
 

 

 

 

ADDIS ABABA UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 

ADDIS ABABA INSTITUTE OF TECHNOLOGY 

DEPARTMENT OF ELECTRICAL and COMPUTER 

ENGINEERING 

 

  

Design and Performance Evaluation of Hybrid Intelligent System-

based Algorithm for Multiple DNA Sequence Alignment 

By 

 

Addisu Galassa 

 

A thesis submitted to the School of Graduate Studies of Addis Ababa University in 

partial fulfillment of the requirement for the Degree of Master of Science in 

Electrical and Computer Engineering (Computer) 

 

Advisor 

Kumudha Raimond (Dr.) 

 

 

October, 2011 

Addis Ababa, Ethiopia

 



 

ADDIS ABABA UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 

ADDIS ABABA INSTITUTE OF TECHNOLOGY 

 

Design and Performance Evaluation of Hybrid Intelligent System-

based algorithm for Multiple DNA Sequences Alignment 

 

 

By Addisu Galassa Guddissa 

Approved by Board of Examiners 

 

____________________________                                                  _______________________ 

Chairman         Signature 

Department of Electrical and Computer Engineering        

 

__________________________                                               _______________________ 

Advisor                                                 Signature 

 

___________________________                                        _______________________ 

External Examiner        Signature 

 

___________________________                                           _______________________ 

Internal Examiner        Signature 

 



 
 

Department of Electrical & Computer Engineering, AAiT  i 

 

Acknowledgment 

This research project would not have been possible without the support of many people. First of 

all I would like to express my gratitude to Doctor Kumudha Raimond for her invaluable 

contributions. She has been guiding and inspiring me throughout to carry on this project in spite 

of difficulties I encountered. I also want to thank her for her comprehensive lectures on Machine 

Learning which helped me solve the problem of the thesis. In short, the accomplishment of this 

work would have been difficult had it not been for her precious advice and comments. 

My gratitude also goes to my class mate Ato Taye Tolu and my colleague Ato Wehib Abubeker 

for encouraging me to take this title and for helping me by providing materials related to it. 

Special thanks also to Miss Gelila Negash who has been there for me ideally and materially. 

Lastly, I offer my regards and blessings to all of those who supported me in any respect toward 

the completion of the work. 

 

 

 

 

 

 

 

 



 
 

Department of Electrical & Computer Engineering, AAiT  ii 

 

Table of Contents 

Acknowledgment ....................................................................................................................... i 

List of Tables ............................................................................................................................. iv 

List of Figures ..............................................................................................................................v 

List of Acronyms ....................................................................................................................... vi 

Abstract ..................................................................................................................................... vii 

Chapter 1 Introduction................................................................................................................1 

1.1 Background and Motivation ......................................................................................................... 1 

1.2 Problem Statement ....................................................................................................................... 3 

1.3 Objective ....................................................................................................................................... 5 

1.3.1 General Objective ................................................................................................................. 5 

1.3.2 Specific Objectives ............................................................................................................... 5 

1.4 Methodology ................................................................................................................................. 5 

1.4.1 Investigation of existing techniques ...................................................................................... 5 

1.4.2 System design ....................................................................................................................... 5 

1.4.3 Implementation and performance evaluation ........................................................................ 6 

1.5 Scope of the study ........................................................................................................................ 6 

1.6 Thesis outline ................................................................................................................................ 6 

Chapter 2 Literature Review ......................................................................................................7 

2.1 Introduction .................................................................................................................................. 7 

2.2 Literatures on Software methods ................................................................................................. 7 

2.3 Literatures on Hardware Implementation .................................................................................... 9 

2.4 Summary ..................................................................................................................................... 11 

Chapter 3 Optimization Algorithms ........................................................................................12 

3.1 Introduction ................................................................................................................................ 12 

3.2 Genetic Algorithm ....................................................................................................................... 12 

3.2.1 Crossover ............................................................................................................................ 13 

3.2.2 Selection .............................................................................................................................. 13 

3.2.3 Replication .......................................................................................................................... 13 

3.2.4 Mutation .............................................................................................................................. 13 

3.3 Tabu Search ................................................................................................................................. 16 



 
 

Department of Electrical & Computer Engineering, AAiT  iii 

 

3.4 Basics of Tabu Search .................................................................................................................. 16 

3.5 Summary ..................................................................................................................................... 18 

Chapter 4 Design and Implementation ....................................................................................19 

4.1 Introduction ................................................................................................................................ 19 

4.2 Proposed system ......................................................................................................................... 19 

4.2.1 Genetic Algorithm phase .................................................................................................... 23 

4.2.2 Tabu Search phase .............................................................................................................. 30 

4.3 Implementation of the proposed system ................................................................................... 33 

4.3.1 The hardware block ............................................................................................................. 33 

4.3.2 Modules in the block ........................................................................................................... 34 

4.3.3 Interface Configuration ....................................................................................................... 35 

4.3.4 Hardware Synthesis............................................................................................................. 37 

4.4 Summary ..................................................................................................................................... 41 

Chapter 5 Results and Discussion .........................................................................................42 

5.1 Introduction ................................................................................................................................ 42 

5.2 Test case sequences .................................................................................................................... 42 

5.3 Effect of hybridization ................................................................................................................. 43 

5.4 Performance Evaluation .............................................................................................................. 49 

5.4.1 Possible causes of less performance ................................................................................... 52 

5.4.2 System performance without slicing ................................................................................... 53 

Chapter 6 Conclusions and Recommendations .......................................................................56 

6.1 Introduction ................................................................................................................................ 56 

6.2 Conclusions ................................................................................................................................. 56 

6.3 Recommendations ...................................................................................................................... 57 

References .................................................................................................................................58 

Appendix A: Test case 1 Sequences ..........................................................................................61 

Appendix B: Aligned sequences of Test case 1 ........................................................................62 

Appendix C: Synthesized RTL Schematic Block of TS ..........................................................63 

Appendix D: MATLAB Source Code ......................................................................................64 

 



 
 

Department of Electrical & Computer Engineering, AAiT  iv 

 

 List of Tables 

Table 4.1 Integer representation of bases (nucleotides) ……………………….……………19 

Table 4.2 Hypothetical fragment of DNA sequences……..…………………...……………20 

Table 4.3 Integer representation of sequences shown in table 4.2…………...……………...20 

Table 4.4 Sample alignment of the sequences of table 4.2………………..……..……….…24 

Table 4.5 Score for matches and mismatches………………..………….……….…….……25 

Table 4.6 Fragments of two parents for mating…………………………………………..…27 

Table 4.7 new alignments after crossover…………………………..………………….……28 

Table 4.8 Mutation of an alignment…………………………..…………………………..…28 

Table 4.9 Example of block move……………………...…………………….…….…….…31 

Table 4.10 Slice of alignment to be passed to the design function……….……..…….……39 

Table 5.1 sequences used as test cases………………...………………………….…………42 

Table 5.2 Sample sequence (sequence 1 of test case 1) …………………….………………43 

Table 5.3 Numerical quantification of effect of hybridization…………………..……….…49 

Table 5.4 Performance of the proposed system as compared to the benchmarks.....……..…50 

Table 5.5 Improvement in fitness value gained from non-slicing………....……..…....….…53 

Table 5.6 Comparisons between the benchmarks and the system without slicing……….…54 

 

 

 

 

 

 



 
 

Department of Electrical & Computer Engineering, AAiT  v 

 

 List of Figures 

Figure 1.1 Double helix DNA structure………………...……………………………….…..1 

Figure 1.2 A fragment of an alignment of five DNA sequences………………..………...…2 

Figure 3.1 A basic genetic algorithm …………………...……………………………….…14 

Figure 3.2 Standard Tabu Search model…………….…………………………..……….…17 

Fig 4.1 Hybrid system of GA and TS for multiple DNA sequence alignment….……….…22 

Figure 4.2 FPGA based Hardware block of TS………………………………………….…34 

Figure 4.3 Full Handshake Interface of the hardware module………….……...…….….…36 

Figure 4.4 Code styles of script M-File and Design function M-File……………..…….…38 

Figure 5.1 Plot of fitness value of alignment vs iteration by proposed hybrid system…..…45 

Figure 5.2 Plot of fitness value of alignment vs iteration count by standalone TS……...…47 

Figure 5.3 Proposed system vs benchmarks in percentage of matches.............................…51 

Figure 5.4 Proposed system (no slicing) vs benchmarks in percentage of matches..........…55 

 

 

 

 

 

 

 



 
 

Department of Electrical & Computer Engineering, AAiT  vi 

 

 List of Acronyms 

ASIC…………..………………......…………………….Application Specific Integrated Circuit 

BP…………………………………..…….…………………………………………….Base pair 

BSM……………….…………….….….……………..……………….Block of Sequence Move 

C………………………………….....……….………………………………………….Cytosine 

DNA……………………………....………………..…………………….Deoxyribonucleic acid 

EBI………………..…….…………....……………………….European Bioinformatics Institute 

FPGA………………………………..…………….….……….Field Programmable Gate Arrays 

G…………………………………..……………………….…………………………….Guanine 

GA………………….…………..…….…....………………………………….Genetic Algorithm 

HDL……………..…..……………….……….………………..Hardware Description Language 

MAFFT……………………..…..…Multiple sequence Alignment using Fast Fourier Transform 

MSA…………….……...…...…..……Multiple sequence Alignment by Dynamic Programming  

MultAl………………....….…………...………Multiple Alignment with hierarchical clustering 

OMA………………..…….….....……………………….Optimal Multiple Sequence Alignment 

PHGA…………..…………....……………………...……….parallel  hybrid Genetic Algorithm 

PRNG……………….……..………..……………..……….Pseudo Random Number Generator 

RNA……………..……………..……………………………………………….Ribonucleic acid 

RTL……………………………...…………………………….…..…….Register Transfer Level 

SA……………..………..……....………………………………………….Simulated Annealing 

SAGA………...……….………..….…….…………Sequence Alignment by Genetic Algorithm 

SSM……………….…………….……..….………………..…………….Single Sequence Move 

T…………….…………..……………………………………………………………….Thymine 

T-COFFEE……..………Tree-based Consistency Objective Function For alignment Evaluation 

TS………………………….……………………………..………………………….Tabu Search 

VHDL…………...……….Very high speed integrated circuits Hardware Description Language 

 

 

 

 



 
 

Department of Electrical & Computer Engineering, AAiT  vii 

 

Abstract 

In this thesis work, a method to align multiple DNA sequences is designed. The proposed design 

is an intelligent system based hybrid algorithm of two optimization algorithms: Genetic 

Algorithm (GA) and Tabu Search (TS). GA phase is used to find new region of solution while 

TS explores regions of solution not explored by GA. The designed hybrid system is implemented 

using MATLAB. The TS part of the system is adapted so as to be processed by AccelDSP 

Synthesis tool and implemented in VHDL (Very high speed integrated circuits Hardware 

Description Language). The designed system is evaluated using benchmark methods 

CLUSTALW and MAFFT (Multiple sequences Alignment using Fast Fourier Transform). The 

system performs less than both the benchmarks. It performs less with percentage of matches 

differing at most by 8.6 from CLUSTALW for 8 sequences. It also performs less with percentage 

of matches differing at most by 4.25 from MAFFT for 16 sequences.  

Key Words: Multiple DNA sequence alignment, Hybrid system, Genetic Algorithm, Tabu 

Search and FPGA based TS. 

 

 
 

 

 

 

 

 

 

 

 

 

 



Design and performance evaluation of hybrid intelligent 

System based algorithm for multiple DNA sequence alignment Introduction 

 

Department of Electrical & Computer Engineering, AAiT  1 

 

Chapter 1 

Introduction 

1.1 Background and Motivation 

 All living organisms, from bacteria to human beings, contain hereditary material called 

deoxyribonucleic acid (DNA), in each of their cells. DNA in each cell of every organism 

contains the entire genetic information of that organism. The information in DNA is stored as a 

code made up of four chemical bases: Adenine, Guanine, Cytosine and Thymine abbreviated as 

A, G, C and T respectively. The sequence or the order of these bases determines the information 

available for building and maintaining an organism [1]. 

Each base of DNA is attached to a sugar molecule and a phosphate molecule and forms 

nucleotides. The bases of nucleotides are also pair up with each other, A with T and C with G, to 

form units called base pairs. Nucleotides are arranged in two long strands that form a spiral 

called a double helix. The structure of the double helix is somewhat like a ladder, with the base 

pairs forming the ladder’s rungs and the sugar and phosphate molecules forming the vertical 

sidepieces of the ladder. Figure 1.1 shows double helix DNA structure formed by base pairs 

attached to a sugar-phosphate backbone [1]. 

          

Figure 1.1 Double helix DNA structure [1] 



Design and performance evaluation of hybrid intelligent 

System based algorithm for multiple DNA sequence alignment Introduction 

 

Department of Electrical & Computer Engineering, AAiT  2 

 

The double stranded DNA, however, needs to be separated into single strands to result in a 

sequence of DNA. The sequences of DNAs can then be aligned with each other. 

Biological sequence alignment is simply arranging two or more biological sequences 

(nucleotides or amino acids) so as to maximize (highlight) the similarities between them [2, 3]. 

Fig 1.2 shows a fragment of a multiple alignment of five hypothetical DNA sequences. 

                 

Figure 1.2 A fragment of an alignment of five DNA sequences 

In the alignment of figure 1.2, the gap characters ‘-‘ are inserted into sequences to find similar 

regions of sequences (marked in same color). 

Sequence alignment is classified into two based on how many sequences are aligned. When only 

two sequences are aligned, it is called pair wise sequence alignment. Otherwise, it is called 

multiple sequence alignment [2]. Sequence alignment can also be grouped in two types, global 

and local alignment. In global alignment, attempts are made to detect the best alignment of the 

entire sequences. In local alignment, the best alignment is constructed for segments of sequences 

with the highest density of matches, while the rest of the sequences are ignored [4]. 

Alignment of the biological sequences (DNA, RNA and Protein) plays an important role in 

Bioinformatics and Molecular Biology [5]. It is used to study molecular evolution [2]. Aligning 

DNA sequences enable the construction of evolutionary tree. Moreover, sequence alignment is 

also used to predict the function/structure of unknown sequence by aligning with other sequence 

whose function/structure is already known [3]. In this research global alignment of multiple 

DNA sequence is studied. Thus, from this section onwards, the word alignment will refer to 

global alignment. 

     



Design and performance evaluation of hybrid intelligent 

System based algorithm for multiple DNA sequence alignment Introduction 

 

Department of Electrical & Computer Engineering, AAiT  3 

 

1.2 Problem Statement 

A number of surveys on algorithms for the multiple sequence alignment have been carried out. 

Consequently multiple sequence alignment has been shown to be an optimization problem which 

exhibits a great time and space complexity [30]. In general, optimization algorithms for multiple 

sequence alignment is classified into three categories [4]; progressive, exact (dynamic) and 

iterative. 

The majority of multiple sequence alignment heuristics is now carried out using the progressive 

approach [2]. In this approach, a set of extremely similar sequences are first aligned, then 

subsequent sequences, which are not as similar, are progressively added to the original query set. 

The well known multiple sequence alignment named CLUSTALW, MultAl (Multiple Alignment 

with hierarchical clustering) and T-COFFEE (Tree-based Consistency Objective Function For 

alignment Evaluation) are among the widely used methods of this approach. This approach has 

the advantages of speed and simplicity. However, the greedy nature of the approach causes local 

minimum problem [2].  

Another approach is to prune the search space of the Dynamic Programming algorithm for 

simultaneously aligning multiple sequences. Dynamic programming approach involves the 

alignment of any two sequences first and then any gaps in between becomes later filled in by 

assessing possible matches with other sequences. MSA (Multiple Sequences Alignment by 

dynamic programming) and OMA (Optimal Multiple Sequence Alignment) are examples of 

methods that use Dynamic Programming approach to align multiple sequences. Algorithms of 

this approach often find better quality solutions than those of the progressive approach [2, 23]. 

However, aligning sequences using these methods faces drawbacks of complexity, running time 

and memory requirement, so they can only be applied to problems with a limited number of 

sequences (about 10) [2]. 

The iteration-based approach is also applied to the multiple sequence alignment. Iterative 

methods align sequences based on a selected alignment scoring method and then realign 

sequence subsets. The realigned subsets are then themselves aligned to produce the next 

iteration's multiple sequence alignment. This approach includes iterative refinement algorithms 

(e.g., simulated annealing [5], Genetic Algorithms (GAs) etc. GAs differs from the others in that 



Design and performance evaluation of hybrid intelligent 

System based algorithm for multiple DNA sequence alignment Introduction 

 

Department of Electrical & Computer Engineering, AAiT  4 

 

they search for the solution from a population of potential solutions [2]. When used alone, 

however, GA has the drawbacks of relatively poor quality and slow speed [2, 23]. Furthermore,                         

if the initial population of the GA is created completely random, the search for the solution can 

be trapped in local minima [3]. Nevertheless, hybridizing GA with other methods can evade 

being trapped in local minima [3] and produce impressing result [12]. 

Algorithms falling in one of these approaches are used independently to align multiple 

sequences. However, algorithms categorized in same or different approaches are also used. For 

example, a hybrid system of GA and SA (Simulated Annealing) both falling in iterative approach 

is used for alignment of protein sequences [4]. The GA phase used to find new region of solution 

while SA was used as an alignment improver for any near optimal solution produced by GA. In 

addition, GA was also hybridized with four heuristics such as local search, elitist strategy, 

modified Hopfield neural network and neighbor improvement for example for classical travelling 

salesman problem [8]. All the possible GA hybrids were investigated including hybrid systems 

of all the methods. Experimental results of the work showed that the results obtained from the 

hybrid GA with Neighbor Improvement outperformed those results obtained from other hybrid 

systems in terms of quality of the results obtained [8]. 

In this work, an intelligent system based technique which falls in class of iterative approach 

discussed formerly in this section is selected for DNA sequence alignment. The method is then 

hybridized with another optimization technique for further refinement of the alignment.  

Iterative algorithms have been implemented in different high level languages. Some works, 

however, has been implemented in hardware. In this regard, reprogrammable logic devices, 

FPGAs, have been widely used for implementations of computational intensive bioinformatics 

algorithms and resulted in a significant improvement in speed [7].  Besides, increasing the 

computational speed of the algorithm, reconfigurability of FPGA makes it suitable for design 

verifications before final implementation in Application Specific Integrated Circuits, ASICs.  



Design and performance evaluation of hybrid intelligent 

System based algorithm for multiple DNA sequence alignment Introduction 

 

Department of Electrical & Computer Engineering, AAiT  5 

 

1.3 Objective 

1.3.1 General Objective 

� The main objective of this thesis is to design and evaluate the performance of a hybrid 

intelligent system for global multiple DNA sequence alignment.  

1.3.2 Specific Objectives 

� To study the existing DNA sequence alignment, select intelligent techniques to design an 

hybrid intelligent system.  

� To implement the designed system in MATLAB and VHDL (using FPGA simulator 

software for the latter) and compare its performance with the benchmarks with regard to 

alignment quality and number of sequences to be aligned. 

� To compare the software (MATLAB implementation) and the FPGA implementation via 

simulation. 

1.4 Methodology 

To attain the goal of this research, the work proceeded in three major phases: investigation of 

existing techniques; system design; and implementation and performance evaluation. 

1.4.1 Investigation of existing techniques 

The research work started with going through books, journals, previous research works on the 

areas of biological sequence alignment to have a clear understanding of the area. While making 

thorough review of the literatures, intelligent system based techniques and any other techniques 

used for sequence alignment have been studied. The detailed discussion of the literatures 

reviewed is given in chapter two. 

1.4.2 System design 

During this phase an intelligent system has been selected based on the statement of the problem 

and investigations of the sequence alignment methods. In addition, another optimization 



Design and performance evaluation of hybrid intelligent 

System based algorithm for multiple DNA sequence alignment Introduction 

 

Department of Electrical & Computer Engineering, AAiT  6 

 

algorithm has also been selected for hybridization to enhance the performance of the designed 

system. Hence, a hybrid system has been designed for global multiple DNA sequence alignment. 

The model of the system is discussed in detail in chapter four.    

1.4.3 Implementation and performance evaluation 

The designed algorithm has been coded in MATLAB and verified. The MATLAB code is then 

modified so as to be synthesized by AccelDSP synthesis tool. That is, the MATLAB floating 

point design has been transformed to a model in VHDL that can be implemented on Xilinx 

FPGA. Then the VHDL code has been simulated using FPGA simulator (Xilinx’s ISE design 

Suite). Finally, the performance of the algorithm has been compared with benchmark technique 

from European Bioinformatics Institute (EBI). 

1.5 Scope of the study 

The design system is composed of GA and TS both of which fall in class of iterative approach. 

DNA sequences to test the designed system are taken from the database of EBI. In this work, 

alignment of multiple DNA sequences over the entire length of the sequence is taken care of. No 

attempt is made to work on local alignment of DNA sequences. The hybrid system is 

implemented using MATLAB. However, an attempt to implement both the GA and TS phase in 

FPGA is not achieved. Synthesizing the MATLAB design and transforming it to hardware 

module by synthesis tool called AccelDSP is not successful for the GA phase. Consequently, 

only the MATLAB design for TS phase is adapted to the requirements of the synthesis tool and 

transformed to hardware module that can be implemented in Xilinx FPGA. 

1.6 Thesis outline 

In the subsequent chapter, literatures related to the work of this thesis are discussed. The 

theoretical background of optimization algorithms used in this research is then described in 

chapter 3.  In fourth chapter of the report, the model of the designed system and its 

implementation detail are presented. The results of the work along with discussions are given in 

chapter five. Finally, conclusions and recommendations are given. 



 Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment   Literature Review 

Department of Electrical & Computer Engineering, AAiT  7 

 

Chapter 2 

Literature Review 

2.1 Introduction 

Nowadays, numbers of researches are being carried out in areas of bioinformatics. Most of the 

researches being conducted on sequence alignment of biological sequences, namely, Protein, 

RNA and DNA. Some of the studies use GAs or its hybrid form for alignment of biological 

sequences. Studies based on other techniques such as Dynamic programming, progressive 

approaches are also remarkable. Besides the software implementation, FPGAs were being used 

to implement and significantly accelerate algorithms. 

2.2 Literatures on Software methods 

Cédric Notredame, et al. [3] on their paper described an approach to align multiple protein 

sequences using GAs and an associated software package called SAGA (Sequence Alignment by 

GA). The method involves evolving a population of alignments in a quasi evolutionary manner 

and gradually improving the fitness of the population. The performance of the method was 

compared using test cases, 12 of them from Pascarella Structural alignment database and one 

from Chymotrypsin Sequences. Nine small alignments (4-8 sequences and 60-280 residues long) 

among the test cases were treated as the first group of test case whereas the remaining four test 

cases of larger alignments (9, 12, 15 and 32 sequences) are classified as the second group. The 

second group of test case cannot be handled by MSA unlike the first group. The result of SAGA 

was analyzed by comparing its score with that of MSA and CLUSTALW. SAGA and MSA were 

compared with regard to its ability to optimize an objective function that MSA attempts to 

optimize for the first group of test cases. For all the test cases, SAGA was able to produce a 

score at least as good as that produced by MSA. The ability of SAGA to perform multiple 

sequence alignment on sequences that couldn’t be aligned by MSA was also analyzed using a 

second group of four test cases by comparing its results with those given by CLUSTALW. For 

these test cases SAGA performed better than CLUSTALW. 



 Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment   Literature Review 

Department of Electrical & Computer Engineering, AAiT  8 

 

A research group of four researchers Hung Dinh NGUYEN, et al. [2] presented a parallel hybrid 

Genetic Algorithm (PHGA) based method for multiple protein sequence alignment. The method 

is based on GA where only one offspring is created by either crossover or mutation. It also 

involves local search heuristics and parallelism to exploit the benefit of multiprocessor system. 

That is, a number of individuals (sub-populations) are acted up on by parallel processors and 

after a predefined number of generations called migration interval, best individuals are 

exchanged between sub-populations. The sum-of-pairs-score objective function is used and 

optimized in this method as well. To validate the method, a total of 85 alignment cases were 

taken from BALiBASE library. Sequences from reference 1 of the BALiBASE library (82 

sequences) are used to compare with OMA and MSA methods as these sequences are small 

enough for both methods to handle. It has been shown that PHGA wins 29, losses 3 and draws 50 

cases as compared to the OMA method. And as compared to MSA methods, the number of wins, 

losses and equals of the PHGA are 30, 10 and 42 respectively]. The remaining 3 larger sequences 

from reference 2 were used to test how aptly the algorithm scales with the size of the sequences 

It has been verified that the method can scale quite well with the problem size  

Four researchers Mohd. Faizal Omar, et al. [5] also solved problems of multiple sequence 

alignment using hybrid system of GA and Simulated Annealing. The GA phase will find new 

region of solution while Simulated Annealing can be considered as an alignment improver for 

any near optimal solution produced by GAs. Simulated Annealing also helps to prevent local 

minima problem compared to the Dynamic programming. Even if the result produced from the 

pre-alignment and GA phase was significant, the effect of simulated annealing was very less. 

Warattapop Chainate, et al. [8] conducted a research on improving the performance of GA 

through classical travelling salesman problem. Attempting to use the best configuration of the 

algorithm itself and adding in other heuristics as sub process of the algorithm are proposed ways 

of improving the performance. Specifically, the paper aimed at hybridizing GA with four 

heuristics (Local Search, Elitist Strategy, Modified Hopfield Neural Network and Neighbor 

improvement). Experimental result showed that hybridizing the GA with any of the four 

heuristics outperformed the non-hybrid GA in terms of quality of the result. 



 Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment   Literature Review 

Department of Electrical & Computer Engineering, AAiT  9 

 

Inaddition, TS has also been used for combinatorial optimization problems. In research 

conducted by riq Riaz, et al. [9] TS has been used for multiple sequence alignment. The adaptive 

memory features of tabu search, which is simply concept tracking forbidden and candidate list, 

was used to align multiple sequences. The adaptive memory helps the search process to explore 

solution space economically and effectively and hence, to avoid local optima. The algorithm was 

implemented in SUN Java language. Datasets from BAliBASE benchmarking database was used 

to test the algorithm on a 1.4GHz Pentium III computer. It was shown that for datasets 

comprising orphan sequences, divergent families and long internal insertions, tabu search 

generates better alignment as compared to other methods: SAGA, PRRP, CLUSTALW and 

ML_PIMA. 

Apart from independent implementation of TS, it was also used with GA forming combinatorial 

heuristic for solving optimization problem though not particularly for multiple sequence 

alignment. R.Thamilselvan, et al. [10] used TS with GA to minimize travelling time and cost for 

Travelling Salesman Problem. Both algorithms are tested independently and also in hybrid form 

for meeting the objective of the TSP. It was concluded that the hybrid system of TS and GA 

minimizes the travelling time and cost of the TSP than both of the algorithms. 

2.3 Literatures on Hardware Implementation 

With regard to implementation, FPGAs were being used to implement and significantly 

accelerate algorithms. Xunying Zhang, et al. [11] designed hardware based architecture to 

perform GA though it is not specifically for Multiple Sequence Alignment. The GA Kernel 

designed is divided into eight main functional components and memory components. The eight 

functional components in the kernel are Centric controller, Random Number Generator, 

Initialization, Parent selector, Genetic Operation, Individual selector, Bus controller and 

Population replacement. In the research, the GA kernel using chromosome length of 16 bits, 

fitness length of 16 bits and a population size of 128 is synthesized using Verilog HDL 

(Hardware Description Language)  on Xilinx Spartan 2E XC2S300EFG456. It was noted on the 

paper that analyzing the system carefully, the architecture can be modified using pipeline in 

order to improve the performance of the system.  



 Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment   Literature Review 

Department of Electrical & Computer Engineering, AAiT  10 

 

Tu Lei, et al. [12] also presented FPGA based architecture for GA. The GA model in this paper 

is implemented in VHDL using a Xilinx XC2S100 FPGA and the hardware is divided in to six 

logic modules (control state machine, storage modules, selection module, crossover module, 

mutation module and random data generation module). The hardware model of the GA was 

compared with the software based model on personal computer or work station. It was shown 

that it took 0.15seconds to finish the computing operation of 1000 generations on the FPGA 

based hardware with a clock frequency of 20MHz, which is nearly 1000 times faster than the 

implementation on WS. Moreover, it was stated on the paper that the GA hardware model can be 

applied to the studies and implementation of evolvable hardware based on dynamic 

reconfiguration technology. 

A general purpose VHDL based intended for hardware implementation was presented by Scott, 

et al. [13] It was stated on the paper that it is possible to implement the GA model on 

reprogrammable FPGAs, exploiting the speed up of the hardware while retaining the flexibility 

of a software implementation. The GA engine designed was useful in many applications where 

software based GA implementations are too slow. 

Stefan Dydel, et al. [7] also presented hardware implementation specifically for bioinformatic 

algorithm. In this paper, Smith-Waterman algorithm which performs a pairwise local alignment 

of protein sequences using FPGAs was implemented. It was shown that the FPGA based 

implementation of Smith-Waterman algorithm can accelerate sequence alignment on a Pentium 

desktop computer by two orders of magnitude. 

The research work of Tim Oliver, et al. [26] is again FPGA implementation of multiple sequence 

alignment. In the paper, a method based on progressive approach was designed and implemented 

on reconfigurable hardware platforms, FPGAs. It was indicated in the report that speed up of 50 

is gained by the FPGA implementation.  

 

 



 Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment   Literature Review 

Department of Electrical & Computer Engineering, AAiT  11 

 

2.4 Summary 

As illustrated in statement of the problem section of chapter one, the greedy nature of the 

progressive approach brings about local minima problem and the exact (dynamic programming) 

methods are limited to aligning about 10 sequences. With regard to the iterative approach, 

though it can be trapped in local minima, the problem can be triumphed over by hybridizing the 

algorithm with other iterative algorithm. Therefore, algorithms from iterative approaches are 

given preference. In particular, GA is selected for the fact that it has got the ability to find new 

regions of solutions. Moreover, it can produce an impressing result when combined with other 

technique as pointed out. It was also mentioned in this chapter that for hybrid system of GA and 

SA used for multiple sequence alignment, the GA phase showed significant performance while 

the effect of SA was very less. However, for hybrid system of GA and TS used for travelling 

salesman problem, not only the GA showed significant performance but also the TS did [10]. 

Hence, TS is chosen for further refinement of the optimal alignment produced by GA. The nature 

of the two algorithms favors the order where GA is followed by TS. GA begins with the creation 

of a number of initial alignments and ends with a number of alignments among which the best 

can be taken as optimal solution.  TS, on the other hand, begins the optimization problem with 

single alignment and also produces only one alignment. Thus, a hybrid system in which GA is 

followed by TS is proposed.  

Molecular biologists frequently compute task of multiple sequences alignment for roles of task 

presented in chapter one. Though aligning few sequences requires minutes, need to align plenty 

(hundreds, thousands, millions or more) of sequences will arise. Due to rapid growth of 

biological sequence databases, biologists have to compute multiple sequence alignment in far 

shorter time [26]. Therefore, an effort has been made in this work to come up with the FPGA 

implementation of the designed system to enhance the speed of multiple sequence alignment. 

 

 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Optimization Algorithms 

Department of Electrical & Computer Engineering, AAiT  12 

 

Chapter 3 

Optimization Algorithms 

3.1 Introduction 

The search for an optimal state is one of the most fundamental principles of this world. 

Optimization is going through a period of growth, driven largely by new applications in many 

areas using different algorithms. These algorithms, also called optimization algorithms, are those 

methods which are used to find optimal solutions for given problems [14, 22]. The goal of global 

optimization is to find the best possible elements x’ from a set X according to a set of criteria F = 

{f1, f2... fn}.These criteria are expressed as mathematical functions, the so-called objective 

functions [14, 22].  Some of the most popular algorithms in this respect include: GAs, Genetic 

Programming, Learning Classifier Systems, Evolution Strategy, Differential Evolution, Particle 

Swarm Optimization, Ant Colony Optimization, Simulated Annealing, Extremal Optimization, 

TS, and Random Optimization. Attributed to the nature and objective of this work, the 

theoretical basics of GA and TS are presented in this section. 

3.2 Genetic Algorithm 

GA is adaptive heuristic search algorithm inspired from natural evolution. The basic concept of 

GA is designed to simulate processes in natural system necessary for evolution, specifically 

those that follow the principles first laid down by Charles Darwin of survival of the fittest. As 

such they represent an intelligent exploitation of a random search within a defined search space 

to solve a problem [14, 15].  

GA is optimization technique based on selection and recombination of promising solutions. The 

collection of candidate solutions is called populations of GA whereas candidate solutions are 

sometimes named as individuals, chromosomes, etc. Each individual is an encoded 

representation of variables of the problems at hand. Each component (variable) in an individual 

is termed as gene. Sometimes the components (genes) are independent of one another and 

sometimes they are correlated.  



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Optimization Algorithms 

Department of Electrical & Computer Engineering, AAiT  13 

 

As they are a particular class of evolutionary algorithms, the operations common to all GAs are 

inheritance, mutation, selection, and crossover (also called recombination).  

3.2.1 Crossover 

It is exchange of genetic material (substrings) denoting rules, structural components, and features 

of a machine learning, search, or optimization problem. In short, crossover selects genes from 

parent chromosomes and creates new offsprings. 

3.2.2 Selection  

Selection refers to the application of the fitness criterion to choose which individuals from a 

population will go on to reproduce.  

3.2.3 Replication 

Replication is the propagation of individuals from one generation to the next. It is simply the 

formation of next generation. 

3.2.4 Mutation  

The genetic operation called mutation is modification of chromosomes for single individuals. 

Hence, mutation changes randomly the new offspring. 

Given a clearly defined problem to be solved and a binary string representation for candidate 

solutions, a basic GA can be represented as in 3.1.   

 

 

 

 

 

 

 

 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Optimization Algorithms 

Department of Electrical & Computer Engineering, AAiT  14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A basic genetic algorithm [16] 

Replace the current chromosome population with 

new population 

stop 

start 

Generate a population of chromosomes of size N: 

X1, X2, … XN, 

Calculate the fitness of each chromosome: 

f(X1),f( X2), … f(XN), 

Is termination criterion 

satisfied ? 

Select pair of chromosomes for mating 

With the crossover probability, exchange parts of 

the selected chromosomes and create two 

Place the resulting chromosome in the new 

population 

Is size of the 

population equal N? 

NO 

YES 

NO 

YES 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Optimization Algorithms 

Department of Electrical & Computer Engineering, AAiT  15 

 

The more elaborate fundamental steps incorporated in GAs include the following [15, 16]: 

Step 1: Represent the problem variable domain as a chromosome of a fixed length; choose the 

size of a chromosome population N, the crossover probability pc and the mutation probability 

pm. 

Step 2: Define a fitness function to measure the performance, or fitness, of an individual 

chromosome in the problem domain. The fitness function establishes the basis for selecting 

chromosomes that will be mated during reproduction. 

Step 3: Randomly generate an initial population of chromosomes of size N:  x1, x2, ... , xN 

Step 4: Calculate the fitness of each individual chromosome:  �����, �����, … , ���
�   

Step 5: Select a pair of chromosomes for mating from the current population. Parent 

chromosomes are selected with a probability related to their fitness. Highly fit chromosomes 

have a higher probability of being selected for mating than less fit chromosomes. 

Step 6: Create a pair of offspring chromosomes by applying the genetic operators – crossover 

and mutation. 

Step 7: Place the created offspring chromosomes in the new population. 

Step 8: Repeat Step 5 until the size of the new chromosome population becomes equal to the 

size of the initial population, N. 

Step 9: Replace the initial (parent) chromosome population with the new (offspring) population. 

Step 10: Go to Step 4, and repeat the process until the termination criterion is satisfied. 

As can be observed from the flow chart of Figure 3.1, after the initial population is created the 

GAs repeats the following steps until the solution is found:  

� Evaluate current population 

� Select candidates 

� Create a new population 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Optimization Algorithms 

Department of Electrical & Computer Engineering, AAiT  16 

 

Generally, GA is best used when the objective function is discontinuous, highly nonlinear, and 

stochastic and has unreliable or undefined derivatives.  

3.3 Tabu Search 

TS, first introduced by Glover, is a heuristic procedure to find good solutions to combinatorial 

optimization problems [17, 18]. The meta-heuristic approach called TS is dramatically changing 

our ability to solve problems of practical significance. It has also been used to create hybrid 

procedures with other heuristic and algorithmic methods, to provide improved solutions to 

problems [17]. Current applications of TS span the realms of resource planning, 

telecommunications, VLSI design, financial analysis, scheduling, space planning, energy 

distribution, molecular engineering, logistics, pattern classification, flexible manufacturing, 

waste management, mineral exploration, biomedical analysis, environmental conservation and 

scores of others [17].   

3.4 Basics of Tabu Search 

TS begins in the same way as ordinary local or neighborhood search, proceeding iteratively from 

one solution x to another solution x’ in the neighborhood of x. The search progresses iteratively 

until a chosen termination criterion is satisfied [17]. Each solution x ϵ X has an associated 

neighborhood  ���� ∁ 
 , and each solution �� ∈ ���� is reached from x by an operation called 

a move [17].  

TS permits moves that enhance the current objective function value [17]. Besides the 

enhancement or deterioration of the objective function, the history of the states encountered 

during the search is used to select the moves. During the search process, TS uses short term 

memory structures that describe the visited solutions. Once a potential solution has been 

determined, it is marked so that the alignment process does not visit that possibility repeatedly. 

Thus, making use of the history of the states, the search process effectively finds a better 

solution. The short term memory structure that records list of already visited moves and, hence, 

marked tabu is called Tabu List. Sometimes, a move in the Tabu list can be applied if it passes a 

set criterion called aspiration criteria. That is if the move has got the greatest objective function 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Optimization Algorithms 

Department of Electrical & Computer Engineering, AAiT  17 

 

value of all the values of previous moves. It is believed that overriding tabu criteria in this way 

might lead to a new path toward better optimal solution [9]. 

TS uses attributive memory for guiding purposes. This type of memory records information 

about solution attributes that change in moving from one solution to another. The most common 

attributive memory approach is called recency-based memory structure [17]. Recency-based 

memory structure keeps track of solutions properties that have changed during the recent past. 

To utilize this memory, solutions already visited have attributes called Tabu Tenture, which is 

the number of iterations for which the corresponding move remains in the Tabu List. Another 

memory structure called frequency-based memory is also used in TS implementations. This 

memory structure uses ratios about the number of iterations a solution property has changed. 

The model of standard TS is given in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Standard Tabu Search model [19] 

Evaluate the solutions 

Display the solution 

Yes 

No 

Choose the best admissible 

solution 

Stopping 

conditions 

satisfied? 

Update Tabu 

Create candidate list 

of solutions 

Initial Solution 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Optimization Algorithms 

Department of Electrical & Computer Engineering, AAiT  18 

 

As shown in figure 3.2, the search process passes through a series of seven steps to bring about 

optimal solution. These steps are discussed in the following section. 

Step 1: Initialize the TS parameters; set Tabu Tenture which is the number of iterations after 

which a solution marked tabu can be reapplied. Define aspiration Criteria, a criteria which can 

override tabu criteria. Set the initial solution 

Step 2:  Explores the neighborhood of the solution. That is, different solutions are generated 

forming a set of candidate solutions.  

Step 3: Evaluate the fitness of the solutions in the candidate list. 

Step 4: Choose the best solutions among the candidate list and make the solution the current 

solution if it is not in the Tabu List. If it is in the Tabu List, the solution is discarded and another 

solution not available in the Tabu List and having better fitness than the remaining is chosen.  

Step 5: Check stopping condition. Usually unimproved solution for specified number of 

iterations is used as stopping condition. If the criterion is not met, go to step 6. Otherwise end the 

algorithm. 

Step 6: Update the Tabu List and Tabu Tenture. If a move is applied in step 4, the applied move 

is added to the Tabu List and the same move is not allowed for specified number of iterations 

called Tabu Tenture [9]. The Tabu Tenture is decremented every iteration and when it reaches 

zero, the move is released from the forbidden list. Upon completion of this step, the algorithm 

returns back to step 2. 

3.5 Summary 

Optimization Algorithms in general maximizes or minimizes the objective function moving from 

one variable set to another based on some determinant sequence of steps. The hybrid systems of 

two optimization algorithms GA and TS, then optimizes the objective function more effectively 

by virtue of combining the features of the algorithms. The possibility of exploring a region of a 

solution not explored by the GA phase obviously exists. In such cases TS is believed to enhance 

the performance of genetic algorithm and other search methods. 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  19 

 

Chapter 4 

Design and Implementation 

4.1 Introduction 

This chapter presents the proposed system and its implementation details. The proposed system 

is a hybrid intelligent system of two optimization algorithms, GA and TS which are selected 

based on the literature survey. GA acts on the input sequences and provides an optimal 

alignment. However, it is not guaranteed that the optimal alignment produced by GA is the best 

solution. Sometimes it might be trapped in local minima [3] and may result in an alignment with 

poor quality. Under such circumstances, the TS part of the algorithm refines the alignment. The 

designed system is implemented in MATLAB. Moreover, the TS part is implemented in VHDL 

as well for simulation for FPGA implementation. The VHDL implementation is aimed to show 

the speed up gained by hardware implementation over the software implementation. 

4.2 Proposed system 

The alignment process begins by reading input sequences from a file. As the string data types are 

not supported for hardware implementation, the sequences are represented as an array of 

integers. Moreover, the integer array representation of the sequences takes into account 

minimizing the number of input output pins required for the FPGA implementation. As stated in 

section 1.1, DNA sequences are made up of four bases Adenine, Cytosine, Guanine and 

Thymine. The integer representation of these bases and the gap character is given in Table 4.1. 

Table 4.1 Integer representation of bases (nucleotides) 

Character Symbol Integer representing the bases 

Adenine A 1 

Cytosine C 2 

Thymine T 4 

Guanine  G 3 

Gap - 5 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  20 

 

  

Consider the strings of A, C, T and G in table 4.2 as samples of 4 DNA sequences which are to 

be aligned. The sequences S1, S2, S3 and S4 are, hence, represented as row vectors of integers. 

Sample fragments and the corresponding integer representation are shown in Table 4.2 and 4.3 

respectively. 

Table 4.2 Hypothetical fragment of DNA sequences 

Sequence label Integer representing the bases 

S1 AACTGGGCAACG 

S2 ACTGGCAAACC 

S3 AATGGCAAG 

S3 ACTGCAACG 

 

Table 4.3 Integer representation of sequences shown in table 4.2 

Sequence label Integer representing the bases 

S1 1 1 2 4 3 3 3 2 1 1 2 3 

S2 1 2 4 3 3 2 1 1 1 2 2 

S3 1 1 4 3 3 2 1 1 3 

S3 1 2 4 3 2 1 1 2 3 

 

For the hardware implementation, the sequences are read by the FPGA as binary values via its 

input output pins. According to this representation, each nucleotide requires 3 pins of the 

hardware as 3 bits are enough to represent 4 nucleotides and a gap character.  

The proposed system manipulates multiple DNA sequences based on the described 

representation and produces an optimal alignment. Figure 4.1 shows the model of the proposed 

system.  

 

 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Genetic Algorithm for multiple DNA sequence alignment 

Start 

Initialize Population Gap Cleaning Gap Insertion 

Fitness Evaluation 

Genetic Operator 

Alignment 

improving? 

New Generation 

Formation 

Refinement 

needed? 

TS 

end 

Parent Selection 

yes 

no 

yes 

no 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Tabu Search for multiple DNA sequence alignment 

Fig 4.1 Hybrid system of GA and TS for multiple DNA sequence alignment 

The details of GA and TS algorithms are discussed in sections 4.2.1 and 4.2.2 respectively. 

no 

Tabu Update 

Fitness 

Evaluation 

Move Selection & 

Apply 

Gap Cleaning Move Generation Random Number 

Generation 

TS 

Initialize TS 

end 

yes 

Alignment 

improving? 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  23 

 

4.2.1 Genetic Algorithm phase 

The proposed system begins with setting parameters of the GA phase. The size of the population 

is set to 200. Therefore, the number of alignments in each generation is 200. Crossover and 

mutation operators have been assigned with probabilities of 0.5 and 0.01 respectively. Among 

200 alignments of a given generation, half of the alignments are, hence, selected for mating. As 

two alignments (children) are produced from two parents, 100 new alignments are formed. 

According to the mutation probability, therefore, only one of these new alignments is selected for 

mutation. Once the parameters are set, the sequences to be aligned are read and represented as 

arrays of integers. Then GA phase performs a series of steps to be discussed in the following 

sections to produce an optimal alignment.  

4.2.1.1 Initial Population Initialization 

After the parameters are set and the original sequences are represented as arrays of integers, the 

system proceeds with the creation of initial alignments. The set of initial alignments is called 

initial population G0. Given the original sequences S1, S2, S3 …Sk as arrays of integers (row 

vectors), an alignment is formed as two dimensional matrix of integers M. Each sequence with 

some gap characters constitute row of the matrix M. That is to say, by inserting a specified 

number of gap characters at randomly selected positions in each of the sequences [2, 3, 4, 5, 9], 

the corresponding row of the matrix M is obtained. The number of gap characters to be inserted 

in each sequence is limited so as to make the length of any row equal. Hence, the size of the 

matrix M becomes K x N, where K is the number of sequences to be aligned and N is the number 

of columns of the matrix. It is obvious that N has to be greater than or equal to the length of the 

longest initial sequence. It is usually the length of the longest sequence up-scaled as per equation 

(4.1). 

     � = ���� ∗  ��                                                                                                                     (4.1) 

Where lmax is the length of the longest sequence and sf is scaling factor. Adequate scaling factor 

is between 1.4 and 1.6 [20]. 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  24 

 

Hence, Gap Insertion part of the algorithm performs the process of inserting gaps at random 

positions in each sequence and forming alignments of K rows and N columns called individuals 

or chromosomes. The gap insertion is in such a way that when gap characters are removed from 

any row, the corresponding original sequence (array of integers) results. However, as gap 

characters are inserted at random positions, there is a possibility that columns containing only 

gap characters will appear. Under such circumstance, Gap cleaning part of the algorithm cleans 

such gaps as column(s) of all gap character is/are undesirable. 

To illustrate the formation of initial population, consider four sequences S1, S2, S3 and S4 given 

in table 4.2 and the corresponding integer representation of the sequences given in table 4.3. 

Since the longest sequence S1 has a length of 12, then lmax = 12. Choosing scaling factor of 1.5, N 

= 18. Therefore, an alignment of 4 x 18 matrix is formed by inserting gaps. One possible 

alignment can be the one shown in Table 4.4. 

Table 4.4 Sample alignment of the sequences of Table 4.2 

 

 

 

 

 

Other alignments are also formed in similar fashion. Therefore, initial population initialization 

creates 200 (population size used in this work) random alignments. 

4.2.1.2 Fitness Evaluation 

This module evaluates each individual (alignment) in a population and assigns fitness value to 

each individual. To be evaluated, each individual is subjected to a scoring function called SOP, 

Sum-Of-Pairs scoring function. The SOP score of an alignment is obtained by calculating the 

pairwise scores of all possible combinations of the sequences and then summing up all pairwise 

scores of the alignment.  

Mathematically, the score of aligning any two rows Ri and Rj of an alignment A is given as: 

1   1   2   4   5   3   3   3   5   2   5   5   1   5   1   2   3   5  

1   2   5   4   5   3   5   5   3   2   1   1   5   5   1   2   2   5 

1   5   1   4   3   3   2   5   5   5   5   5   1   5   1   3   5   5 

5   1   2   5   5   4   5   3   5   2   5   1   1   5   5   5   2   3 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  25 

 

��������, ��� =  ∑ ��������!, ��!�

!"�           (4.2) 

where N is the number of columns in the alignment. Then overall score of the alignment A is 

given by the sum of all pairwise scores in the alignment 

      score �A� = ∑ ∑ �������� , ����)�
�"�

*
�"�                                                                                          (4.3) 

While evaluating the score of aligning any two rows of an alignment, a reasonable value is 

associated with aligning any two characters (A, C, T, G, ‘-‘). In practical terms, the associated 

value indicates substitution value, which gives the value for match or mismatch, and gap penalty, 

which is a numerical quantification of insertion or deletion. For DNA sequence, a positive 

substitution value is used for match and a negative substitution value is used for mismatch [20]. 

This clearly implies that adding a set score for a match between two sequences and subtracting a 

penalty for a difference between the two sequences is basis of the scoring. In this research, the 

scoring value used for match and mismatch given in the Table 4.5 is used. 

Table 4.5 Score for matches and mismatches 

 A C G T 

A 4 -2 -2 -2 

C -2 4 -2 -2 

G -2 -2 4 -2 

T -2 -2 -2 4 

The gap penalty also contributes to the overall score of the alignment and, hence, to the 

alignment quality. For biological sequence alignment either Constant Gap Penalty or Affine Gap 

Penalty is used. In case of Constant Gap Penalty scheme, a negative value is used for all the 

gaps. That is, any gap introduces the same penalty. However, in case of Affine Gap Penalty 

scheme, initial penalty is used to start a gap and a smaller linear penalty is used for extending the 

gap an extra position (equation 4.4) [20]. 

      + = , +  ��                                                                                                                        (4.4) 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  26 

 

where g is the gap opening penalty; r is the cost of extending the gap; x is the size of gaps and d 

is the affine gap penalty. In this work, Constant Gap Penalty scheme is employed. Numerically, 

penalties of -4 and -3 are used in this work for a gap character aligned with a gap and a gap 

character aligned with nucleotide respectively. 

The Fitness Evaluation Module is, therefore, based on the substitution values (used for match or 

mismatch) and the gap penalty to map an alignment to a numeric value called fitness value of the 

alignment.  

4.2.1.3 Parent Selection 

The fitness values associated with each alignment by the Fitness Evaluator module serves as a 

basis for selection of parents. Since the SOP scoring used is a measure of similarity, the higher 

the fitness value, the better the alignment quality is. In this work, half of the parents to be 

selected for mating are simply the alignments in the population having higher fitness values and 

the remaining are alignments having higher matching characters. However, duplicates are not 

allowed when selecting parents. Therefore, the better alignments in the generation are selected 

and the rest half are simply discarded.  

4.2.1.4 Genetic Operation 

The formation of new alignments and the modification of the newly formed alignment are the 

two tasks carried out after parent selection. These tasks are operations of GA namely, Crossover 

and Mutation. 

Crossover 

As Crossover is the process of creating new individual by combining the genetic information 

from two parents, the Genetic Operator Module can combine two alignments through single 

exchange (One-point crossover) or two point exchange (two point-crossover). However, one-

point crossover is simpler and is used in this work. 

One of the alignments is cut straight at some random position. As a result two fragments of the 

alignment are obtained as shown in Table 4.6 a. The second alignment is also fragmented in to 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  27 

 

two parts as given in Table 4.6 b. The fragmentation of the alignment is, however, not done 

straight at random position. Rather it tailored so that the number of nucleotides of the resulting 

fragments conforms to the number of nucleotides in the fragments of the first alignment. Simply, 

the number and order nucleotides in fragment No. 1 of alignment 1 should conform to the 

number and order of nucleotides in fragment No. 1 of alignment 2. The same criterion needs to 

be met for second fragments of the two alignments. 

Table 4.6 Fragments of two parents for mating 

 

 

 

a. Fragments of parent (alignment)1 

 

1   

1 

1 

5 

1 

5 

5 

1 

2 

2 

5 

5 

4 

4 

5 

5 

3 

5 

1 

2 

3 

5 

5 

4 

3 5 

3 

2 

2 

5 

1 

5 

1 

1 

5 

1 

1 

1 

1 

1 

5 

2 

2 

3 

5 

3 

2 

5 

2 

5 

5 

5 

3 

3 

5 4 3 3 2 

3 5 2 5 1 

b. Fragments of parent (alignment) 2 

In doing so, a fragment may not have sequences of equal lengths. If such condition happens, any 

void spaces that appear at the junction point are filled with gaps. Now, two fragments one from 

each alignment are combined to produce two new alignments as shown in Table 4.7. 

 

1   

1 

1 

5 

1 

2 

5 

1 

2 

5 

1 

2 

4 

4 

4 

5 

5 

3 

3 

5 

3 

5 

3 

4 

3 

5 

2 

5 

3 

3 

5 

3 

2 

2 

1 

2 

5 

1 

1 

5 

1 

1 

5 

1 

5 

1 

3 

1 

1 

5 

5 

5 

2 

5 

5 

2 

3 

2 

5 

5 

5 

2 

5 

3 

P1 fragment 1 P1 fragment 2 

Crossover 

 point 

P2 fragment 2 P2 fragment 1 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  28 

 

 

Table 4.7 new alignments after crossover 

 

 

 

a. Alignment from p1 fragment1 and p2 fragment 2 

 

1   

1 

1 

5 

1 

5 

5 

1 

2 

2 

5 

5 

4 

4 

5 

5 

3 

5 

1 

2 

3 

5 

5 

4 

5 5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

5 

3 

2 

2 

1 

2 

5 

1 

1 

5 

1 

1 

5 

1 

5 

1 

3 

1 

1 

5 

5 

5 

2 

5 

5 

2 

3 

2 

5 

5 

5 

2 

5 

3 

3 

5 4 3 3 2 

5 5 5 5 5 

 

b. Alignment from p2 fragment 1 and p1 fragment 2 

Mutation 

Mutation operator slightly alters the alignment to introduce a modification of the newly formed 

alignment. For a newly formed alignment, the mutation site is randomly selected. Then if the 

random character is gap character, it is switched with the neighboring non-gap character as 

shown in table 4.8.   

Table 4.8 Mutation of an alignment 

 

 

1   

1 

1 

5 

1 

2 

5 

1 

2 

5 

1 

2 

4 

4 

4 

5 

5 

3 

3 

5 

3 

5 

3 

4 

3 

5 

2 

5 

3 5 

3 

2 

2 

5 

1 

5 

1 

1 

5 

1 

1 

1 

1 

1 

5 

2 

2 

3 

5 

3 

2 

5 

2 

5 

5 

5 

3 

5  

5 5 5 5 5 

3 5 2 5 1 

1   

1 

1 

5 

1 

2 

5 

1 

2 

5 

1 

2 

4 

4 

4 

5 

5 3 3 

5 

2 

5 

3 

5  

5 

3 

5 

3 

5 

5 

2 

2 

5 

2 

5 

1 

5 

5 

5 

1 

5 

1 

1 

5 

1 

1 

1 

1 

1 

5 

2 

2 

3 

5 

3 

2 

5 

2 

5 

5 

5 

3 

3 5 

3 3 

5 4 

Mutation site 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  29 

 

a. Alignment before mutation 

 

1   

1 

1 

5 

1 

2 

5 

1 

2 

5 

1 

2 

4 

4 

4 

5 

5 3 3 

5 

2 

5 

3 

5  

5 

3 

5 

3 

5 

5 

2 

2 

5 

2 

5 

1 

5 

5 

5 

1 

5 

1 

1 

5 

1 

1 

1 

1 

1 

5 

2 

2 

3 

5 

3 

2 

5 

2 

5 

5 

5 

3 

5 3 

3 3 

5 4 

 

b. Alignment after mutation 

Therefore, the Genetic Operator Module is responsible for the continuation of the generation 

with modification thereby enabling the appearance of the better alignments from one generation 

to the next. 

4.2.1.5 Formation of new generation 

Once new alignments (half as much as the number of population) are formed using genetic 

operators, the alignments formed directly become members of the next generation. This implies 

that half of the alignments of the new generation are formed from the newly created alignments. 

The rest half are fitter alignments which are selected for mating in the previous stage called 

parent selection. 

4.2.1.6 GA convergence check 

At last, the decision as to whether to iterate back in the GA phase or to end the algorithm or to 

further refine the alignment if the need arises is made. The fitness value of the optimal alignment 

and the number of matching pairs of nucleotides in the optimal alignment in each generation 

serves as criteria for convergence check. Furthermore, the iteration count and a reference fitness 

value are also used to check convergence of the search process. A fitness value used as a 

reference in this work is the fitness value of the alignment aligned using most commonly used 

multiple sequence alignment method called Clustalw. 

If the fitness value of the optimal alignment and/or the matching pairs of nucleotides in that 

alignment keeps changing over number of successive iterations, the GA iterates back to fitness 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  30 

 

evaluation step. If the alignment doesn’t show improvement in terms of both fitness value and 

matching pairs of characters over successive iterations, then it is an indication that either the GA 

phase has found out best alignment by itself or the current alignment needs further refinement. 

The reference fitness value now is made use of as to whether further process to find optimal 

solution is required or not. If the fitness value of the current solution is less than the Clustalw’s 

fitness value (i. e., threshold), then it is regarded as optimal solution has not been found yet. 

Therefore, the TS phase proceeds with the search process. On the other hand if the fitness value 

of the current solution exceeds the threshold value, the search process quits. In this case, the 

fittest of the alignments of the current generation is the one taken as optimal solution. 

4.2.2 Tabu Search phase 

TS phase of the proposed system takes the fittest of all alignments of the last generation. It sets 

this alignment as its current solution. The search process then proceeds iteratively from the 

current solution to another solution in a way that strives to improve the alignment. In fact, the 

parameters of the TS need to be defined and initialized before beginning the search process. 

4.2.2.1 Tabu Search Initialization 

As mentioned in the preceding section, the optimal alignment obtained from the GA phase is set 

as the current solution of the TS. A list of forbidden alignments called Tabu list is set to zero. 

Besides, a list of candidate alignments called Candidate Move list is also set to zero. It is usual 

that a move in a Tabu List can be applied after a number of iterations called Tabu Tenture. In this 

work Tabu Tenture is set to ten. Hence, an alignment in Tabu list can be taken as the solution 

after ten iterations. Moreover, a criterion that can override the tabu criterion is defined. This 

criterion is called aspiration criterion. In this work, the number of matching pairs of nucleotides 

being the maximum value ever attained during the search process is used as aspiration criterion. 

This enables the TS to take an alignment in Tabu list as a solution after iterations less than Tabu 

Tenture provided the aspiration criterion is met.  



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  31 

 

4.2.2.2 Move Generation and Evaluation 

TS  has a capability of exploring new solutions by means of generating different alignments from 

a given alignment. This is called move generation. It is a movement of gaps in sequences of an 

alignment in such a way that the original order of the nucleotides in the sequences doesn’t 

change.  

There are two types of sequence moves, single sequence move and block sequence move. Single 

sequence move is a move where gap(s) is/are made to move within a sequence for each of the 

sequence. Block sequence move is a move where block of gaps are made to move within the 

alignment. This module performs single sequence move for each sequence and block sequence 

move for every possible block of gaps during each iteration of the TS part. The chart given in 

Table 4.9 gives an example of block sequence move.  

Table 4.9 Example of block move 

1   

1 

1 

5 

1 

2 

5 

1 

2 

5 

1 

2 

4 

4 

4 

5 

5 

5 

3 

5 

3 

3 

3 

4 

3 

5 

2 

5 

3 5 

3 

3 

5 

2 

2 

5 

2 

5 

1 

5 

5 

5 

1 

5 

1 

1 

5 

1 

1 

1 

1 

1 

5 

2 

2 

3 

5 

3 

2 

5 

2 

5 

5 

5 

3 

5  

5 

3 

 

a. Alignment before block move 

 

1   

1 

1 

5 

1 

2 

5 

1 

2 

5 

1 

2 

4 

4 

4 

5 

5 

5 

3 

5 

3 

3 

3 

4 

3 

5 

2 

5 

3 5 2 

2 

5 

2 

5 

1 

5 

5 

5 

1 

5 

1 

1 

5 

1 

1 

1 

1 

1 

5 

2 

2 

3 

5 

3 

2 

5 

2 

5 

5 

5 

3 

3  5 

3 5 

3 5 

 

b. Alignment after block move 

Block of gaps selected at random 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  32 

 

Sometimes, the moves generated might have column(s) of all gap characters. When such case 

arises, this module makes use of Gap Cleaning sub-module to clean the Gaps in such column(s) 

filled entirely with gap characters. For instance, in the alignment of Table 4.9 b, the ninth column 

is filled up wholly with gaps. This column is cleaned and a fitter alignment is produced. The 

module also evaluates the moves and assigns a fitness value to each of the moves using the same 

Fitness Evaluation scheme used for the GA phase. Then the moves having higher fitness value 

than the current optimal alignment are added to candidate Move List. 

4.2.2.3 Move Selecting and Applying 

In this module, best move is selected from the candidate Move List (ML) based on its absence in 

the Tabu List. First alignment having highest fitness value, which is the best of all alignments in 

the candidate move list, is selected. The alignment is then checked for its presence in Tabu List. 

If the move (alignment) exists in Tabu List, it is discarded and the next best move is tried in 

order of decreasing fitness value until all the moves are checked or until a move not available in 

TL is found. Once a move which is not available in TL is found, it is applied. A move can be 

applied though it is in tabu list provided that the aspiration criterion is met The applied move, 

then, becomes the current solution. Nevertheless, if all the moves in the candidate ML are 

available in TL, the current solution remains being the former solution. 

4.2.2.4 Tabu Search Updating 

Having applied a move or rejecting all the moves, the algorithm iterates back to Moves 

Generation and Evaluation until the current solution stabilizes. Before going back to Moves 

Generation and Evaluation step, the TS parameters need to be updated. Tabu List is updated 

provided a valid move had existed so that the move currently applied is added to Tabu List. Also, 

Tabu Tenture of each alignment in the Tabu List is decremented by one. A move in the Tabu List 

whose Tabu Tenture reaches zeros is freed from the forbidden list.  

4.2.2.5 Fitness Evaluation 

Fitness Evaluation follows exactly same scheme as that for the GA phase of the system. 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  33 

 

4.2.2.6 TS convergence check 

Lastly, TS iterates back to the move generation and evaluation step or terminates the algorithm 

providing the current solution as optimal alignments of the sequences. The quality of the current 

solution (the fitness value and the number of matching pairs of nucleotides) over number of 

successive iterations serves as a basis of convergence check. If the fitness value and the number 

of matching pairs of nucleotides of current solution over successive iterations don’t changes, the 

search for optimal alignment terminates. If both or one of the two keeps on changing 

nevertheless, the TS continues the optimization process. 

4.3 Implementation of the proposed system 

The proposed system is implemented in MATLAB and the refining part, the TS, is implemented 

in VHDL as well. The VHDL implementation of the TS has been carried out to come up with 

hardware module that can be ported to FPGA. In the upcoming sections, the hardware block of 

TS and its synthesis are discussed. 

4.3.1 The hardware block 

As mentioned in the preceding section, the TS part of the system is implemented in VHDL. The 

MATLAB design serves as the basis of this implementation. The MATLAB design is tailored in 

a format the AccelDSP allows for synthesis. Then the MATLAB floating point design is 

converted to desired hardware module that can be implemented on Xilinx FPGA. Figure 4.2 

shows the block of the TS hardware.   

The data ports of the hardware derive their names from the MATLAB variables used to move 

data in and out of the design function. Therefore, the ports csIN and csOUT shown in Figure 4.2 

which are used to move the sequences in and out of the hardware block is simply the name given 

to MATLAB variables for current solution input and current solution output respectively. 

Similarly, Fitness and seed are MATLAB variable names and hence, they are used to designate 

the ports which move seed value to the block and fitness value from the block. 

 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  34 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 FPGA based Hardware block of TS 

4.3.2 Modules in the block 

4.3.2.1 Initialization module 

� This module carries out TS initialization process explained in section 4.2.2.1. In addition 

to initializing the parameters of the TS, this module also handles updating the parameters 

during the search process (section 4.2.2.4). 

csIN 

clock 

reset 

I/pAvail 

I/pReq 

seed 
csOUT 

O/pAvail 

O/pAck 

fitness 

 

 

Initialization 

 

 

 

 

 

control 

SSM  

BSM 

Move 

Evaluator 

Move 

selector 

 

 

PRNG 

 Monitor Solution 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  35 

 

4.3.2.2 SSM and BSM modules 

� The SSM (Single Sequence Moves) and BSM (Block Sequence Moves) modules are 

responsible for generation of moves as discussed in section 4.2.2.2. 

4.3.2.3 PRNG module 

� Random numbers required for generating moves in SSM and BSM modules are generated 

in module called PRNG (Pseudo Random Number Generator) module. 

4.3.2.3 Move Evaluator module 

� This module evaluates the fitness of each move (alignment) as discussed in section 

4.2.1.2. 

4.3.2.4 Move Selector module 

� This module selects which move has to be applied as current based on TS parameters and 

fitness values of the moves. How it performs is already discussed in section 4.2.2.3 

4.3.2.5 Solution monitoring module 

� Solution monitoring module applies the selected move and holds the current solution. 

This module also performs gap cleaning operation. In addition, it keeps record of the 

fitness values of all the moves that are applied during the search process.  

4.3.2.6 Control module 

� This module handles the TS convergence check discussed in section 4.2.2.6. Hence, it is 

responsible for the search process either to quit or proceed.  

4.3.3 Interface Configuration 

A MATLAB design that is synthesized by AccelDSP has either Push mode Interface protocol or 

Full handshake Interface protocol. If the number of clock cycles per design function call is 

constant, then by default Push mode Interface protocol is used. Otherwise, Full handshake 

Interface protocol is employed. However, it is possible that the later is used while the design has 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  36 

 

constant latency per design function call also. In this design, Full handshake protocol is used. 

Consequently, the flow of data into and out of the hardware ports is controlled by a handshake 

interface protocol as shown in Figure 4.3. 

 

 

 

 

 

 

  Figure 4.3 Full Handshake Interface of the hardware module 

In this scenario, the resulting hardware module is, therefore, granted to be a part of the larger 

design on FPGA. 

4.3.3.1 Global Signals 

The hardware module has two global signals Clock and Reset. Data transfers on each data port 

are synchronized to the Clock. The global Reset helps the registers within the block to be in a 

known state. Initially it must be held active high for at least one clock cycle and returns all 

registers to a known state. 

4.3.3.2 Input Synchronizing Signals 

I/pAvail: This signal is controlled by the external design. When this signal is set high, it 

indicates that data on the input ports is valid. This causes the receiving device (the hardware 

module) to capture the data on the rising edge of the next clock cycle. 

I/pReq: This signal is controlled by the hardware module. This signal when set high, on the 

other hand, indicates that the module is ready to capture new data from the input ports on the 

Fitness 

csOUT 

O/pAvail 

O/pAck 

 

 

RTL model generated by 

AccelDSP 

Seed 

Clock

Reset 

csIN 

 I/pReq 

I/pAvail 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  37 

 

rising edge of the next clock cycle. However, when the module sets this signal low, the external 

design should immediately stop sending new data as the module is not ready to capture new data. 

4.3.3.3 Output Synchronizing Signals 

O/pAvail: This signal is controlled by the hardware module. When set high, it indicates that data 

on the output ports is valid. This initiates the receiving device to capture the data on the output 

ports. Once this signal is set high, it will remain high until the receiving device acknowledges the 

data capture by setting ac_OutputAck high. 

O/pAck: This signal is controlled by the external design. High state of the signal is 

acknowledgment for the hardware module that the data on the output ports has been captured by 

the external design.  

4.3.4 Hardware Synthesis 

The hardware block given in figure 4.2 is synthesized to a module that can be implemented in 

FPGA. To do so the MATLAB design has to follow some guidelines so as to be synthesized by 

the synthesis tool. Having MATLAB code in proper coding style, the design passes through 

synthesis stages. The next section describes the MATLAB coding style for AccelDSP synthesis 

and the synthesis stages.  

4.4.4.1 Coding Style for hardware Synthesis 

The synthesis tool, AccelDSP, requires the floating point design conform to guidelines for 

coding style. The floating point model is represented by script M-File named script.m and 

Design function M-file named tabuSearch.m. The structure of the code style accepted by the 

synthesis tool is given in Figure 4.4.  

 

 

 

 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Code styles of script M-File and Design function M-File 

 Script M-File 

The script M-File called script.m has three sections. The top section provides input stimulus to 

the streaming loop where as the bottom section monitors the result of the streaming loop. The 

middle section, the streaming loop section, contains the design function to be synthesized. The 

design function to be synthesized is named tabuSearch.m. For hardware synthesis, the infinite 

streams of data entering and leaving the design must be partitioned into manageable slices in 

Design function 

call 

 
Streaming 

loop section 

Apply stimulus 

Monitoring result 

For r =1 : num_slice 

   Seed = randint(1, 1, [1, 1000]); 

   Seq2(r, :)= tabuSearch(Seq1(r, :), seed); 

end 

Function output_seq = ts (input_seq, seed) 

     % ts initialization 

    % move generator and evaluator module 

   % move selecting and applying 

   % tabu search update 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  39 

 

order to process the data [21].  As the number of pins of the target device is limited to 502, an 

alignment is sliced into a number of slices with each slice having a maximum of 64 nucleotides 

so that the number of input output lines required is less than 502. Given the alignment of Table 

4.7 b, a slice having 64 nucleotides (see Table 4.10) is formed by taking the first 16 columns of 

the alignment.  

Table 4.10 Example of slice of alignment to be passed to the design function 

1   

1 

1 

5 

1 

5 

5 

1 

2 

2 

5 

5 

4 

4 

5 

5 

3 

5 

1 

2 

3 

5 

5 

4 

5 

3 

5 

5 

5 

5 

4 

5 

5 

5 

3 

5 

5 

5 

3 

5 

5 

5 

2 

5 

3 

3 

5 

3 

2 

2 

1 

2 

5 

1 

1 

5 

1 

1 

5 

1 

5 

1 

3 

1 

 

The streaming loop, which is for loop construct, makes a call to top-level design function and 

passes the slice of an alignment and seed value for pseudo random number generator module. 

Design function M-File 

The body of the design function M-File namely tabuSearch.m models the main processing 

algorithm. This code is synthesized into hardware block [31].  Other external functions are called 

from this top-level design function. Such external functions are SSM, BSM, Fitness Evaluator, 

Move Selector, Tabu Updater and PRNG modules shown in figure 4.2. These external functions 

(modules) are synthesized into sub-blocks of the hardware. 

The MATLAB floating point design having been ready according to the coding styles for the 

AccelDSP synthesis, the design passes through synthesis stages discussed hereafter. 

 

 

 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  40 

 

4.4.4.2 Synthesis stages 

Floating Point Design Verification 

MATLAB floating point design is run and the verification constructs (results) at the end of the 

script file are obtained. This result will be used as a basis for comparison in future simulation 

runs (for comparison with the result of fixed point model). 

Floating Point Analysis 

The MATLAB floating point model is analyzed. That is the streaming loop and the top level 

design functions are identified. The shapes of the variables are also analyzed at this stage. As a 

result of floating point analysis, an equivalent in-memory data model of the design is created. 

Any changes that will be made to the design from this point are made to the in-memory design, 

not to the MATLAB source. 

Fixed Point Generation 

At this stage, an equivalent fixed point model is generated in either C++ or MATLAB. Important 

information about the design like loop unroll status of loops, quantization of variables are also 

generated as generate fixed point report. This report enables us to modify the design.  

Fixed Point Verification 

A MATLAB simulation is run on generated fixed point model and the result is compared to the 

simulation result of Floating Point verification. The design needs to be modified until the 

deviation is acceptable. 

RTL Generation 

At this stage, the Register Transfer Level (RTL) of the in-memory design is generated in VHDL 

or Verilog format. AccelDSP also generates a Testbench which applies input stimulus to the 

design, then monitors and compares the output results. The Test bench is generated in the same 

language as the RTL. 

RTL Verification 



Design and performance evaluation of hydrid intelligent 

system based algorithm for multiple DNA sequence alignment    Design and Implementation 

Department of Electrical & Computer Engineering, AAiT  41 

 

During RTL verification step, the Testbench generated during RTL generation step applies 

stimulus to the RTL model (commonly called design under test, DUT). The stimulus applied to 

the DUT is from the input file that was applied during MATLAB Fixed point simulation (Fixed 

point verification). At this stage, the result obtained is compared with the simulation result of 

Fixed Point verification stage. If the result matches, the simulation passes and generates a timing 

report. 

4.4 Summary 

The hybrid system of GA and TS is used in this work to find the optimal alignment of multiple 

DNA sequences. The whole system is implemented in MATLAB. Moreover, the system is 

tailored so that TS phase is implemented on Xilinx FPGA xc3s1400an device of Spartan 3A 

family. The hardware implementation of the TS phase makes use Xilinx AccelDSP synthesis tool 

10.1 and Xilinx ISE Design suite. 

 

 

 

 

 

 

 

 

 

 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  42 

 

Chapter 5 

Results and Discussion 

5.1 Introduction 

In this work, the alignment of multiple DNA sequences by the proposed hybrid system of GA 

and TS has been achieved. As described in section 4.3 of the previous chapter, the system is 

wholly implemented using MATLAB and the TS part is implemented in VHDL too. The 

implementation has revealed the effect of hybridization. The performance of the system has also 

been compared to selected methods. The benchmark methods selected are two known software 

packages being used by EBI. These software packages are called CLUSTALW and MAFFT. 

CLUSTALW falls in class of progressive approach whereas MAFFT combines the features of 

both progressive and iterative approaches. In the upcoming sections, test case sequences, the 

effect of hybridization, performance evaluation and speed up of the hardware implementation are 

discussed. 

5.2 Test case sequences 

For testing the proposed system, DNA sequences are taken from database of EBI [25]. The 

sequences are organized as four test cases based on the number of sequences in the test case. For 

example, the first test case is composed of 2 sequences which are taken from class of ‘mammal’. 

For all the test cases, the number of sequences constituting the test cases with the maximum and 

minimum length of the sequences comprising the test cases is given in table 5.1 

 Table 5.1 sequences used as test cases 

Test case Number of sequences   Minimum Length Maximum Length 

1 2 682 903 

2 4 444 724 

3 8 470 810 

4 16 203 879 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  43 

 

Table 5.2 shows a portion of the first sequence in test case one as a sample. As can be shown in 

the table, sequence begins with ‘>’ character which indicates that the nucleotide bases begin 

from the next line. The first line, which is the line having ‘>’ at the beginning, is description of 

the sequence. For instance, the sequence shown in table 5.2 has an Identification number, ID 

HQ395007. With this ID, it can be identified from all the sequences in the EBI database. It is 

also shown in abbreviations that this sequence is taken from mammal (MAM indicates that). The 

number of base pairs, BP 682, is also given along with the number of nucleotide bases in the 

sequence. The number of base pairs is simply the length of the sequence. 

 Table 5.2 Sample sequence (sequence 1 of test case 1) 

>SQ1: ID HQ395007; MAM 682 BP; 145 A; 197 C; 200 G; 140 T; 0 OTHER; 

GGCCGAGGGACAGCTGACACTGCAGCAGTTTGCGCAGTCCACGGAGATGC 

TGAAGCGCGTGGTGCAGGAGCACCTACCGCTGATGAGCGAAGCGGGCGCC 

GGCCTGCCCGACATGGAGGCTGTGGCGGGTGCCGAAG…….. 

The entire sequences forming test case one is given in Appendix A. 

5.3 Effect of hybridization 

It is customary that combination of two or more different methods is used to solve real world 

problems. In this work, TS has been incorporated into GA believing that it improves the 

alignment quality. To show this effect, the sequences of each test cases mentioned in the 

preceding section have been used as input to the proposed system.  

As the alignment process proceeds, the trend of the alignment quality called fitness value of an 

alignment is traced in steps of some number of iterations (10 iterations used in this work). The 

fitness value versus iteration count in steps of ten is then graphed. Four plots of Figure 5.1 show 

the trend of alignment quality by the proposed hybrid system for the four test cases. The trend of 

alignment quality by GA as standalone system can be observed from figure 5.1 whereas that of 

standalone TS is given in figure 5.2.  



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  44 

 

 

a. Fitness versus iteration count for test case 1 

 

b. Fitness versus iteration count for test case 2 

0 10 20 30 40 50 60 70 80
2

2.5

3

3.5

← for GA phase

← for TS phase

Fitness value vs iteration

iteration

F
it
n
e
s
s

 

 

GA

TS

0 20 40 60 80 100 120
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

← for GA phase

← for TS phase

Fitness value vs iteration

iteration

F
it
n
e
s
s

 

 

GA

TS



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  45 

 

 

c. Fitness versus iteration count for test case 3 

 

d. Fitness versus iteration count for test case 4 

Figure 5.1 Plot of fitness value of alignment versus iteration by the hybrid system of GA and TS 

0 20 40 60 80 100 120
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

← for GA phase

← for TS phase

Fitness value vs iteration

iteration

F
it
n
e
s
s

 

 

GA

TS

0 10 20 30 40 50 60
1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

← for GA phase

← for TS phase

Fitness value vs iteration

iteration

F
it
n
e
s
s

 

 

GA

TS



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  46 

 

 

 

a. Fitness versus iteration count for test case 1 

 

b. Fitness versus iteration count for test case 2 

 

0 10 20 30 40 50 60
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
Fitness value vs iteration for standalone TS

iteration

F
it
n
e
s
s

0 10 20 30 40 50 60
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1
Fitness value vs iteration for standalone TS

iteration

F
it
n
e
s
s



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  47 

 

 

c. Fitness versus iteration count for test case 3 

 

d. Fitness versus iteration count for test case 4 

Figure 5.2 Plot of fitness value of alignment versus iteration count by standalone TS 

0 5 10 15 20 25 30 35 40 45 50
1.46

1.47

1.48

1.49

1.5

1.51

1.52

1.53

1.54

1.55
Fitness value vs iteration for standalone TS

iteration

F
it
n
e
s
s

0 5 10 15 20 25 30 35 40 45 50
1.25

1.3

1.35

1.4
Fitness value vs iteration

iteration

F
it
n
e
s
s



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  48 

 

Note that in figure 5.1 the fitness values are sampled at intervals 10 iteration count. Hence, the 

last fitness value shown in figure during GA phase and the first fitness value shown during TS 

phase might be different. This is the case when the number of iteration at which the GA stops is 

not multiple of 10. 

From figure 5.1 and 5.2, the performance of the standalone GA (as seen from Figure 5.1) and 

standalone TS, is less as compared to the performance of the hybrid system of GA and TS as 

expected. In the following paragraphs, the effect of hybridizing GA with TS is discussed.  

From the graph of figure 5.1, it can be seen that GA has the effect of enhancing the fitness value 

as the algorithm proceeds from iteration to the next. The fitness value has shown no sign of 

decrement for all the test cases. This is the reflection of the fact that the selection of parents for 

both crossover operation and formation of new generation is based on elitism as explained in 

chapter four. That is to say, alignments having higher quality, fitness values and higher number 

of matching nucleotides, are selected during parent selection stage of the GA and so are during 

formation of new generation.  This enforces the continuity of higher quality alignments for 

generations as long as the newly created alignments. Hence, fitness value of an optimal solution 

at the end of a given iteration is at least as high as the fitness value of the optimal alignment of 

the former iteration.  

It can also be inferred from the graphs that the TS phase has shown same effect as that of GA for 

all the test cases. Initially, the fitness value has kept on increasing for some number of iterations. 

This is the consequence of the strategies followed during moves generation and evaluation phase 

of TS. It is explained in chapter four that when alignments are generated from a current 

alignment, only those alignments having better quality than the parent alignment are added to 

candidate move list. Hence, one or none among the candidates is taken as the current alignment 

based on content of tabu list and aspiration criterion set. This condition restricts the current 

alignment to be always at least as good as the former one. However, as can be seen from the 

graphs, the fitness value remains constant after some five values shown in the figure (which is 

about fifty iterations in average as the values on the figure are sampled at intervals of ten 

iterations). This implies that TS has produced an alignment which couldn’t be improved further 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  49 

 

in about fifty iterations. Therefore, as the search process proceeds from one solution to the other, 

it is guaranteed that the new solution cannot be of lower quality. 

The graphs of Figure 5.1 also roughly show how much the TS improved the alignment quality 

from GA phase. It can be seen for all test cases that hybridization of the GA with TS has a 

positive effect. This effect is numerically quantified as given in table 5.3 based on the fitness 

values of the alignment attained by the end of GA phase and those values attained by the end of 

the hybrid system (i.e., at the end of the GA plus TS phase). 

Table 5.3 Numerical quantification of effect of hybridization based on fitness value 

Test case Fitness attained 

during GA  phase 

Final Fitness attained by 

the proposed system 

Percentage of fitness  

Improvement due to 

hybridization 

1 2.2251 3.3943 52.55% 

2 1.7154 2.3549 37.28% 

3 1.2633 1.6659 31.87% 

4 1.2510 1.4550 16.31% 

In table 5.3, the percentage of fitness improvement is calculated by taking the difference between 

the final fitness attained and fitness attained by GA phase. Then the difference is expressed as 

percentage of the fitness attained by the GA phase. As can be seen from table 5.3, hybridizing 

GA with TS results in a significant improvement on the quality of the alignment. However, the 

percentage of improvement decreases with increase in number of sequences to be aligned. TS, 

therefore, enhances the performance of the system with a property that its achievement decreases 

with increasing number of sequences to be aligned.  

In section 5.4.1 the possible causes for the observed decrement of fitness improvement as the 

number of sequences increase is discussed. 

5.4 Performance Evaluation 

As mentioned in the introduction section of this chapter, the performance of the hybrid system 

proposed is shown by means of comparing its result with the result of standard methods. For this 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  50 

 

purpose, the test cases have been submitted electronically to EBI server for alignment using 

CLUSTALW and MAFFT. The sequences are then acted upon by the software packages and the 

optimal alignments obtained have been made available. Form the alignments by the benchmarks, 

the number of matching nucleotide bases, the number of columns of the alignment, the number 

of pairs of comparisons and the fitness values of the alignment have been computed and 

tabulated as shown in Table 5.4. The same parameters have been computed and tabulated for 

alignment by the proposed method in same table. The parameters used in the table such as 

matches comparisons and columns represent the number of matching pairs of nucleotide bases, 

the number of pairs of comparisons and the column length of the alignment respectively. 

Table 5.4 Performance the proposed system as compared to the benchmarks  

TEST CASE ONE TWO THREE FOUR 

CLUSTALW 

Matches 353 1393 5979 23540 

comparisons 912 5100 24864 136320 

Columns 912 850 888 1136 

Percentage 

of matches 
38.71 27.31 24.05 17.27 

MAFFT 

Matches 312 1226 4686 19829 

comparisons 917 4698 24136 116760 

Columns 917 783 862 973 

Percentage 

of matches 
34.02 26.10 19.41 16.98 

PROPOSED 

SYSTEM 

Matches 314 1182 4533 16605 

comparisons 1022 6078 37408 176880 

Columns 1022 1013 1336 1474 

Percentage 

of matches 
30.72 19.45 12.12 9.39 

 

The number of pairs of comparisons (named comparisons in the table) is calculated from the 

number of sequences K and the number of columns N in the alignment according to equation 5.1. 

.�/01�2�2�3� = � ∗ ∑ s*)�
4"�                                                                                                             (5.1) 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  51 

 

The percentage of matches which reflects how much percent of the pairs of comparisons are 

matching pairs of nucleotide bases is, then, calculated using equation 5.2. 

   5����361,� �� /16�ℎ�� = 89:;<= >? :@ABC<D

E>:F@=GDG>8D
  ∗ 100                                                                   (5.2) 

The percentages matches obtained are used of evaluating the proposed system and are graphed 

and shown in Figure 5.3. 

  

Figure 5.3 Proposed system vs benchmarks in percentage of matches 

According to figure 5.3, 30.72% of the pairs are made matching pairs of nucleotides bases by the 

proposed system while this figure is 38.71% for CLUSTALW and 34.02% for MAFFT for test 

case 2. From the figure, it can be seen that the proposed system shows performs near to MAFFT 

for test case 1 where the percentage differs by 3.3. However, it performs worse for test case 3 

where the percentage differs by 11.93 from CLUSTALW’s. In general, the proposed system 

performs less than the two benchmarks for all the test cases. The possible causes due to which 

the proposed system performs less is discusses in next section. 

30.72%

19.45%

12.12%
9.39%

38.71%

27.31%

24.05%

17.27%

34.02%

26.10%

19.41%

16.98%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 3 4

Test case

Percentage of alignment 

by Proposed system

Percentage of alignment 

by CLUSTALW

Percentage of alignment 

by MAFFT



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  52 

 

5.4.1 Possible causes of less performance 

In the first place, the number of columns in the final alignment plays a significant role in 

determining the percentage of matches. The number of possible comparisons made within the 

alignment is the function of the number of columns and number sequences as can be inferred 

from equation 5.1. Referring to table 5.4, it can be seen that the number of columns in the 

alignment by the proposed system is greater than the corresponding values for CLUSTALW and 

MAFFT for all the test cases. This results in much greater values of the number of comparisons. 

Therefore, even if the number of matches is comparable, the resulting percentage of matches 

differs greatly. For test case 1, for example, percentage of matches for the MAFFT (34.02%) is 

greater than the proposed system (30.72%) despite the fact that the number of matches of 

MAFFT (312) is less than that of the proposed system (314). Therefore, the higher number of 

columns in the final alignment by the proposed system is one of the causes for the system to 

perform less than the benchmarks. 

Another cause is related to the requirement of the implementation scheme followed in this work. 

From table 5.3, it is observed that the effect of TS to enhance the performance of the proposed 

system decreases with increasing number of sequences to be aligned. It can be said that this is the 

effect of slicing the input sequences for the purpose of hardware synthesis. It has been declared 

in the previous chapter that the FPGA implementation needs the MATLAB code to conform to 

coding style acceptable by the synthesis tool, AccelDSP. According to the acceptable coding 

style, data entering and leaving the design must be partitioned into manageable slices [21]. In 

this work, the sequences to be aligned are partitioned in such a way that 64 nucleotides can be 

passed to the design function. Therefore only small fragment of the alignment having 64 

nucleotides is processed per design function call.  

As a result of slicing the input sequences same nucleotide bases that could be arranged in same 

columns might be separated to two different segments. This leads to condition which results in 

poor alignments at the boundary of the slices. Therefore, slicing the input sequences for 

hardware synthesis is another cause that made the system to perform less than CLUSTALW and 

MAFFT. Moreover, as the number of sequences increase, the characters around the boundary 

which might be poorly aligned increases. Hence, it can be expected that the quality of the 

alignment reduces with growing number of sequences as Table 5.3 witnesses. To quantify this 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  53 

 

effect numerically, the system performance without slicing the input sequences is investigated 

and discussed next. 

5.4.2 System performance without slicing  

In this section, the result of the proposed system implemented by avoiding the concept of slicing 

is discussed. The proposed system is implemented in MATLAB as if there is no restriction on 

the amount of the sequence to be passed to the design function during the hardware 

implementation.   Afterward the alignment obtained using this scenario is compared with the 

alignment obtained using the proposed system with slicing. Furthermore, it is compared with 

benchmarks. 

5.4.2.1 Proposed system with and without slicing 

For purpose of understanding the effect of slicing, the fitness values of the alignment obtained by 

without slicing the input sequences is tabulated along with the fitness value given in Table 5.3 

(fitness by GA plus TS with slicing).  

Table 5.5 Improvement in fitness value gained from non-slicing 

Test 

case 

Fitness attained by 

proposed system without 

slicing 

Fitness attained by 

proposed system with 

slicing 

Improvement gained 

from non-slicing 

1 3.4945 3.3943 3.0% 

2 2.5513 2.3549 8.3% 

3 1.9400 1.6659 16.5% 

4 1.6900 1.4550 16.1% 

According to Table 5.5, it is can be shown that the percentage of improvement gained increases 

with increasing number of sequences aligned. That is to say, the alignment quality degrades with 

increasing number sequences. This conforms to the fact that the nucleotides that might be poorly 

aligned at the boundary increases with increase in number of sequences. Therefore, slicing the 

input sequences impose negative effect on the alignment quality which gets worse as the number 

of sequences increases. 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  54 

 

5.4.2.2 Proposed system without slicing versus benchmarks 

Using same approach as in section 5.4, the parameters used in Table 5.4 (matches, columns and 

comparisons) are determined for alignment by the proposed method, of course without slicing 

the input sequences in this case. The values along with those for the benchmarks (Table 5.4) are 

given in Table 5.6. 

Table 5.6 Comparison between the benchmarks and the proposed system without slicing 

TEST CASE 1 2 3 4 

CLUSTALW 

Matches 353.00 1393.00 5979.00 23540.00 

comparisons 912.00 5100.00 24864.00 136320.00 

Columns 912.00 850.00 888.00 1136.00 

percentage 38.71 27.31 24.05 17.27 

MAFFT 

Matches 312.00 1226.00 4686.00 19829.00 

comparisons 917.00 4698.00 24136.00 116760.00 

Columns 917.00 783.00 862.00 973.00 

percentage 34.02 26.10 19.41 16.98 

PROPOSED 

SYSTEM 

Matches 321.00 1267.00 5357.00 21716.00 

comparisons 1005.00 5784.00 34664.00 170640.00 

Columns 1005.00 964.00 1238.00 1422.00 

percentage 31.94 21.91 15.45 12.73 

In the table the number of comparisons and the percentage of matches are calculated using 

equation 5.1 and 5.2 respectively. Based on the percentage of matches, the system is evaluated as 

shown in Figure 5.4.  



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Results and Discussion 

Department of Electrical & Computer Engineering, AAiT  55 

 

 

Figure 5.4 Proposed system (no slicing) vs benchmarks in percentage of matches  

As can be seen from the column graphs of Figure 5.4 and 5.3, the percentage of matches attained 

with no slicing has shown an increment of 1.22, 2.46, 3.33 and 3.34 for test case 1, 2, 3 and 4 

respectively. This again shows the negative effect of slicing which is worse for more number of 

sequences to be aligned. 

In regard to comparison with the benchmarks, the percentage of matches for the proposed system 

is still less than those of the benchmarks. But maximum difference of percentage from 

CLUSTALW is now reduced from 11.9 to 8.6. The minimum difference of percentage between 

MAFFT and the proposed system which is 3.3 is now reduced to 2.1. Hence, the proposed 

system without slicing improves the percentage of matches within the alignment.  

 

 

 

 

31.94%

21.91%

15.45%

12.73%

38.71%

27.31%

24.05%

17.27%

34.02%

26.10%

19.41%

16.98%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 3 4

Test case

Percentage of alignment by 

Proposed system

Percentage of alignment by 

CLUSTALW

Percentage of alignment by 

MAFFT



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Conclusions and Recommendations 

Department of Electrical & Computer Engineering, AAiT  56 

 

Chapter 6 

Conclusions and Recommendations 

6.1 Introduction 

In this work, hybrid system to align multiple DNA sequences is designed. The designed system 

is implemented using MATLAB and VHDL (for the TS part). The system is finally compared 

with benchmark methods CLUSTALW and MAFFT. Furthermore, the MATLAB 

implementation is compared with the FPGA based implementation. Based on the results, the 

following conclusions and recommendations are made. 

6.2 Conclusions 

The quality of the optimal alignment during any iteration is always greater than the quality of 

optimal alignment of the previous iteration. Both GA and TS always improve the alignment 

quality as the optimization process proceeds. Moreover, TS phase brings about significant result 

in enhancing the performance of the proposed system. However, the alignment quality for design 

tailored for hardware implementation decreases with increasing the number of sequences to be 

aligned. The system performs less than both the benchmarks. It performs less with percentage of 

matches differing at most by 8.6 from CLUSTALW for 8 sequences. It also performs less with 

percentage of matches differing at most by 4.25 from MAFFT for 16 sequences. 

FPGA based implementation of multiple sequence alignment results in significant improvement 

in speed over the software implementation. In this work, speed up of about 64 is gained by the 

hardware implementation. As long as the original MATLAB design is not changed, both 

implementations result in alignment of same quality.  

 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Conclusions and Recommendations 

Department of Electrical & Computer Engineering, AAiT  57 

 

6.3 Recommendations 

As can be inferred from the effect of slicing imposes on the alignment quality, as the number of 

sequences to be aligned increases, the alignment quality decreases. Having a target FPGA with 

lower number of input output pins demand higher number of slices of the input sequences. 

Therefore, the target device for implementation should be selected so as to have number of pins 

as high as possible. 

In addition, the number of gaps inserted to the sequences at the beginning of the GA phase needs 

to be examined carefully as it determines the number of columns in the final alignment. The 

number of columns in the final alignment, in turn, determines the number of possible pairs of 

comparisons needed to find out the percentage of matches and the fitness value. 

Needles to mention, the performance of the hybrid system is the result of the chosen parameters 

and objective function set. In particular, mutation probability, scoring schemes for matches and 

mismatches, the gap penalty and tabu tenture might influence the performance of the system. 

Hence, proper selection of these parameters should be done. 

 

 

 

 

 

 

 

 

 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment References 

Department of Electrical & Computer Engineering, AAiT  58 

 

References 

[1] http://ghr.nlm.nih.gov/SiteMap, “Your Guide to understanding Genetic Conditions”, Hand 

book of U.S. National Library of Medicine, USA 

[2] Hung Dinh Nguyen, Ikuo Yoshihara, Kunihito Yamamori, Moritoshi Yasunaga, “Aligning 

Multiple Protein Sequences by Parallel Hybrid Genetic Algorithm”, M.Sc thesis, Graduate 

School of Engineering, Faculty of Engineering, Miyazaki University, Japan. 2002 IEEE 

[3] Cédric Notredame and Desmond G. Higgins, “SAGA sequence alignment by genetic 

algorithm”, EMBL outstation, The European Bioinformatics Institute, Hinxton Hall, Hinxton, 

Cambridge CB10 1RQ, UK, 1996 

[4] M. F. Omar, R. A. Salam, R. Abdullah, N. A. Rashid, “Multiple Sequence  Alignment Using 

Optimization Algorithms”, International Journal of Information and Mathematical Sciences 1:2 

2005 

[5] Mohd. Faizal Omar, Rosalina Abdul Salam, Nuraini Abdul Rashid, Rosni Abdullah, 

“Multiple Sequence Alignment Using Genetic Algorithm and Simulated Annealing”, School of 

Computer Science, Universiti Sains Malaysia, I1900 Penang Malaysia, 2004 

[6] Layeb Abdesslem, Meshoul Soham, Batouche Mohamed, “Multiple Sequence Alignment by 

Quantum Genetic Algorithm”, University of Mentouri, Constantine, Algeria, 2006 IEEE 

[7] Stefan Dydel and Piotr Bala, “Large Scale Protein Sequence Alignment Using FPGA 

Reprogrammable Logic Devices”, Faculty of Mathematics and Computer Science, N. 

Copernicus University, Chopina 12/8, 87-100 Torun, Poland, 2004. 

[8] Warattapop Chainate, Peeraya Thapatsuwan, and Pupong Pongcharoen, “A New Heuristic for 

Improving the Performance of Genetic Algorithm”, Naresuan University, Phitsanulok, Thailand, 

2007 

[9] Tariq Riaz, Yi Wang, Kuo-Bin Li, “Multiple Sequence Alignment Using Tabu Search”, M.Sc 

thesis, Bioinformatics Institute, 30 Biopolis Street, Singapore, 2004 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment References 

Department of Electrical & Computer Engineering, AAiT  59 

 

[10]  R.Thamilselvan and Dr.P.Balasubramanie, “A Genetic Algorithm with a Tabu Search for 

Traveling Salesman Problem”, Kongu Engineering College/Computer Science and Engineering, 

Erode, India, 2009 

[11] Xunying Zhang, Chen Shi, and Fei Hui,  “FPGA-Based Genetic Algorithm Kernel Design”, 

Xi’an Institute of Microelectronics Technology, 710054, Xi’an, Shaanxi, China, 2007. 

[12] Tu Lei, Zhu Ming-cheng and Wang Jing-xia, “The Hardware Implementation of a Genetic 

Algorithm Model with FPGA”, M.Sc thesis, Shenzhen University and Shenzhen Polytechnic, 

Shenzhen 518060, P.R.C, 2002 IEEE 

[13] Stephen D. Scott, Sharad Seth, and Ashok Samal, “A Synthesizable VHDL Coding of a 

Genetic Algorithm”, 1999 by CRC Press LLC, Canada, 1999. 

[14] Thomas Weise, “Global Optimization Algorithms – Theory and Application”, Version: 

2009-06-26 ebook, 2009. 

[15] Nardos Asnake, “Incrementally Autonomous Light Weight Agent Architectures for 

Optimization Task”, Addis Ababa University School of Graduate Studies, Department of 

Electrical and Computer Engineering March, 2005 

[16] Michael Negnevitsky, “Artificial Intelligence -A Guide to Intelligent Systems”, Second 

Edition, Pearson Education Limited, England London, 2005 

[17] Fred Glover, Manuel Laguna, “Principles of Tabu Search”, Leeds School of Business, 

University of Colorado, USA, 2007. 

[18] Panos M. Pardalos, L.Pitsoulis1, T. Mavridou, and Mauricio G.C. Resende, “Parallel 

Search for Combinatorial Optimization: Genetic Algorithms, Simulated Annealing, Tabu Search 

and GRASP”, Center for Applied Optimization and Department of Industrial and Systems 

Engineering, University of Florida, Gainesville, FL 32611-6595 USA, 1995 

[19] Pham, D.T. and Karaboga D., “Intelligent Optimization Techniques – Genetic Algorithms, 

Tabu Search, Simulated Annealing and Neural Networks”, Springer-Verlag, London, 2000 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment References 

Department of Electrical & Computer Engineering, AAiT  60 

 

[20] C. Gondro and B.P. Kinghorn, “A simple genetic algorithm for multiple sequence 

alignment”, The Institute for Genetics and Bioinformatics (TIGB), University of New England, 

Armidale, Australia, Oct 05, 2007 

[21] http://www.xilinx.com, “AccelDSP Synthesis Tool - user guide”, Release 10.1 March, 2008 

 [22] Randy L. Haupt, Sue Ellen Haupt, “Practical Genetic Algorithms”, Second Edition, A john 

Wiley & sons Inc., publication, USA, 1998 

[23] L. A. Anbarasu, P. Narayanasamy and V. Sundararajan, “Multiple Sequence Alignment 

Using Parallel Genetic Algorithm”, Anna University, Chennai 600 025, Center for Development 

of Advanced Computing, Pune 411 007, 1999 

[24] Kosmas Karadimitriou, Donald H. Kraft, “Genetic Algorithms and Multiple Sequence 

Alignment Problem in Biology”, M.Sc thesis, Department of Computer Science, Louisiana State 

University, USA, 1996 

[25]  http://www.ebi.ac.uk, “European Bioinformatics Institute”, United Kingdom, 2011 

[26] Tim Oliver, Bertil Schmidt, Darran Nathan, Ralf Clemens and Douglas Maskell, “Multiple 

Sequence Alignment on an FPGA”, School of Computer Engineering, Nanyang Technological 

University, Singapore, 2005 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix A 

Department of Electrical & Computer Engineering, AAiT  61 

 

Appendix A: Test case 1 Sequences 

 

 

 

 

 

 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix B 

Department of Electrical & Computer Engineering, AAiT  62 

 

Appendix B: Aligned sequences of Test case 1 

 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix C 

Department of Electrical & Computer Engineering, AAiT  63 

 

Appendix C: Synthesized RTL Schematic Block of TS 

 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  64 

 

Appendix D: MATLAB Source Code 

%Designed system for Multiple DNA sequence alignment 
%script_msa 
t1_msa = rem(now, 1); 
popSize = 200; 
maxIteration = 2000; 
maxF = 0; 
maxM = 0; 
averageFitness = 0; 
iteration = 0; 
mutationProb = 0.01; 
scaling_factor = 1.6; 
stable = 0; 
gaTrace = 0; 
refinment_needed = false; 
sequences = textread('initialSeq8.txt', '%s');   %cell array 
numOfSeq = numel(sequences); 
initialSeed = randint(1,1, [1, 100]); 
seed = initialSeed; 
cl_matches = 5979; 
%integer representation of the sequences 
for i = 1 : numOfSeq 
    seqq{i} = double(sequences{i}); 
    seq{i} = intRepresentation(seqq{i}); 
    length(i) = size(sequences{i}, 2); 
end  
maxLength = max(length);   
unscaledCol = maxLength * scaling_factor; 
col = round(unscaledCol); 
%formation of initial population 
for n = 1 : popSize 
   parent{n} = popInitialization(seq, length, col, numOfSeq); 
   parent{n} = clean(parent{n}); 
end        
f_steps = 0; 
while(iteration <= maxIteration && stable == 0) 
    % Evaluating Fitness of the individuals 
     for n = 1 : popSize 
        numOfRow = size(parent{n}, 1); 
        numOfCol = size(parent{n}, 2); 
        [fitness(n), matches(n)] = fitnessCalculation(parent{n}, numOfRow, 

numOfCol); 
     end 
     prevF = max(fitness); 
     prevM = max(matches); 
     [sortedFitness, findex] = sort(fitness, 'descend'); 
     [sortedmatches, mindex] = sort(matches, 'descend'); 
    % Selection of parents for mating 
     for n = 1 : popSize/4 
         selectedParent{n} = parent{findex(n)}; 
         usedIndices(n) = findex(n); 
     end 
     n = 1; 
     indx = 0; 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  65 

 

     offset = popSize/4; 
     while(indx < popSize/4) 
         if(IndexUsed(mindex(n), usedIndices) == false) 
             indx = indx +1; 
             selectedParent{indx + offset} = parent{mindex(n)}; 
             additionalIndices(indx) = mindex(n); 
             n = n+1; 
         else 
             n = n+1; 
         end 
     end 
     for n = 1 : popSize/2 
         selected(n) = false;  
     end 
     n = 1; 
     ptr = 1; 
     while(ptr <= popSize/2) 
         num = randint(1,1,[1, popSize/2]);  
         if(selected(num) ==0) 
             selIndex(ptr) = num; 
             selected(num) = true; 
             ptr = ptr +1; 
         end 
     end 
    % cross over 
    for n = 1 : 2: popSize/2 
        [child1, child2] = crossOver(selectedParent{selIndex(n)}, 

selectedParent{selIndex(n+1)});  
         child{n} = clean(child1); 
         child{n+1} = clean(child2); 
    end 
    numOfMutant = round(popSize * mutationProb); 
     if(numOfMutant >= 1) 
        for m = 1 : numOfMutant 
            indexOfMutant = randint(1,1, [1, popSize/2]); 
            numOfCol = size(child{indexOfMutant},2); 
            randRow = randint(1,1, [1, numOfSeq]); 
            mutant = child{indexOfMutant}; 
            child{indexOfMutant} = mutation(mutant, randRow); 
        end 
     end 
     % Forming new generation 
     offset = popSize/2; 
     for n = 1 : popSize/2 
         parent{n} = selectedParent{n}; 
         parent{n + offset} = child{n}; 
     end 
     clear fitness; 
     clear matches; 
     for n = 1 : popSize 
         numOfRow = size(parent{n}, 1); 
         numOfCol = size(parent{n}, 2); 
         [fitness(n), matches(n)] = fitnessCalculation(parent{n}, numOfRow, 

numOfCol); 
     end 
     iteration = iteration +1; 
     maxF = max(fitness); 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  66 

 

     maxM = max(matches); 
     currF = maxF; 
     currM = maxM; 
     diffOfF = currF - prevF; 
     diffOfM = currM - prevM; 
     [sortedFitness, findex] = sort(fitness, 'descend'); 
     [sortedMatches, mindex] = sort(matches, 'descend'); 
     iterationCount = iteration; 
     if(iteration ==1 || rem(iteration, 10) == 0) 
         f_steps = f_steps +1; 
         f1 = sortedFitness(1) 
         f_ga(f_steps) = f1; 
     end 
     if(diffOfF < 0.0001 && diffOfM ==0) 
         gaTrace = gaTrace +1;  
     else 
         gaTrace = 0; 
     end 
     if(gaTrace < 20 && iteration < maxIteration) 
         stable = 0; 
         for n = 1 : popSize 
             parent{n} = clean(parent{n}); 
         end 
     else 
         if(currM > cl_matches) 
             stable = 1; 
             disp('Alignment quality attained with GA only'); 
             gaSolution = parent{mindex(1)}; 
             sq_GA = gaSolution; 
             refinment_needed = false; 
         else 
             disp('proceeding to TS'); 
             stable = 1; 
             refinment_needed = true; 
             initialAlignment = parent{mindex(1)}; 
             saveSequencesFromGA(initialAlignment); 

              

              
             for a = 1 : 8 
             ss = initialAlignment; 
             colCurrent = size(ss, 2); 
             rowCurrent = size(ss, 1); 
             total_elements = colCurrent * rowCurrent; 
             elements_per_slice = 64; 
             num_slice = floor(total_elements/elements_per_slice); 
             cps = elements_per_slice/rowCurrent;   %column per slice = 16 
             rowVector = zeros(1, 64); 
            for r = 1 : num_slice 
               indx = r*cps -cps; 
               for i = 1 : numOfSeq 
               offset = (i-1) * cps; 
                   for j = 1 : cps 
                        rowVector(offset +j) = ss(i, indx+j); 
                   end 
               end 
               input_Array(r, 1:64) = rowVector; 
            end 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  67 

 

            if(rem(total_elements, elements_per_slice) >= 1) 
               extra_slice = 1; 
               extra =zeros(1, 64); 
               r = num_slice +1; 
               num_slice = num_slice +1; 
               indx1 = r*cps - cps; 
               indx2 = size(ss, 2); 
               for i = 1 : numOfSeq 
                   offset = (i-1) * cps; 
                   for j = 1 : (indx2 - indx1) 
                       extra(offset +j) = ss(i, indx1+j); 
                   end 
               end 
               input_Array(r, 1:64) = extra; 
            else 
               extra_slice = 0; 
            end 
            %streaming loop 
            seed_TS(a) = randint(1,1,[1, 100]); 
            inputSeq = zeros(1, 64); 
            outputSeq = zeros(1, 64); 
            t1_ts = rem(now, 1); 
            for r = 1 : num_slice 
                seed = seed_TS(a); 
                inputSeq = input_Array(r, :); 
                [outputSeq, fitness, comp] = tabuSearch(inputSeq, seed, 

numOfSeq); 
                output_Array(r, :) =  outputSeq; 
                fitness_ts(r, :) = fitness; 
                comparision(r, :) = comp; 
            end 
            t2_ts = rem(now, 1); 
            for k = 1 : size(fitness_ts(1, :), 2); 
                  non_normalized_f(k) = 0; 
                  c_sum(k) = 0; 
                  for r = 1 : num_slice 
                     non_normalized_f(k) = non_normalized_f(k) + 

fitness_ts(r, k) * comparision(r, k); 
                     c_sum(k) = c_sum(k) + comparision(r, k); 
                  end  
                  normalized_TS_fitness(k) = non_normalized_f(k)/c_sum(k); 
            end 
            fit_ts = normalized_TS_fitness; 
            if(a==1) 
                f_ts = fit_ts; 
            end 
            coll = cps * num_slice; 
            sqq = zeros(rowCurrent, coll); 
            for r = 1 : num_slice 
                indx = r*cps -cps; 
                for i = 1 : numOfSeq 
                    offset = (i -1)*cps; 
                    for j = 1 : cps 
                        sqq(i, indx+j) = output_Array(r, offset+j); 
                    end 
                end 
            end  



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  68 

 

            numColumns = size(sqq, 2); 
            counter = 0; 
            for k = 1 : numColumns 
                if(sqq(:, k) ~= 0) 
                    counter = counter + 1; 
                    sq_TS(:, counter) = sqq(:, k); 
                end 
            end  
            numColumns = size(sq_TS, 2); 
            numRows = size(sq_TS, 1); 
            for j = 1 : cps 
                if(j <= cps/2) 
                    initialAlignment(:, j) = sq_TS(:, j); 
                else 
                    initialAlignment(:, j) = 5; 
                end 
            end 
            offset = cps/2; 
            for j = cps/2 +1 : numColumns 
                initialAlignment(:, j + offset) = sq_TS(:, j); 
            end 
            end %end of repeatition for loop 

     

             
        end   
     end                         
  end %% end of outer while loop  
  t2_msa = rem(now, 1); 
  disp('Best Alignment: '); 
  if(refinment_needed == true) 
        for i = 1 : numOfSeq 
            for j = 1 : numColumns 
                if (sq_TS(i,j) == 1) 
                    seq_msa(i,j) = double('A'); 
                elseif(sq_TS(i,j) == 2) 
                    seq_msa(i,j) = double('C'); 
                elseif(sq_TS(i,j) == 3) 
                    seq_msa(i,j) = double('G'); 
                elseif(sq_TS(i,j) == 4) 
                    seq_msa(i,j) = double('T'); 
                elseif(sq_TS(i,j) == 5) 
                    seq_msa(i,j) = double('-'); 
                else 
                    seq_msa(i,j) = double(' '); 
                end 
            end 
        end 
        final = char(seq_msa); 
  else 
      numColumns = size(sq_GA, 2); 
      numRows = size(sq_GA, 1); 
      for i = 1 : numOfSeq 
         for j = 1 : numColumns 
            if (sq_GA(i,j) == 1) 
                seq_msa(i,j) = double('A'); 
            elseif(sq_GA(i,j) == 2) 
                seq_msa(i,j) = double('C'); 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  69 

 

            elseif(sq_GA(i,j) == 3) 
                seq_msa(i,j) = double('G'); 
            elseif(sq_GA(i,j) == 4) 
                seq_msa(i,j) = double('T'); 
            elseif(sq_GA(i,j) == 5) 
                seq_msa(i,j) = double('-'); 
            else 
                seq_msa(i,j) = double(' '); 
            end 
        end 
     end 
     final = char(seq_msa); 
  end 

  
  %Reporting the result 
    [matches, mismatches, basegaps, gapGaps, fitnessFinal] = 

measureOfSimilarity(final, numRows, numColumns); 
    a = fopen('alignment.txt', 'w'); 
    for i = 1 : numOfSeq 
        fprintf(a, final(i, :)); 
        fprintf(a, '\n'); 
    end 
    status = fclose(a); 
    msa_ExecutionTime = (t2_msa-t1_msa) * 24 *60 *60; 
    ts_time = (t2_ts-t1_ts) * 24 *60 *60; 
    disp('Total Execution Time in seconds:'); 
    disp(msa_ExecutionTime);  
    disp('TS Execution Time in seconds:'); 
    disp(ts_time); 
    disp('Fitness Value of the final alignment: '); 
    disp(fitnessFinal); 
    disp('Number of matches in the final alignment: '); 
    disp(matches); 
    disp('Initial Seed: '); 
    disp(initialSeed); 
    plotFitness(f_ga, f_ts); 
    %end 
    a = fopen('alignmentDetails.txt', 'w'); 
    fprintf(a, 'FITNESS GA'); 
    fprintf(a, '\n'); 
    for k = 1 : size(f_ga, 2) 
        fprintf(a, '%d', f_ga(k)); 
        fprintf(a, '\n'); 
    end 
    fprintf(a, 'FITNESS TS'); 
    fprintf(a, '\n'); 
    for k = 1 : size(f_ts, 2) 
        fprintf(a, '%d', f_ts(k)); 
        fprintf(a, '\n'); 
    end 
    fprintf(a, '\n'); 
    fprintf(a, 'Final Fitness: '); 
    fprintf(a, '%d', fitnessFinal); 
    fprintf(a, '\n'); 
    fprintf(a, 'Matches: '); 
    fprintf(a, '%d', matches); 
    fprintf(a, '\n'); 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  70 

 

    fprintf(a, 'Mismatches: '); 
    fprintf(a, '%d', mismatches); 
    fprintf(a, '\n'); 
    fprintf(a, 'TS Execution time: '); 
    fprintf(a, '%d', ts_time); 
    fprintf(a, '\n'); 
    fprintf(a, 'TS seed: '); 
    fprintf(a, '%d', seed_TS); 
    fprintf(a, '\n'); 
    fprintf(a, 'GA_Iteration: '); 
    fprintf(a, '%d', iterationCount); 
    status = fclose(a); 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function seq = intRepresentation(sequence) 
    for j = 1 : size(sequence, 2); 
        if(sequence(j) == 65) 
            seq(j) = 1; 
        elseif(sequence(j) == 67) 
            seq(j) = 2; 
        elseif(sequence(j) == 71) 
            seq(j) = 3; 
        else 
            seq(j) = 4; 
        end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function par = popInitialization(seq, length, col, numOfSeq) 
    for i = 1 : numOfSeq 
        gaps(i) = col - length(i); 
        row = insetGaps(seq{i}, gaps(i), length(i), col); 
        par(i, :) = row; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function sq = insetGaps(seq, numGaps, length, col) 
 row = zeros(1, col); 
 ptr = 1; 
 while(ptr <= numGaps) 
        randomPos = randint(1,1,[1, col]); 
        if(row(randomPos) ~= 5) 
            row(randomPos) = 5; 
            ptr = ptr +1; 
        end 
 end 
k = 1; 
for j = 1 : col 
   if k <= length; 
       if(row(j) == 0) 
           row(j) = seq(k);  % insert the nucleotides (A T G C) 
           k = k + 1; 
       end 
    end 
end 
sq = row; 
end 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  71 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function cleaned = clean(individual) 
    i =1; 
    col = size(individual,2); 
         while(i <= col) 
              cg = 1; 
              for j = 1 : size(individual,1) 
                  if(individual(j, i) == 5) 
                       cg = 0; 
                  else 
                      cg = 1; 
                      break; 
                  end 
               end 
               if cg == 0 
                   col = col - 1; 
                   individual(:, i) = [];   
               end 
              i = i + 1; 
         end 
      cleaned = individual; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [fitness, match] = fitnessCalculation(s, row, col) 
        value = 0; 
        counter = 0; 
        match = 0; 
        for j = 1 : row -1 
            for k = j+1 : row 
                for m = 1 : col 
                    if((s(j,m) == 5) && (s(k,m) == 5)) 
                         %value = value - 0; 
                         counter = counter + 1; 
                    elseif(s(j,m) == s(k,m)) 
                         value = value + 8; 
                         match = match +1; 
                         counter = counter + 1; 
                    elseif((s(j,m) == 5) || (s(k,m)== 5)) 
                         value = value + 1; 
                         counter = counter + 1; 
                    elseif(s(j,m) ~= s(k,m)) 
                         value = value  + 2; 
                         counter = counter + 1; 
                    end 
                end  
            end 
        end 
 fitness = value/counter;  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [child1 child2]= crossOver(par1,par2) 
    col = size(par1,2); 
    row = size(par1,1); 
    randLoc = randint(1,1,[2,col-2]); 
    child1_front = par1(:, 1 : randLoc);   
    child2_tail = par1(:, randLoc+1 : end); 

  



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  72 

 

   for i = 1 : row 
        nucleotides(i) = 0; 
        for j = 1 : randLoc 
            if (par1(i, j) ~= 5) 
                 nucleotides(i) = nucleotides(i) +1;  % nucleotides in each 

row of the fragment1 
            end 
        end 
    end 

     
   for i = 1 : row 
        index(i) = 0; 
        counter = 0; 
        for j = 1 : size(par2, 2)  % till row numbers of p2 
            if (par2(i, j) ~= 5) 
                counter = counter + 1; 
                if(counter == nucleotides(i)) 
                   index(i) = j;  
                   break; 
                end 
            end 
        end 
   end 

    
   % Forming child1 
   for i = 1 : row 
       for j= min(index)+1 : size(par2, 2) 
           if(j <= index(i)) 
               child1_tail(i, j - min(index)) = 5; 
           else 
               child1_tail(i, j - min(index)) = par2(i, j); 
           end 
       end         
   end 
   child1 = [child1_front child1_tail]; 

  
   %Forming child2 
   for i = 1 : row 
       for j = 1 : max(index); 
           if(j <= index(i)) 
               child2_front(i, j) = par2(i, j); 
           else 
               child2_front(i, j) = 5;   
           end 
       end 
   end 
   child2 = [child2_front child2_tail]; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function mutant = mutation(Offspring, randRow) 
  col = size(Offspring, 2); 
  ctr = 0; 
  for j = 1 : col 
      if(Offspring(randRow, j) == 5) 
          ctr = ctr +1; 
          gapPos(ctr) = j; 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  73 

 

      end 
  end 
  if(ctr > 0) 
    index = randint(1,1, [1, ctr]);  
    randCol = gapPos(index); 
    if (randCol == 1) 
        Offspring(randRow, randCol) = Offspring(randRow, randCol +1); 
        Offspring(randRow, randCol +1) = 5; 
    elseif(randCol == col) 
        Offspring(randRow, randCol) = Offspring(randRow, randCol -1); 
        Offspring(randRow, randCol -1) = 5; 
    else 
        if(Offspring(randRow, randCol -1) ~= 5) 
            Offspring(randRow, randCol) = Offspring(randRow, randCol -1); 
            Offspring(randRow, randCol -1) = 5; 
        else 
            Offspring(randRow, randCol) = Offspring(randRow, randCol +1); 
            Offspring(randRow, randCol +1) = 5; 
        end 
    end  
  end 
  mutant = Offspring;   
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function saveSequencesFromGA(ss) 
    numColumns = size(ss, 2); 
    numOfSeq = size(ss, 1); 
    for i = 1 : numOfSeq 
        for j = 1 : numColumns 
            if (ss(i,j) == 1) 
                seq_msa(i,j) = double('A'); 
            elseif(ss(i,j) == 2) 
                seq_msa(i,j) = double('C'); 
            elseif(ss(i,j) == 3) 
                seq_msa(i,j) = double('G'); 
            elseif(ss(i,j) == 4) 
                seq_msa(i,j) = double('T'); 
            elseif(ss(i,j) == 5) 
                seq_msa(i,j) = double('-'); 
            else 
                seq_msa(i,j) = double(' '); 
            end 
        end 
    end 
    final = char(seq_msa); 
     a = fopen('alignmentFromGA.txt', 'w'); 
     for i = 1 : numOfSeq 
         fprintf(a, final(i, :)); 
         fprintf(a, '\n'); 
     end 
     status = fclose(a); 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [csOUT, f, c] = tabuSearch(csIN, seed, row) 
  CS = csIN; 
  col = size(CS, 2)/row; 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  74 

 

  maxIteration = 500; 
  tabu_tenture = 10; % Iterations after which a Move in TL can be applied. 
  TL(1, :) = CS; 
  TT(1) = tabu_tenture - 1; 
  num_TL = 1; 
  maxFitness = 0;    % used as aspiration criterion 
  iteration = 1; 
  f_steps = 0; 
  while(iteration <= maxIteration)   
       num_ML = 0; 
       col_limit = 0; 
       for j = 1 : col 
           if(CS(j) ~= 0) 
               col_limit = col_limit +1; 
           end 
       end 
       [f_threshold, comp, m_threshold] = TS_fitnessCalculation(CS, row, 

col_limit); 
        %SSM generation and evaluation 
        for i = 1: row 
            [SS_move, seed] = TS_SSM(CS, i, seed, row); 
            col_limit = 0; 
           for j = 1 : col 
               if(SS_move(j) ~= 0) 
                   col_limit = col_limit +1; 
               end 
           end  
            [fitness(i), comp, matches(i)] = TS_fitnessCalculation(SS_move, 

row, col_limit); 
             if(matches(i) > m_threshold) 
                 num_ML = num_ML +1; 
                 ML(num_ML, :)  = SS_move; 
                 fitness_ML(num_ML) = fitness(i); 
                 Matches_ML(num_ML) = matches(i); 
             end 
        end 
        clear fitness; 
        %BSM generation and evaluation 
        for i = 1: row -1 
            [BS_move, seed] = TS_BSM(CS, i, seed, row); 
             col_limit = 0; 
              for j = 1 : col 
                   if(BS_move(j) ~= 0) 
                       col_limit = col_limit +1; 
                   end 
              end 
             [fitness(i), comp, matches(i)] = TS_fitnessCalculation(BS_move, 

row, col_limit); 
             if(matches(i) > m_threshold) 
                 num_ML = num_ML +1; 
                 ML(num_ML, :) = BS_move; 
                 fitness_ML(num_ML) = fitness(i); 
                 Matches_ML(num_ML) = matches(i); 
             end  
        end  
        clear fitness; 
        if(num_ML > 0) 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  75 

 

             %fitnessVals = fitness_ML; 
             matchValues = Matches_ML; 
             %[sortedFitnessVals, index] = sort(fitnessVals); 
             [sortedMatches, index] = sort(matchValues, 'descend'); 
             %indexOfBest = index(size(fitnessVals, 2)); 
             indexOfBest = index(1); 
             maxFitness = fitness_ML(indexOfBest);  % For Aspiration Criteria 
             maxMatches = Matches_ML(indexOfBest); 
        else 
            maxFitness = f_threshold; 
            maxMatches = m_threshold; 
        end   

          
        clear fitnessVals; 
        % Selecting best move and apply 
        if(num_TL > 0) 
            num = 1; 
            moveApplied = false; 
            while(num <= num_ML && moveApplied ==false) 
                 available = false; 
                 for j = 1 : num_TL 
                     ctr = 0; 
                     for q = 1 : 64   
                         if(ML(index(num), q) == TL(j, q)) %checking its 

availability in TL 
                             ctr = ctr +1; 
                          end 
                      end 
                      if(ctr == 64)   
                          available = true; 
                          pt = j; 
                      end 
                 end 
                 if(available == true) 
                      if ((fitness_ML(num) > maxFitness)||(TT(pt) < 1)) 
                           %disp('Available but applied'); 
                            CS = ML(index(num), :); 
                            TL(num_TL+1, :) = ML(index(num), :); 
                            num_TL = num_TL +1; 
                            TT(num_TL) = tabu_tenture; 
                            moveApplied = true; 
                      end 
                 else 
                      %disp('Applied since not available in TL'); 
                       CS = ML(index(num), :); 
                       TL(num_TL+1, :) = ML(index(num), :); 
                       num_TL = num_TL +1; 
                       TT(num_TL) = tabu_tenture; 
                       moveApplied = true; 
                end      
                num = num +1; 
            end 
        else 
            if(num_ML > 0) 
                %disp('Apply the best move (no TL)'); 
                CS = ML(index(1), :); 
                TL(num_TL+1, :) = ML(index(1), :); 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  76 

 

                num_TL = num_TL +1; 
                TT(num_TL) = tabu_tenture; 
                %moveApplied = true; 
            end 
        end 
        clear ML; 
        clear fitness_ML; 
        CS = TS_clean(CS, row); 
        col_limit = 0; 
        for j = 1 : col 
           if(CS(j) ~= 0) 
               col_limit = col_limit +1; 
           end 
        end 
        [CS_fitness(iteration), comp, CS_matches(iteration)] = 

TS_fitnessCalculation(CS, row, col_limit); 
        f = CS_fitness(iteration); 
        m = CS_matches(iteration); 
        if(iteration ==1 || rem(iteration, 10) == 0) 
            f_steps = f_steps +1; 
            f_ts(f_steps) = f; 
            c_ts(f_steps) = comp; 
        end 
        [TL, TT, num_TL] = TS_tabuUpdate(TL, TT, num_TL); 
        iteration = iteration +1; 
  end 
  TS_iterationCount = iteration -1 
   f = f_ts; 
   c = c_ts; 
   csOUT = CS; 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [fitness, comp, matches] = TS_fitnessCalculation(s, row, col_limit) 
    col = 64/row; 
    sq = zeros(row, col); 
    for i = 1 : row 
        for j = 1 : col 
            pos = ((i-1)*col) + j; 
            sq(i, j) = s(pos); 
        end 
    end 
    value = 0; 
    counter = 0; 
    matches = 0; 
        for j = 1 : row -1 
            for k = j+1 : row 
                for m = 1 : col_limit 
                    if((sq(j,m) == 5) && (sq(k,m) == 5)) 
                         %value = value - 0; 
                         counter = counter + 1; 
                    elseif(sq(j,m) == sq(k,m)) 
                         value = value + 8; 
                         matches = matches +1; 
                         counter = counter + 1; 
                    elseif((sq(j,m) == 5) || (sq(k,m)== 5)) 
                         value = value + 1; 
                         counter = counter + 1; 
                    elseif(sq(j,m) ~= sq(k,m)) 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  77 

 

                         value = value  + 2; 
                         counter = counter + 1; 
                    end 
                end  
            end 
        end 
 fitness = value/counter;  
 comp = counter; 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [move, seed]= TS_SSM(CS, ptr, seed, row) 
    col = 64/row; 
    sq = zeros(row, col);  
    for i = 1 : row 
        for j = 1 : col 
            pos = ((i-1)*col) + j; 
            sq(i, j) = CS(pos); 
        end 
    end 
    success = false; 
    counter = 0; 
    index = 0; 
    gaps = 0;  %% requires forced quantization 
    upperLimit = col - 1; 
    while(success == false && counter < 50) %upto 20 trial to find a gap 
         [rp, seed]= randomGenerator(seed, upperLimit); 
         if(sq(ptr, rp) == 5)       % only one chance is given 
             counter = counter +1; 
             success = true; 
             gaps = 1; 
             index = rp; 
             j = rp+1; 
             enough = false; 
             while(j < col && enough == false) 
                 if(sq(ptr, j) == 5) 
                    gaps = gaps +1; 
                 else 
                   enough = true; 
                 end  
                 j = j+1;    
             end 
         else 
             counter = counter +1; 
         end 
    end  
    if (gaps > 0) 
       if((index + gaps) <= col) 
           sq(ptr, index) = sq(ptr, index + gaps); 
           sq(ptr, index + gaps) = 5; 
       end 
    end  
    for i = 1 : row 
        for j = 1 : col 
            pos = ((i-1)*col) + j; 
            sqq(pos) = sq(i, j); 
        end 
    end 
    move = sqq; 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  78 

 

%end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [move, seed] = TS_BSM(CS, ptr, seed, row) 
    col = 64/row; 
    sq = zeros(row, col);  
    for i = 1 : row 
        for j = 1 : col 
            pos = ((i-1)*col) + j; 
            sq(i, j) = CS(pos); 
        end 
    end 
    gaps = 0; 
    success = false;        % traces whether there is a move or not 
    %gaps - numbergaps in sq ptr exluding last column); 
    for j = 1 : row 
        if(j <= col -1) 
            if(sq(ptr, j) == 5) 
                gaps = gaps +1;  
                gapPos(gaps) = j; 
            end 
        end 
    end 
    upperLimit = gaps; 
    counter = 1; 
    while (counter <= gaps && success == false) 
        depth = 0; 
        [rp, seed]= randomGenerator(seed, upperLimit);     
        target_col = gapPos(rp); 
         if(sq(ptr +1, target_col) == 5) 
            success = true; 
         end 
        if(success == true) 
            k = ptr +1; 
            enough = false;   
            while(k <= 4 && enough == false) 
                if (sq(k, target_col) == 5) 
                    depth = depth +1; 
                else 
                    enough = true; 
                end 
                k = k+1; 
            end 
            curr_solution = sq; 
            if(depth > 0) 
                for m = ptr : ptr + depth 
                    curr_solution(m, target_col) = sq(m, target_col +1); 
                    curr_solution(m, target_col+1) = 5; 
                end 
            end 
            if (success == true)  
                move = curr_solution; 
            end 
        end 
        counter = counter +1; 
    end 
   if (success == false)    
       move = CS; % what if this condition left out 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  79 

 

   else 
       for i = 1 : row 
            for j = 1 : col 
                pos = ((i-1)*col) + j; 
                sqq(pos) = sq(i, j); 
            end 
       end 
       %move = TS_clean(sqq, row); 
       move = sqq; 
   end 

 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 function [randVal, seed] = randomGenerator(seed, upperLimit)  
    m = 3001; 
    a = 14; 
    x = 0; 
    while(x < 1) 
        temp = a * seed; 
        seed = mod(temp, m); 
        temp1 = seed/m; 
        temp2 = upperLimit * temp1; 
        randVal = round(temp2); 
        x = randVal; 
    end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function index = TS_indexOfSortedFitness(fitness, n) 
  index = zeros(1, 8);  
  pos = 1; 
  for i = 1 : 8; 
    if(i <= n) 
        maxValue = 0.005;  
        for j = 1: 8 
            if(maxValue < fitness(j) && j <= n) 
                maxValue = fitness(j); 
                pos = j; 
            end 
        end  
        fitness(pos) = 0; 
        index(i) = pos; 
    end 
  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [TL, TT, num_TL] = tabuUpdate(TL, TT, num_TL) 
    for i = 1 : num_TL 
        TT(i) = TT(i) -1;   
    end 
    ptr = 1; 
    updated = false; 
    while(ptr <= num_TL && updated == false) 
        if(TT(ptr) < 1) 
            k = ptr; 
            for j = k : num_TL - 1 
              TL(j, :) = TL(j+1, :);  
              TT(j) = TT(j+1); 
            end 
            updated = true; 
        else 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  80 

 

            ptr = ptr +1; 
        end 
    end 
    if(updated == true) 
        num_TL = num_TL -1; 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function S = TS_clean(S, row) 
    col = 64/row; 
    individual = zeros(row, col);  
    for i = 1 : row 
        for j = 1 : col 
            pos = ((i-1)*col) + j; 
            individual(i, j) = S(pos); 
        end 
    end 
    colOfGaps = 1; 
    while(colOfGaps ~= 0) 
        colOfGaps = 0; 
        for j = 1 : col 
            if(individual(:, j) == 5)   
                colOfGaps = j; 
            end 
        end 
        if(colOfGaps ~= 0) 
            for j = 1 : col -1 
                if(j >= colOfGaps) 
                    individual(:, j) = individual(:, j+1); 
                end 
            end 
            individual(:, col) = 0; 
        end 
    end 

     
    for i = 1 : row 
        for j = 1 : col 
            pos = ((i-1)*col) + j; 
            S(pos) = individual(i, j); 
        end 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [matches, mismatches, base_Gaps, gap_Gaps, fitness] = 

measureOfSimilarity(s, row, col) 
        matches = 0; 
        mismatches = 0; 
        base_Gaps = 0; 
        gap_Gaps = 0; 
        value = 0; 
        counter = 0; 
        for j = 1 : row -1 
            for k = j+1 : row 
                for m = 1 : col 
                    if((s(j,m) == '-') && (s(k,m) == '-')) 
                         gap_Gaps = gap_Gaps +1; 
                         %value = value - 0; 
                         counter = counter + 1; 
                    elseif(s(j,m) == s(k,m)) 



Design and performance evaluation of hydrid intelligent  

system based algorithm for multiple DNA sequence alignment Appendix D 

Department of Electrical & Computer Engineering, AAiT  81 

 

                         matches = matches + 1; 
                         value = value + 8;  
                         counter = counter + 1; 
                    elseif((s(j,m) == '-') || (s(k,m)== '-')) 
                        base_Gaps = base_Gaps +1; 
                        value = value + 1; 
                        counter = counter + 1; 
                    elseif(s(j,m) ~= s(k,m)) 
                         mismatches = mismatches +1; 
                         value = value  + 2; 
                         counter = counter + 1; 
                    end 
                end  
            end 
        end 
       fitness = value/counter;  
  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function plotFitness(f1, f2) 
limit1 = size(f1, 2); 
limit2 = size(f2, 2); 
for i = 1 : limit1 
    x1(i) = i; 
    y1(i) = f1(i); 
end 
a = x1(3); 
b = f1(a); 
plot(x1,y1,'--rs','LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor','g',... 
                'MarkerSize',2) 
text(a, b,'\leftarrow for GA phase',... 
                'HorizontalAlignment','left') 
hold all 

  
for i = 1 : limit2 
    x2(i) = i; 
    y2(i) = f2(i); 
end 
a = x2(3); 
b = f2(a); 
plot(x2,y2,'--bs','LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor','y',... 
                'MarkerSize',2) 
text(a, b,'\leftarrow for TS phase',... 
                'HorizontalAlignment','left') 

  
title('Fitness value vs iteration') 
xlabel('iteration') 
ylabel('Fitness') 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 



 

 

DECLARATION 

This thesis is the presentation of my work. Whenever the contributions of others are involved, 

efforts to clearly indicate those contributions are made, with due reference to the literature. 

The work was done under the guidance of Dr. Kumudha Raimond, at Addis Ababa Institute of 

Technology, Addis Ababa, Ethiopia. 

 

Addisu Galassa Guddissa  

Name of the candidate      Signature of the candidate 

 

 

In my capacity as a advisor of the candidate’s thesis, I certify that the above statements are true 

to the best of my knowledge. 

 

Dr. Kumudha Raimond 

Name of the advisor       Signature of the advisor 

 

Date: October 21, 2011 

 

 

 

 


