matter. In

order to place this theory in the more intuitive frame in which the metric governs

space-time separations, the Jordan frame, it can be re-written by making the conformal

transformation ḡµν = A2(ϕ)gµν . In this new frame, ḡµν is the physical metric, and

the action takes the form

S =
1

16π

∫
d4x
√
−g[φR− ω(φ)

φ
(∂µφ)(∂µ)− φ2V ] + Sm, (2.29)

The new scalar field is represented by φ, where φ ≡ A−2, and ω(φ) is called the

coupling field. When this field is constant, i.e. ω(φ) = ωBD, this theory reduces

to mass-less Jordan-Fierz-Brans-Dicke (Brans-Dicke) theory. In mass-less Brans-

Dicke theory weak-field agreement with GR is recovered in ωBD < 1/40000. This
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bound is set by tracking data from the Cassini spacecraft. More generally, scalar-

tensor theories of this form, barring a certain class that are described by homogeneous

solutions to the scalar field evolution equations, recover GR in the limit that ω →∞
[26].

2.6.2 GR from in-spiral-merger-ring down consistency test

For the first time, gravitational wave observation of binary black hole coalescence

provided us with an opportunity to probe gravity and test general relativity in the

strong field, large velocity and highly dynamical regime which was inaccessible

before [13].

To quantify the consistency of the observed signal with a binary black hole system

predicted by GR, we define two parameters that describe the fractional difference

between the two estimates of the remnant’s mass and spin [27].

ε :=
∆Mf

M̄f

, σ :=
∆af
āf

(2.30)

where

∆Mf := M I
f −MMR

f , ∆af := aIf − aMR
f (2.31)

and

M̄f :=
M I

f +MMR
f

2
, āf :=

aIf + aMR
f

2
(2.32)

The best-fit general relativity waveform was subtracted from the detector output

and it was checked whether the residual was in line with pure noise or there was

leftover power. it had been found that the residual was indeed consistent with

Gaussian noise. general relativity theory was tested to 4% level using this test,

in other words the correlation between the detector output and also the waveform

based on general relativity theory is larger than 96%. the ultimate mass and final

dimensionless spin parameters of the remnant part,Mf and afcan be determined

in two ways, by using the in-spiral or low frequency part and by using the post-

in-spiral or high frequency a part of the signal. within the case of GW150914

the critical frequency was 132 Hz. so as to work out the mass and spin of the

remnant black hole input from the numerical relativity is required. Numerical

relativity evolution starting from the information of the in-spiral phase allows us

to predict the final mass and spin of the remnant black hole assuming Einstein’s

general theory of relativity. The dark purple color in Fig.2.6 confines the 90%

confidence region in the Mf − af plane based on the prediction using inspiral
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part of gravitational waveform and numerical relativity. On the other hand, the

dotted purple curve confines 90% confidence region based on the post-inspiral part

of signal. The post-inspiral part of the signal contains merger and ringdown. Again

using the numerical relativity fitting formulae the confidence region is inferred. It

is clear from Fig.2.6 that two contours show significant overlap confirming that the

two independent predictions of general relativity are indeed mutually consistent

[13]. The left figure shows The final dimensionless spin af is plotted against

Figure 2.6: The right panel describe Posterior distributions for the parameters
∆Mf/Mf and ∆af/af that describe the fractional difference in the
estimates of the final mass and spin from in-spiral and post-in-spiral
signals. The contour shows the 90% confidence region. The plus symbol
indicates the expected GR value (0, 0) [28]. There is a significant overlap.
(Image credit: LIGO)

the final mass Mf in units of solar mass. The dark purple curve confines the

90% confidence region of the prediction of the final mass and spin based on the

general relativistic numerical relativity simulation starting from the information

from the in-spiral part of the gravitational wave signal. The dotted purple curve

encloses 90% confidence region of the prediction of final mass and spin from the

post-inspiral part of the gravitational wave signal. The solid black curve represents

the prediction of the final mass and spin based on the full in-spiral-merger-ring

down waveform [13].

2.7 Properties of gravitational waves

Gravitational waves, once they’re generated, propagate almost unimpeded. Indeed,

it’s been proven that they’re even harder to stop than neutrinos! the sole significant

change they suffer as they propagate is that the decrease in amplitude while they

travel far from their source, and also the Doppler shift they feel (cosmological,

gravitational or Doppler), as is that the case for electromagnetic waves. There

are other impacts that possibly impact the gravitational waveform, as an case,
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assimilation by inter-stellar or inter-galactic matter mediating between the observer

and also the source, which is extremely weak (actually, the extremely weak coupling

of gravitational waves with matter is that the main reason that gravitational waves

haven’t been observed). Scattering and dispersion of gravitational waves also are

practically unimportant, although they will are important during the first phases

of the universe (this is additionally true for the absorption). Gravitational waves

will be focused by strong gravitational fields and can also be diffracted, exactly as it

happens with the electromagnetic waves. Gravitational waves are fundamentally

different, however, while they share similar wave properties far from the source.

Gravitational waves are transmitted by coherent bulk movements of matter (for

case, by the implosion of the core of a star amid a supernova blast) or by coherent

motions of space-time curvature, and thus they serve as a search of such phenomena.

In contrast, cosmic electromagnetic waves are mainly the results of incoherent

radiation by individual atoms or charged particles. Strong gravitational waves,

are emitted from regions of space-time where gravity is incredibly strong and also

the velocities of the bulk motions of matter are near the speed of light [29].

2.7.1 Polarization of gravitational waves

A laser-interferometric or resonant bar gravitational-wave detector measures the

local components of a symmetric 3×3 tensor which consists of the "electric" components

of the Riemann tensor, R0i0j. These six independent components may be expressed

in terms of polarization (modes with specific transformation properties under null

rotations). Three are transverse to the direction of propagation, with two representing

quadrupolar deformations and one representing an asymmetric "breathing" deformation.

Three modes are longitudinal, with one an axially symmetric stretching mode

within the propagation direction, and one quadrupolar mode in each of the two

orthogonal planes containing the propagation direction. general theory of relativity

predicts only the first two transverse quadrupolar modes, independently of the

source, while scalar-tensor gravitational waves can in addition contain the transverse

breathing mode. More general metric theories predict up to the full complement of

six modes. an appropriate array of gravitational antennas could delineate or limit

the quantity of modes present in an exceedingly given wave. If distinct evidence

were found of any mode apart from the two transverse quadrupolar modes of GR,

the result would be disastrous for GR. On the opposite hand, the absence of a

breathing mode wouldn’t necessarily rule out scalar-tensor gravity, because the

strength of that mode depends on the character of the source [25].
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2.7.2 Speed of gravitational waves

According to GR, within the limit during which the wavelength of gravitational

waves is small compared to the radius of curvature of the background spacetime,

the waves propagate along null geodesics of the background spacetime, i.e. they

have the same speed, c as light. In other theories, the speed could differ from c

due to coupling of gravitation to "background" gravitational fields. as an example,

in some theories with a flat background metric η, gravitational waves follow null

geodesics of η, while light follows null geodesics of g. In bran-world scenarios, the

apparent speed of gravitational waves could differ from that of light if the former

can propagate off the bran into the upper dimensional "bulk". otherwise during

which the speed of gravitational waves could differ from c is that if gravitation were

propagated by a massive field (a massive graviton), during which case vg would be

given by, in a very local reference frame,

vg
c

=

(
1−

m2
gc

4

E2

)1/2

≈ 1

2

c2

f 2λ2
g

(2.33)

where mg , E and f are the graviton rest mass, energy and frequency, respectively,

and λg = h/mgc is the graviton Compton wavelength (λg >> c/f assumed). An

example of a theory with this property is the two-tensor massive graviton theory

of Visser. The most obvious way to test for a massive graviton is to compare the

arrival times of a gravitational wave and an electromagnetic wave from the same

event, e.g. a supernova. For a source at a distance D, the resulting bound on the

difference |1− vg/c| or on λg is

|1− vg/c| < 5× 10−17km

(
200Mpc

D

)(
∆t

1s

)
(2.34)

λg > 3× 1012km

(
D

200Mpc

100Hz

f

)1/2(
1

f∆t

)
(2.35)

where ∆t ≡ ∆ta − (1 + Z)∆te is the "time difference", where ∆ta and ∆te are the

differences in arrival time and emission time, respectively, of the two signals, and

Z is the redshift of the source. In many cases, ∆te is unknown, so that the best

one can do is employ an upper bound on ∆te based on observation or modelling.

However, there is a situation in which a bound on the graviton mass can be set

using gravitational radiation alone. That is the case of the inspiralling compact

binary, the final stage of evolution of systems like the binary pulsar, in which the

loss of energy to gravitational waves has brought the binary to an inexorable spiral

toward a final merger. Because the frequency of the gravitational radiation sweeps
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from low frequency at the initial moment of observation to higher frequency at

the final moment, the speed of the gravitational waves emitted will vary, from

lower speeds initially to higher speeds (closer to c) at the end. This will cause

a distortion of the observed phasing of the waves and result in a shorter than

expected overall time ∆t of passage of a given number of cycles. Furthermore,

through the technique of matched filtering, the parameters of the compact binary

can be measured accurately, and thereby the effective emission time ∆te can be

determined accurately. A full noise analysis using proposed noise curves for the

advanced LIGO ground-based detectors, and for the proposed space-based LISA

antenna yields potentially achievable bounds that are summarized in Table 2.1.

These potential bounds can be compared with the solid bound λg > 2.8 × 1012km,

Table 2.1: Potentially achievable bounds on λg from gravitational-wave observations
of in-spiraling compact binaries [25].

m1(M�) m2(M�) Distance (Mpc) Bound on λg (km)
Ground-based (LIGO/VIRGO)

1.4 1.4 300 4.6× 1012

10 10 1500 6.0× 1012

Space-based (LISA)
107 107 3000 6.91016

105 105 3000 2.31016

derived from solar system dynamics, which limit the presence of a Yukawa modification

of Newtonian gravity of the form V (r) = (GM/r) exp(−r/λg), and with the model-

dependent bound λg > 6×1019km from consideration of galactic and cluster dynamics

[25].

2.8 The use of gravitational waves to test general

relativity

Astronomical sources of gravitational waves are often systems where gravity is

extremely strong with relativistic bulk motion of massive objects. The emitted

radiation carries the un corrupted signature of the character of the space-time

geometry and thus, it’s a useful tool to look at and understand the behavior of

matter and geometry under extreme conditions of density, temperature, magnetic

fields and relativistic motion [30]. Gravitational waves distort spacetime, in other

words they alter the distances between free macroscopic bodies. A gravitational

wave passing through the solar system creates a time-varying strain in space that
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periodically changes the distances between all bodies within the solar system in a

very direction that’s perpendicular to the direction of wave propagation [7].

Gravitational waves have access to the foremost extreme gravitational environments

in nature. Moreover, gravitational waves travel essentially unimpeded from their

source to Earth, and thus, they are doing not suffer from issues related to obs-

curation. Gravitational waves also exist within the absence of luminous matter,

thus allowing us to look at electromagnetically dark objects, like black-hole in-

spirals [1].

Gravitational waves are most unique in that they propagate without interacting

with matter. This permits us to get new information about the universe that

electromagnetic waves fail to provide. The amplitude and frequency of gravitational

waves describe the frequency and mass of the emitting source. the shape of the

ultimate phase of a binary system might give some new insight in astronomy.

Stochastic background would reveal the mass distribution of the first plank-scale

universe and therefore the evolution of the early universe.

2.9 Gravitational waves detection

The quest to detect gravitational waves is based on our understanding of general

relativity (indeed of any theory of gravity that is compatible with special relativity),

where the emission of gravitational waves is required by the existence of a fundamental

limiting speed for propagation of information. However many of the most interesting

sources involve extreme gravity and relativistic speeds, and considerable progress

is being made on techniques for solving Einstein’s equations to predict confidently

the gravitational waves from these sources and to interpret the data taken [30].

The discovery of gravitational waves is imperative for two reasons: to begin with,

their location is anticipated to open up a modern window for observational cosmology

since the data carried by gravitational waves is exceptionally distinctive from that

carried by electromagnetic waves . This new window onto universe will complement

our view of the cosmos and will help us unveil the fabric of space-time around

black-holes, observe directly the formation of black holes or the merging of binary

systems consisting of black holes or neutron stars, search for rapidly spinning

neutron stars, dig deep into the very early moments of the origin of the universe,

and look at the very center of the galaxies where supermassive black holes weighting
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millions of solar masses are hidden. These are only a few of the great scientific

discoveries that scientists will witness during the first decade of the 21st century.

Second, detecting gravitational waves is important for our understanding of the

fundamental laws of physics; the proof that gravitational waves exist will verify a

fundamental 85 years old prediction of general relativity. Also, by comparing the

arrival times of light and gravitational waves, from, e.g., supernovae, Einstein’s

prediction that light and gravitational waves travel at the same speed could be

checked. [29].

Gravitational waves represent a new phenomenon we can use to understand the

universe. The 20th century brought us radio (including microwaves and millimeter

waves), x-rays, infrared, and gamma-rays, but all of these tools are electromagnetic

phenomena. The 20th century also brought the first promise of non-electromagnetic

tools for studying the universe: cosmic ray and neutrino experiments, and finally

gravitational waves. Gravitational waves will yield a profound new tool for astrono-

mers. With in gravitational waves we anticipate to identify the increasing speed

of mass within the universe, instead of the electromagnetic signature of the mass.

For example, we will discriminate between galaxy formation scenarios (Volonteri,

Haardt, and Madau 2003), and we can measure the spins of binary black holes

directly (Mingarelli et al. 2012; Vitale et al. 2014) [3].

The advanced LIGO detectors at the Livingston and Hanford sites were turned

on in September 2015 and the first detection occurred almost immediately there

after on 14 September 2015, around 09:50 UTC. The gravitational wave passed

through the Livingston detector initially and then through the Hanford detector 7

ms later accounting for the light travel time between the two spatially separated

locations. The signal was identified by the online search pipeline merely 3 min

after the event. The offline analysis was carried out later confirming the detection

and the parameter estimation was performed. The signal to noise ratio was in fact

as high as 24 [13].

The observed signal at the output of a detector consists of the true gravitational

wave strain h and Gaussian noise. The optimal method to detect a gravitational

wave signal leads SNR. (
S

N

)2

opt

= 2

∫ ∞
0

|h̃(f)|2

Sn(f)
(2.36)
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where h̃(f) is the Fourier transform of the signal waveform and Sn(f) spectral

density. It is clear from this expression that the sensitivity of gravitational wave

detectors is limited by noise [29].

The peak amplitude of the gravitational wave strain was h = 10−21 as can be

inferred from Fig.2.7. The band-passed and notched filtered data output from

both the detectors is shown within the top two panels of Fig.2.7. The detector

output from the two detectors is superimposed after appropriate inversion taking

into consideration the light travel time between the two detector locations and also

the different orientation of the arms. It matches alright, indicating the presence of

the same signal in both the detectors. The signal was generated by the merger of

two stellar mass black holes. Masses of the individual black holes were estimated

to be 36 M� and 29 M�. In contrast, the mass of the remnant black hole formed as

a results of merger was 62 M� and it’s a dimensionless spin of 0.7. the amount of

energy emitted within the gravitational radiation was worth 3 M�. The distance to

the source was 1.3 billion light years. the peak luminosity of the event was 3× 1056

erg/sec, making it the foremost luminous event exceeding the integrated luminosity

of all the celebs taken together within the observable universe. The gravitational

signal that’s hidden within the noise must be excavated out using optimal data

analysis techniques like matched filtering where the expected signal is correlated

with the detector output. To this end, a template is used to represent all possible

signals from gravitational waves. Therefore, it is very important to obtain an

accurate waveform a prior. Within the case of binary black hole coalescence which

is that the most promising source of gravitational radiation for ground-based detectors

and also the source of the signal detected by LIGO, it’s essential to solve two-

body problem generally relativity [14]. General relativity describes how two black

holes orbiting each other generate gravitational waves, losing energy within the

handle, and getting closer together until they merge. We use these predictions

of General Relativity to build gravitational waveform models. Whereas there are

not yet any waveform models for binary black hole coalescence in other theories

of gravity to compare with (they are very difficult to calculate!), we are able still

to test the predictions of General Relativity by introducing small modifications

to our currently accessible waveform models and compare the data with these

"distorted" waveform. Gravitational waves change the relative length of the optical

cavities in the interferometer (or equivalently, the proper travel time of photons)

resulting in a strain [15]. The word strain is the fractional change in the distance
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Figure 2.7: The gravitational waveform in this figure correspond to the primary
detection event GW150914. The gravitational wave strain is plotted
against the clock. the top two panels show the detector output from
the LIGO Hanford and LIGO Livingston. The waveform predicted
from general theory of relativity are superimposed on the detector
output. the underside panel shows the detector output from the LIGO
Livingston detector together with that from LIGO Hanford detector
shifted appropriately taking under consideration the suspension within
the arrival of signal and therefore the difference within the detector
orientations. They match well indicating that the identical signal was
detected in both the detectors (Image credit: LIGO) [13].

between two measurement points due to the deformation of space-time by a passing

gravitational wave.
∆L

L
(2.37)

where ∆L is the path length difference between the two arms of the interferometer.

Fractional changes is the difference in path lengths along the two arms can be

monitored to better than 1 part in 1020. For a simple Michelson interferometer, a

difference in path length of order the size of a fringe can easily be detected. For

infrared lasers of wavelength λ ∼ 1 µm, and interferometer arms of length L = 4

km, the minimum detectable strain is

h ∼ λ

L
∼ 3× 10−10. (2.38)

This is far from 10−20. However, changes in the length of the cavities corresponding

to fractions of a single fringe can also be measured provided we have a sensitive
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photodiode at the dark port of the interferometer, and enough photons to perform

the measurement. This way we can track changes in the amount of light incident

on the photodiode as the lengths of the arms change and we move over a fringe.

The rate at which photons arrive at the photodiode is a Poisson process and the

fluctuations in the number of photons is ∼ N1/2, where N is the number of photons.

Therefore we can track changes in the path length difference of order

∆L ∼ λ

N1/2
. (2.39)

The number of photons depends on the laser power P , and the amount of time

available to perform the measurement. For a gravitational wave of frequency f , we

can collect photons for a time t ∼ 1
f
, so the number of photons is

N ∼ P

fhpν
(2.40)

where hp is Planck’s constant and ν = c/λ is the laser frequency. For a typical laser

power P ∼ 1W , a gravitational-wave frequency f = 100 Hz, and λ ∼ 1 µm therfore,

the number of photons is N ∼ 1016. So that the strain we are sensitive to becomes

h ∼ 10−18. (2.41)

The sensitivity may be further improved by increasing the effective length of the

arms. within the LIGO instruments, for instance, each of the two arms forms

a resonant Fabry–Pérot cavity. For gravitational-wave frequencies smaller than

the inverse of the light storage time, the light within the cavities makes many

back and forth trips in the arms, while the wave is traversing the instrument. For

gravitational waves of frequencies around 100 Hz and below, the light makes a

few thousand back and forth trips while the gravitational wave is traversing the

interferometer, which ends in a very three orders of magnitude improvement in

sensitivity,

h ∼ 10−21. (2.42)

For frequencies larger than 100 Hz the number of round trips the light makes in

the Fabry-Pérot cavities while the gravitational wave is traversing the instrument

is reduced and the sensitivity is degraded [1].

2.10 Summary

In 1915, GR is published by Albert Einstein as the geometrical theory of gravitation.

GR is distinguished from other metric theories of gravitation by its use of the
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Einstein field equations to relate spacetime content and spacetime curvature. GR

is currently the most successful gravitational theory, being almost universally accepted

and well confirmed by observations. Einstein’s theory of general relativity, the

geometry of space-time is a dynamic physical observable that supports wave-like

excitation, propagating at the speed of light. These are known as gravitational

waves. GWs are disturbances in the curvature of space-time, generated by accelerated

masses, that propagate as waves outward from their source at the speed of light.

Like all sorts of waves, gravitational waves carry the energy and in fact transport,

it away from the source. GW propagates with out interacting with matter, this

provides to get modern information about the evolution the early univers and used

to observe and understand the behavior of matter and geometry under extreme

conditions of density, temperature, magnetic fields, and relativistic motion.



CHAPTER 3
Methods of analyzing gravitational waves to verify

Einstein general theory of relativity in binary

black hole and its waveform models

3.1 Introduction

In order to study GR from the gravitational waves radaited by the binary black

hole we have used different GW models including, the quaderapol formalism as

an approximation of general relativity in the two-body problem, effective-one-body

and phenomelogical waveform model, and also numerical relativity simulated waveforms.

In this chapter, we will briefly recall how the gravitational waves are derived

from the Einstein field equations and under which conditions it work. In a weak

gravitational field, i.e. for a nearly flat space-time, we can simplify the Einstein

equations. The goal is to show that hµν obeys wave equations.

3.2 Einstein field equation

The fundamental equation that relates the spacetime metric (i.e., the gravitational

field) to the distribution of energy is Einstein’s field equation [9]. Let us begin by

recalling the field equation of Newtonian gravity

~∇2Φ = 4πGρ (3.1)

If gravity is a manifestation of spacetime curvature that is for a weak gravitational

field, in coordinates such that gµν = ηµν+hµν(with |hµν | << 1), each element of gµν is

close to its inertial value. Non-relativistic motion, on the other hand, implies that

τ ≈ t, dx0

dτ
≈ c, dxi

dτ
≈ vi << c so the geodesic Equation

ẍρ + Γρkλẋ
kẋλ = 0 (3.2)

with ρ = i becomes
1

c2

d2xi

dt2
+ Γi00 = 0 (3.3)

33
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since the terms in dxi

dτ
are neglected. We may write this equation as

d2xi

dτ 2
= ai − c2Γi00 (3.4)

then the right hand side represents the ‘gravitational force’, which gives the particle

its acceleration. The connection coefficient in Eq.3.3 is

Γi00 =
1

2
giσ(2g0σ, 0− g00,σ) = −1

2
gikg00,0Γi00 ≈ −

1

2
ηik

∂h00

∂xk
= −1

2
∇ih00 (3.5)

noting that η is constant, but keeping only first order terms in η , and the final

equality since ηik = δik for spacelike indices. Putting Eq.3.5 into Eq.3.3 gives

d2xi

dt2
=
c2

2
∇ih00 (3.6)

This is to be compared with Newton’s equation

d2x
dt2

= g = −∇φ (3.7)

Where φ is the gravitational potential. Comparison of Eq.3.6 and Eq.3.7 give[8]

h00 = −2φ

c2
(3.8)

and hence

g00 = −
(

1 +
2Φ

c2

)
(3.9)

The correct relativistic description of matter is provided by the energy-momentum

tensor and, for a perfect fluid or dust, in the inertial reference frame(IRF) we have

T00 = ρc2. (3.10)

For a weak static gravitational field in the low-velocity limit,

~∇2g00 =
8πG

c4
T00 (3.11)

Einstein’s fundamental intuition was that the curvature of spacetime at any event

is related to The above considerations thus suggest that the gravitational field

equations should be of the form

Kµν = kTµν (3.12)

where Kµν is a rank-2 tensor related to the curvature of spacetime and we have set

k = 8πG/c4. Since the curvature of spacetime is expressed by the curvature tensor

Rµνσρ, the tensor Kµν must be constructed from Rµνσρ and the metric tensor gµν .

Moreover, Kµν should have the following properties:
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i. The Newtonian limit suggests that Kµν should contain terms no higher than

linear in the second-order derivatives of the metric tensor; and

ii. Since Tµν is symmetric then Kµν should also be symmetric. The curvature

tensor Rµνσρis already linear in the second derivatives of the metric, and so the

most general form forKµν that satisfies (i) and (ii) is

Kµν = aRµν + bRgµν + λgµν (3.13)

where Rµν is the Ricci tensor, R is the curvature scalar and a, b, λ are constants. Let

us now consider the constants a, b, λ. First, if we require that every term in Kµν is

linear in the second derivatives of gµν then we see immediately that λ = 0. We will

relax this condition later, but for the moment we therefore have

Kµν = aRµν + bRgµν (3.14)

To find the constants a and b we recall that the energy-momentum tensor satisfies

∇µTµν = 0;

∇Kµν = ∇(aRµν + bRgµν) (3.15)

However, ∇(Rµν − 1
2
Rgµν) = 0 and ∇µgµν = 0, We obtain

∇µK
µν = (

1

2
a+ b)gµν∇µR = 0 (3.16)

The quantity ∇µR will, in general, be non-zero through out (a region of) spacetime

unless the latter is flat and hence there is no gravitational field. Thus we find that

b = −a/2, and so the gravitational field equations must take the form

a

(
Rµν −

1

2
gµνR

)
= kTµν (3.17)

Comparing the weak-field limit of these equations with Poisson’s equation in Newtonian

gravity and puting a = 1 and so [31].

Rµν −
1

2
gµνR = kTµν (3.18)

where k = 8πG/c4. Eq.3.18 constitutes Einsteins gravitational field equations,

which form the mathematical basis of the theory of general relativity. We note

that the left-hand side of Eq.3.18 is simply the Einstein tensor Gµν ,

Gµν =
8πG

c4
Tµν (3.19)
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3.2.1 Einstein equations in empty space

A region of spacetime in which Tµν = 0 is called empty, and such a region is

therefore not only devoid of matter but also of radiative energy and momentum.

The gravitational field equations for empty space are

Rµν = 0 (3.20)

In the weak-field approximation, spacetime is only ’slightly’ curved and so there

exist coordinates in which gµν = ηµν + hµν (with |hµν | << 1), and the metric is

stationary [31].

where ηµν is the flat metric expressed in cartesian coordinates and hµν is the tiny

perturbation around it and the vacuum Einstein equations are linearised in hµν ,

we get the wave equation �hµν = 0 [13].

ηµν =


c2 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (3.21)

Ignoring all terms that are non linear in h the Christoffel symbols become

Γρµν = 1
2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν)

=
1

2
ηρσ(∂µhνσ + ∂νhµσ − ∂σhµν) (3.22)

The Ricci curvature tensor becomes

Rµν = ∂µΓρνρ − ∂ρΓρµν + ΓσµρΓ
ρ
σν − ΓσµνΓ

ρ
σρ

Rµν = ∂µΓρνρ − ∂ρΓρµν (3.23)

Rµν = 1
2
ηρσ(∂µ∂ρhνσ + ∂µ∂νhρσ − ∂µ∂σhρν)− 1

2
ηρσ(∂ρ∂µhνσ + ∂ρ∂νhµσ − ∂ρ∂σhµν)

=
1

2
ηρσ(∂µ∂νhρσ − ∂µ∂σhρν − ∂ρ∂νhµσ + ∂ρ∂σhµν) (3.24)

The scalar curvature becomes

R = Rµνg
µν = 1

2
ηµνηρσ(∂µ∂νhρσ − ∂µ∂σhρν − ∂ρ∂νhµν + ∂ρ∂σhµν)

=
1

2
ηµνηρσ(∂µ∂νhρσ − ∂µ∂σhρν (3.25)

Now, imposing the harmonic coordinat condition:

∂γhαβη
βγ =

1

2
∂αhβγη

βγ (3.26)
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The Ricci tensor and curvature scalar becomes

Rµν = ηρσ(∂µ∂νhρσ − ∂µ∂σhρν − ∂ρ∂νhµσ + ∂ρ∂σhµν

Rµν = ηρσ(∂µ∂νhρσ −
1

2
∂µ∂νhρσ −

1

2
∂µ∂νhρσ + ∂ρ∂σhµν) =

1

2
�hµν (3.27)

R = ηµνηρσ(∂µ∂νhρσ − ∂µ∂σhρν) = ηµνηρσ(
1

2
∂µ∂ρhνσ −

1

2
∂µ∂ρhσν) = 0 (3.28)

Now, inserting all of this into Einstein field equation

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (3.29)

So the Einstein field equation in vacuum gives

1

2
�hµν =

8πG

c4
Tµν − Λ(ηµν + hµν) (3.30)

without cosmological constant

�hµν =
16πG

c4
Tµν (3.31)

In the vaccum:

�hµν = 0 (3.32)

Here � is the flat space dÁlembertian.

� = ∂λ∂µ = gµν∂ν∂µ =
1

c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
(3.33)

� =
1

c2

∂2

∂t2
−∇2 (3.34)

wher ∇2 is 3-dimensional laplacian. Thus, it implies that the metric perturbation

hµν represents the wave that travels at the speed of light and it is known as the

gravitational wave [13].

3.2.2 Linear approximation of Einstein field equations

Along with the tests for GR, it is important to test the behavior of the resulting

gravitational waves. As described in this section the analysis of GWs is based

on approximation theories and fundamental assumptions. Hence, it is important

that we test this approach for its consistency with GR. Gravitational waves can be

described using linear approximation of gravity. This makes it conceivable to use

the weak-field metric to discover arrangements to the Einstein equation in a space-

time with a geometry close to flat space-time. In general relativity gravitational

waves are most easily described when propagating in nearly flat space-time, that

is, in nearly empty space. Gravitational waves far from their source are small
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ripples in space-time and cause small curvatures in the otherwise flat geometry.

In this valid for weak estimation, terms non linear in h are ignored, and indices

are raised and brought down with Min Kowski metric. The gravitational wave

curvature tensor h can be considered as the gravitational wave field. The wave

field is transverse and trackless, and for waves traveling in the z-direction may be

expressed as follows:

hµν =


0 0 0 0

0 hxx hxy 0

0 hyx hyy 0

0 0 0 0

 (3.35)

There is no z-component due to the transverse nature of the waves, and to be

traceless h satisfies

hxx = −hyy. (3.36)

Because the Riemann tensor is symmetric, h also satisfies

hxy = hyx. (3.37)

The symmetry of h means that there are just two possible independent polarization

states which are usually denoted h+ and h×. In the case of sinusoidal gravitational

waves we can express these polarizations as

h+ = hxx = Re[A+e
−iω(t−z/c)] (3.38)

h× = hxy = Re[A×e
−iω(t−z/c)] (3.39)

Here A+ and A× are the strain amplitudes of each polarization.

3.2.3 Quadrupole formalism

The simplest technique for computing the gravitational wave field within the presence

of matter is that the quadrupole formalism. Einstein himself derived the quadrupole

formula for gravitational radiation by solving the linearized equations. This formalism

is specially important because it’s very accurate for several astrophysical sources of

gravitational waves and is simple to calculate. It doesn’t require for prime accuracy

in the computation on the strength of the source’s internal gravity, but requires

that internal motions inside the source are slow compared to the speed of light.

This requirement implies that the wavelength of the gravitational waves emitted

is much larger than the source’s characteristic size, λ >> Ls. The lowest allowed

multi pole for gravitational radiation is that the quadrupole. The mono pole is
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forbidden as a results of mass conservation. in a similar way, dipole radiation is

absent as a results of momentum conservation. The quadrupole formalism allow

us to urge an expression for the gravitational wave field:

hij(t, x
′i) =

2

R

G

c4
Q̈TT
ij (t− R

c
) (3.40)

where R is the euclidean distance from the point x′i to the center of the source and

t is the proper time measured by the observer. The quantity Qij is the symmetric

part of the second moment of the sources mass density ρ computed in a cartesian

coordinate system centered on the source evaluated at the retarded time tret = t− R
c

QTT
ij =

∫
d3xρ(xixj −

1

3
δijr

2) (3.41)

The superscript TT means that one needs to keep only the part that is transverse

to the direction of propagation of the wave and is traceless [11].

3.2.4 Two-body problem

As a primary application of numerical relativity, we consider the gravitational

two- body problem. The two-body problem in Newtonian gravitational physics

is formulated for two point masses moving in their mutual gravitational field.

A particular solution of the Newtonian two-body problem could be a Keplerian

elliptical orbit. However, in Einsteinian gravity, such orbital rotation generates

gravitational waves that take away energy and momentum. Binary orbits therefore

decay, band the motion of the two bodies follows an inward spiral that eventually

terminates with the collision and merger of the two objects. In most astrophysical

situations, the energy loss because of the emission of gravitational waves is so

small that a binary orbit decays only on time scales of millions or billions of years.

However, for compact objects like, neutron stars or black holes in very tight binaries,

general relativistic effects like, gravitational wave emission play a serious role [5].

One of the foremost important applications of the quadrupole formalism as an

approximation to general relativity theory is that the two-body problem, i.e. the

matter of finding the motion and gravitational radiation of self gravitating relativistic

systems of two extended bodies. This calculation relies on a Newtonian description

of the dynamics of the two bodies. The Newtonian dynamics will depart from the

relativistic description when the relative velocity of the binary is comparable the

speed of light or when the gravitational energy becomes large compared to the rest
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mass energy of the system. Relativistic binary systems exist within the universe,

samples of this are neutron stars or black holes binaries. These systems emit

gravitational waves and are the most prominent sources of gravitational radiation

that may be detected by LIGO. Surprisingly one can learn lots from the collision

of two bodies using the quadrupole formalism presented above. A Newtonian

positional notation is illustrated in Fig.3.1. For simplicity allow us to assume that

the system follow circular orbits and therefore the masses are equal. Thus

M1 = M2 = M, and R1 = R2 = R. (3.42)

Introducing cylindrical coordinates

x(t) = R cos Ωt, y(t) = R sin Ωt, z(t) = 0. (3.43)

The nonzero components of the quadrupole moment are

Qxx =
MR2

2

(
1

3
+ cos 2Ωt

)
, Qyy = MR2

(
1

3
− sin 2Ωt

)
, Qzz = −2

3
MR2

(3.44)

Taking the third time derivative and replacing into the expression to compute the

Figure 3.1: Two bodies with equal masses orbiting around their center of mass in
circular orbits [11].

gravitational source wave luminosity as the energy lost by the source

Lgw = −dE
source

dt
(3.45)

Lgw =
G

5c5
〈
...
Q
ij...
Qij〉 (3.46)

Lgw =
G

5c5
〈(

...
Qxx)

2 + (
...
Qxy)

2 + (
...
Qyy)

2 + (
...
Qzz)

2〉 (3.47)
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=
32G

5c5
Ω6M2R4 (3.48)

The angular frequency Ω and the period T are related by Ω = 2π/T . Furthermore,

using Kepler’s third law: R3 = GMT 2

4π2 the gravitational wave luminosity can be

expressed in terms of T

LGW =
32

5
210/3 c

5

G

(
πGM

c3T

)10/3

(3.49)

This may be an enormous luminosity for example, the estimated luminosity for the

event GW150914 is L ∼ 0.2× 10−3L0, where the Planck luminosity is L0 := c5/G ∼
1059erg/s. By comparison, the luminosity of the sun is L� = 3.839 × 1033erg/s. The

Newtonian binding energy of the binary is E = −1
2
GmM
R

, and taking the derivative

dE

dt
=
GmM

2R2

dR

dt
(3.50)

Thus as the gravitating system losses energy by emitting radiation, the distance

between the two bodies decreases at a rate

dR

dt
=

64

5

G3

c5

M3

R3
(3.51)

The size of the binary orbit decreases and the components move faster leading to

emission of gravitational waves with increasing amplitude and frequency. This last

stage is known as the chirp signal.

The orbital frequency increases accordingly to.

1

T

T

dt
=

3

2

1

R

dR

dt
, (3.52)

and the system will merge after a time t merger

tmerger =
5

256

c5

G3

R4
0

M5
(3.53)

where R0 is the initial separation. The previous analysis can be generalized to

consider elliptic orbits, but it is possible to shown that gravitational wave emission

circularize the orbits faster than the coalescence time-scale, making the study of

circular orbits quite useful [11].

3.3 Numerical relativity

Numerical relativity is that the science of numerically simulating the predictions

of the speculation of Einstein’s general theory of relativity on a supercomputer.
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This includes modeling the mergers of binaries containing black holes and neutron

stars, accretion disks within the ultra relativistic regime, and stellar collapse,

among others. Solving the complete Einstein equations on the computer is that the

subject of numerical relativity, which could also be called computational general

theory of relativity. Numerical relativity spans a large range of different topics

Figure 3.2: Numerical waveform template.

including numerical methods for partial differential equations, astrophysics, mathematical

general relativity, computer programming, and simulation science. Current research

in numerical relativity is in a transition from a self-contained topic in theoretical

physics to a physical theory with numerous connections to observational astronomy.

NR is providing key theoretical predictions and analysis tools for the ongoing gravitational

wave observations. As shown in Fig.2.4 gravitational waveform can be extracted by

various methods in different phases of the binaries. In-spiral phase waveform can

be extracted by post-Newtonian approximation, merger by numerical relativity and

finally ring- down by perturbation theory [32]. Any BBH signal, whether generated

using numerical relativity or observed in the strain data at a LIGO detector, can

be written in the frequency domain as

h̄GR(f) = A(f)eiφ(f) (3.54)

where A(f) represents the amplitude of the waveform and eiφ(f) represents the

complex phase [33].

One of the foremost important promises of GW astronomy is to test GR within the
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highly dynamical, strong field regime. BBHs are prime candidates for this, as the

gravitational fields are extreme and therefore the BH speeds are relativistic as one

approaches the merger. Tests of GR typically place the foremost stringent accuracy

requirements on waveform models, as systematic biases in waveform models could

lead to a bias being misidentified as a violation of GR. Therefore, to maximize the

science output of our detectors and to meet the promise of GW astronomy, it is

vital to possess an accurate waveform model. As mentioned in Fig.2.4 perturbation

schemes like PN break down as one approaches the merger of a BBH, and NR is the

only method which will accurately predict the end result. NR simulations are very

accurate, being limited mainly by the resolution of the grid used. However, these

simulations are prohibitively expensive for many direct data analysis applications,

with each simulation taking a few month on a supercomputer. Therefore, several

approximate waveform models are developed over the years. the two main approaches

are dubbed "phenomenological" and "effective-one-body" waveform. These models

typically make some assumptions about the phenomenology of the waveform, supported

good physical motivations. Then, any remaining free parameters are set by calibrating

against NR simulations. These models also are quite fast and are utilized in

analyzing the signals seen by LIGO/Virgo. While these models are shown to be

accurate enough for current detector sensitivities, they typically have a lower accuracy

than NR simulations [14].

3.4 Effective one body formalism

The Effective-One-Body (EOB) method is a resourceful formalism developed by

Damour and Buonanno in 1999. during this framework, the two-body problem

is reformulated and described jointly effective body on an efficient metric, whose

dynamics is described by an effective Hamiltonian. This framework heavily uses

post-Newtonian results along with re-summation techniques consisting of re-writing

in an exceedingly factorized form the post-Newtonian development used. The

effective-one-body method also uses numerical relativity results to inform and adjust

certain parameters, especially during the merger and therefore the ring-down phases[24].

Several recent comparisons between EOB predictions and Numerical Relativity

simulations have shown the aptitude of the EOB formalism to produce accurate

descriptions of the dynamics and radiation of varied binary systems (comprising

black holes or neutron stars) in regimes that are inaccessible to other analytical

approaches (such as the last orbits and therefore the merger of comparable mass



44

black holes). The EOB formalism is probably going to produce an efficient way of

computing the very many accurate template waveform that are needed for Gravitational

Wave (GW) data analysis purposes.

3.5 IMRPhenom

The second family of templates used are phenomenological templates usually called

IMRPhenom templates (IMR standing for In-spiral-Merger-Ringdown). These templates

are built in the Fourier space and parametrize the signal with a collection of coefficients

that are determined either using post-Newtonian results (for the in-spiral), black

hole perturbation (for the ring- down) or by calibration to numerical relativity (for

the merger). Besides, they contain extra coefficients accustomed describe phenomenologically

the intermediate phase between the inspiral and the merger [24]. For consistency

with the labeling used within the LIGO-Virgo Collaboration refers to the present

model as "IMRPhenomA" refers to a model of non-spinning binaries, and "IMRPhenomB"

to an earlier model of non-processing binaries, "IMRPhenomC" it incorporates higher-

order PN information within the in-spiral phasing, but also make cross-checks

against the IMRPhenomB model [34].

3.6 Summary

In this chapter we have described modeles for all the quantities that are necessary

to accomplish our objectives. We have derive the GW by Linear approximation

of Einstein field equations and also we have presented all the waveforme models

necessary to compute the GW data analysis process and the GR are computed using

NR simulation. Numerical relativity is providing key theoretical predictions and

analysis tools for the ongoing gravitational wave observations.



CHAPTER 4
Result And Discussion

4.1 Introduction

In GR, when two BHs merge, they form a highly distorted BH, that then rings

down to settle to a final Kerr state. The GWs radiated as the distorted BH settles

down is known as the post-merger signal in a BBH waveform. Qualitatively, the

post-merger signal contains two phases. The early part of the post-merger signal

carries information about the highly non-linear dynamics of the strong field region

(close to the BH). This part of the signal can only be modelled by solving the full

Einstein’s equation using NR. As the BH evolves towards its final state, the non-

linearity is dissipated as GW and eventually, the system can be modelled as a linear

perturbation on the spacetime of the final Kerr BH [35]. In this chapter we will see

the GW signals given by different models and also we prove or disprove whether

GR pass the test of GW, this can be done by comparing LIGO to the EOBNR and

phenomelogical wave form models and also comparing to solution of GR simulated

by NR.

4.1.1 Plus and cross polarization of gravitational waves

So far, it has been said that the gravitational wave have two polarization, the

gravitational waves was detected by the LIGO, which assist underpins GR. To

affirm that GR is the hypothesis of gravity, the polarization of GWs need to be

decided. It is well known that there are two polarization in GR, the plus, and

the cross. We can see that these polarization contrast by the stage of the signals.

This holds for system where the orbital plane of the binary doesn’t process. Within

the zoom-in plot(right-hand side of Fig.4.1), ready to see the merger itself and the

ring-down that takes after. It can be interesting to plot both polarization on the

same plot in order to have a view of their difference. It can be seen that the two

polarization have a slight shift between them. Therefore, using one or the other

45
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(a) (b)

Figure 4.1: Waveform for the IMRPhenomB model of both polarization after inverse
Fourier transform, the figure constructed from two equal 20M� of black
hole with lower frequency of 40Hz, the right one is zoomed around the
time of the merger. We have a better view on the ring down part, where
the amplitude decreases to zero. A shift can be observed between the two
polarization.

can make a slight difference in the timing of events. In addition, when carefully

looked at the figure, it shows that the amplitude is not totally the same. Indeed,

the maximum of the cross polarization is slightly higher than that of the plus

polarization. It can also be noted that the cross polarization becomes flat a bit

later than the plus polarization in time. So, one sees that both polarization are

important for the analysis as they are not the same. The difference comes from the

phase of the signal. This is true as long as the orbital plane of the binary system

is not processing. Since GR is the source of the gravitational wave, subsequently,

the gravitational wave gives a modern strategy to examine GR and its alternatives

within the high speed, strong-field regime. We drive gravitational wave equation by

linear approximation of Einstein field equations and the solution of this equation

is wave-like as shown in Fig.4.1, so that from this solition we are able to verfy that

GR passes the test of a gravitational wave.

4.1.2 Power spectral density

Power spectral density can be built for each detector based on the data sample. It is

a way to represent the sensitivity of the detector as it gives the square of the strain

that the noise produces for each frequency. This spectrogram shows how the PSD

of the data changes over time.The most highlight we see is that the low frequencies

contain more power than the high frequencies. In both detectors, we can see that
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(a) (b)

Figure 4.2: zoomed and whitening data over the range of 20 Hz to 400 Hz around the
event time = 1126259462.422 se. The left panel shows the Hanford data
and the right panal shows the Livingston data at the time of GW150914.

similar GW signals chirping from lower to higher frequency over a small fraction

of second in the frequency range of 20 Hz to 400 Hz. But a more visible signal

is seen between 20 Hz and 300 Hz. This high signal region is the merger of

the binary black hole. More clear signal is seen from Hanford detector than the

Livingston detector therefore, the Hanford detector is more powerful(sensitive)

than the Livingston detector.

4.1.3 Signal to noise ratio

Since signal-to-noise ratio is a measure of whether a particular signal has been

detected at a statistically significant level. Low values of SNR mean that a signal

has not been detected, while very high values imply a nearly certain detection. So,

from Fig.4.3 we can examain maximum value of gravitational wave signal, this

region is the merger of the binary black holes as the two systems closer to each

other the amplitude of the gravitational wave signal increase because the mass

of the binary increase as the binary black hole closer to each other, this time the

binary radaits high energy in the form of gravitational wave, while during ring

down phase the binary changed to single remainant black hole therefor the final

black hole mass is less than the total mass of the binary(mf < mtot). Fig.4.3 gives a

more detailed picture of the SNR in the detectors around the time of the event. One

clearly sees the presence of two peaks in the signal with a time delay between them

corresponding to the time needed for the wave to travel from one detector to the

other, from the second figure we see that the gravitational wave is first detected
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(a) Wide view of the SNR for the template with black holes having the same
masses.

(b) Zoom of the SNR close to the time of the merger in the case of black holes
with the same masses.

Figure 4.3: SNR with the detectable duration of time in second(s). The two figure
is detected from LIGO Hanford (pink) and LIGO Livingston(green). The
two-wave signals are the same but the amplitude of the wave detected
at Hanford detector is longer than the wave detected from Livingston
detector and these are similar to the gravitational wave predicted from
the merger of the binary black hole or binary neutron stars.
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in Livingston detector. For both sets of parameters, we see that the two LIGO

detectors present a clear peak above the noise.

4.1.4 Change of the waveform with the mass of the binary

We can also see how the parameters change the dimensions of the gravitational

wave signal. The magnitude of the gravitational waves depends on the separation

from the source and therefore the second derivative of the mass dispersion (mass

times acceleration within the case of one particle). Hence, one must consider

exceptionally enormous objects moving brutally as the candidates for the sources

of detectable gravitational waves. The foremost promising candidates are compact

binaries consisting of either two neutron stars, two black holes or one neutron star,

and one black hole. They are small and heavy, which allows them to orbit at a closer

distance and at a high orbital frequency, which suggests that the second derivative

of the mass distribution of the system is large. Therefore, the system emits strong

gravitational waves.

(a) (b)

Figure 4.4: Gravitational wave signal for different mass of binary system for the
IMRPhenomB model. We see that the amplitude, as well as the frequency
are modified, from the in-spiral to the ring-down phase. The left panel
constructed from two equal masses of black holes the amplitude of wave
is small compared to the right one. The right panel one mass of the black
hole kept fixed(10 M� ) whereas the second masses free to change.
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We know mass is a source of gravity, so events that have greater mass it also

have strong gravity. As shown in Fig.4.4 as the mass of the binary increases the

amplitude of the gravitational wave signal increases and the black hole becomes

more denser.

4.1.5 Change of the waveform with distance from the source of the

binary

The magnitude of the gravitational waves depends on the separation from the

source. The maximum amplitude of the relative change in length was about 10−23.

These exact analyses of the signal based on the theory of general relativity should

that it come from merging black holes with 25 M� at lower frequency of 30 Hz(left

panal) and 15 M� at lower frequency of 25 Hz(right panal) of Fig.4.5 which is

merged at a distance of 100 Mpc, 200 Mpc, 300 Mpc and 500 Mpc from the Earth.

The dimensionless gravitational-wave amplitude h = ∆L/L(the "strain") is proportional

to the amount of out-going laser light. The fact that the directly-measurable quantity

is the amplitude h ∝ 1
r
, not the energy of the wave as in the electromagnetic

antenna.

(a) (b)

Figure 4.5: Gravitational wave amplitude detecting at different distance from the
Earth and variation of waveform models SEOBNRv4(left panel) and
IMRPhenomA(right panel).

From Fig.4.5 we can see the amplitude of the gravitational wave depends on the

distance from the source. The gravitational wave from binary black holes or binary

neutron star mergers is like standard siren’s their amplitude fails off like 1
r
. So

their amplitude at the detector on Earth tells us how far away they are. The
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variation of gravitational wave amplitude with inverse law gives us a lot of hope

for detecting ultra-distance gravitational wave that brings information from very

far distant galaxies.

4.1.6 Waveform comparison

Fig.4.6 shows the gravitational waveform obtained by SEOB, phenomenological

model and the LIGO detection those have the same wave properties. When the

black holes come sufficiently close, the velocities are relativistic and gravity is

strong, Inevitably, black holes dive towards each other and collide at the velocity

close to the speed of light; the black holes merge together to make a single remnant

black hole. In Fig.4.6 the data from each of the detectors can be lined up against

Figure 4.6: Time domain waveform SEOBNR stands for Spin Effective One Body
Numerical Relativity, this model is calibrated to a set of numerical
relativity simulations and frequency domain IMRPhenom, stands for
phenomenological In-spiral-Merger-Ring down model, the models of the
waveform by phenomenological predicting the amplitude and phase
evolution. This waveform family is also calibrated to a set of numerical
relativity simulations.

each other. We also check that the data from the detectors are consistent with

each other, both detectors see similar astrophysical signals and it also have similar

characteristics to the time domain waveform modeled by SEOBNRv2(red dotted)

and IMRPhenomB-(black). If GR agrees with the observed signals, both estimates

of the final BH’s mass and spin should agree with each other. For gravitational
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waves emanating from the inward spiral and merge of pair of black holes, the

waveform detected in LIGOs and the two wave models "IMRPhenom" and "SEOBNR"

are aligned with each other.

Figure 4.7: waveform comparison between NR, SEOBNRv2 and IMRPhenomB wave
models.

Fig.4.7 is formed from binary black hole mass of m1 = 41 M� and m2 = 29 M� with

lower frequency of 10Hz. As we have seen earlier when the binary black hole close

to each other specialy around the merger, Einstein general relativity prediction

is solved by numerical relativity. The solition of general relativity simulated by

numerical relativity and our gravitational models from SEOBNR and IMRPhenom

around the merger are matched with each other, so from this verification we can

understand that GR passes the test of gravitational wave.

4.2 Summary

In this chapter we summarize the results obtained from the modern falsfication

test of general relativity with gravitational wave using the data from the GW150914

NR waveform and we have comper the result to the phenomelogical and SEOBNR

waveforms. The result helps to produce a good match between general relativty

and gravitational wave, therefore the detection of gravitational wave from the

binary source asserts that gravitational wave verify Einstein general theory of

relativity.



CHAPTER 5
Conclusion

In Einstein general theory of relativity, gravity is treated as phenomenon resulting

from the curvatur of space time. These propageting phenomena are gravitational

waves, as gravitational wave passess an observer, that obsever will find space time

distorted by the effect of strain, that is gravitational wave could be the natural out

come of general theory of relativity, which says that very massive objects distort

the fabric of time and space. GW are pridiction of GR-theory of space and time

(space-time), and mater and energy. It gives us the opportinity to test GR in the

strong field, highly dynamical regim. Most tests of GR have taken place under the

relatively weak-gravity conditions of the solar system or of binary pulsars. Linear

approximation of Einstein field equations, numerical relativity wave form, effective

one body wave model, the IMR phenomenological wave model and detection of

GW by LIGO are consistent with pridiction of GR in the highly dynamical(strong

field) regim. All these result leads us to generalized the Einstein general theory of

relativity passess the test of GW. Threfore, gravitational wave measurements will

allow us to directly probe some of the most violent events in the universe, to directly

measure the most tumultuous dynamics of spacetime geometry. Gravitational

waves would allow us to probe how space time really behaves under the most

radical of circumstances and teles us the univers is expanding. It is also important

to detect gravitational waves because they would bring new information from distant

galaxies in which electromagnetic waves cannot, it could also directly prove GR.

Although, as we have just said, we consider that the goal of the thesis has been

accomplished, there are plenty of improvements that could be done inorder to

achieve better results. This opens the opportunity to extend the study of Einstein

general theory of relativity in cosmology as future work.
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