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Abstract

A rotating neutron star/pulsar can emit gravitational radiation.The third time deriva-

tive of quadrupole moment of of an isolated systems must be non-zero in order for

it to emit gravitational radiation. We follow the emission of gravitational radiation

using quadrupole approximation. The energy and angular momentum of a rotating

neutron star can slowly decrease as it get older.

We estimate the average lifetime of a gravitational wave damping for a neutron

star wobble.Our calculation is based on the well known idea that energy loss within

an isolated wobbling neutron star causes the axis of inertia of the star to align with its

angular momentum vector. We model the neutron star as a rigid body with quadru-

pled deformation of its moment of inertia tensor.We find out the numerical lifetime

estimate of a neutron star with two different dervations of the result: one is by adding

the Burke-Thorne radiation reaction potential to the newtonian equation of motion

and the other is based on energy and angular momentum balance.

Key words: neutron star, quadrupole moment, gravitational radiation, angular mo-

mentum,lifetime of neutron star
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Introduction

During the past century, astronomy has been revolutionized by the use of new meth-

ods for observing the universe. The great progress that astronomy has made since

1960 is largely due to the fact that technology has permitted astronomers to begin

to observe in many different parts of the electromagnetic spectrum. Because they

were restricted to observing visible lights, the astronomers of the 1940s could have

no inkling of such diverse and exiting phenomena,neutron stars, giant radio galaxies,

quasars, compact X-ray binaries, molecular -line masses in dense clouds, the cos-

mic microwaves background radiation. Since technology has progressed, since then

spectral region has revealed unexpected and important information. There are still

regions of the electromagnetic spectrum that are largely unexplored, but there is

another spectrum which is as yet complectly untouched: the gravitational wave spec-

trum.The question of gravitational radiation has always been the central issue in the

theory of general relativity[34].

Gravitational waves, i.e. small deformations of space-time travelling at the speed

of light,first pointed out by Einstein (1918), are fundamental of Einstein’s General

Theory of Relativity(GTR).There has been no distinct observation of gravitational

waves so far, although an indirect evidence was found in the observed spiral history of

the binary pulsar PSR 1913+16, which agrees perfectly with the prediction of General
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Relativity (Weinberg and Taylor(1984)). Gravitational waves are purely transverse,

characterized by two polarization states(referred as to ’+’ and ’x’ polarizations). The

two polarizations differ by a rotation of 45 degrees around the the polarization axis,

corresponding to quadrupolar(spin 2) nature of the gravitational field.

The signals of gravitational waves from the astrophysical sources reaching the earth

have very small amplitudes and are nearly plane waves. A linearized version of Ein-

stein field equation (Misner et al. 1973) can therefore be used to describe gravitational

waves in terms of a small metric perturbation hµυ. The emission of gravitational

waves is generally well described by the so called quadrupole formula. Also the en-

ergy emission rate in gravitational waves can be expressed in quadrupole formalism.

The quadrupole formalism shows that time-varying mass distribution generally emit

gravitational waves.

Nearly all astrophysical phenomena emit gravitational waves and the most violent

ones give off radiations in copious amounts(as we shall see in chapter 1). In some sit-

uations, gravitational radiation carries information that no electromagnetic radiations

can give us.

Neutron star rotate extremely rapidly starting from their formation due to the con-

servation of angular momentum. Like a spinning ice skaters pulling in her arms, the

slow rotation of the original star’s core speeds up as it shrinks.A newborn neutron

star can rotate several hundred times a second, turning itself into an oblate spheroid

against its own immerse gravity. In wobbling neutron star, energy will be dissipated

within the star,converting the kinetic energy into thermal energy. Also the gravita-

tional wave energy and angular momentum will be radiated to infinity which must be

subtracted from the star’s energy and momentum[25]. The emission of gravitational
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radiation determines the evolution of the emitting source due to radiation reaction.

A precessing neutron star is a possible source of gravitational radiation.The first clear

observation of free precession in a pulsar signal was very recently[I1]. In this thesis

we will be concerned on the gravitational radiation reaction torque which affect the

neutron star wobble. We are aimed the analytical study of the effect of the radiation

torque on a neutron star undergoing precessional motion. The effect of gravitational

radiation reaction on precessing axisymmetric rigid bodies was first derived 35 years

ago by Bertotti and Anile[I2] .

The structure of this thesis is as follows. In chapter 1 we briefly describe the neutron

star formation, structure and the rotating neutron star as a source of gravitational

waves and the generating mechanisms. In chapter 2 we deal about Einstein field

equations and the weak field approximation. In chapter 3 we discuss gravitational

wave and its mathematical description. In chapter 4 we deal about the gravitational

radiation reaction torque and alignment timescale of wobbling neutron star. Our

conclusion are given in chapter 5 with some discussion.



Chapter 1

The Physics of Neutron Star

This chapter gives a general overview about neutron star formation and structure,

pulsar,astrophysical sources of gravitational wave and the emission mechanisms.

1.1 Neutron Star Formation

Compact objects such as neutron stars, white dwarfs and ultimately black holes rep-

resents the final states of stellar evolution[26]. When very massive stars (up to 25M⊙
,where M⊙ is solar mass,die, after they have finished their nuclear fuel, they spew

their outer layers into space in a violent explosion called supernova.The cores of such

stars remain as neutron stars. So, a neutron star is a type of remnant that can result

from the core collapse of a massive star during supernova event[27]. A supernova

occurs when the iron core of a giant star collapses to the density of the nucleus. At

such events high densities,protons and electrons fuse together to form neutrons[1].

Hence the name ’neutron star’. Neutron stars are very hot and are supported against

further collapse because of degenerate neutron pressure resulting from Pauli exclusion

principle. This principle states that no two neutrons can occupy the same quantum

state simultaneously.
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In general, compact stars with mass < 1.4 M⊙ are white dwarfs.On the other hand,a

neutron star is about 20 km in diameter and has mass of about 1.4 M⊙. This means

that a neutron star is so dense that one teaspoonful of neutron star matter would

weigh a billion tons! The result is a surface gravitational field strength about 2×1011

times that of the earth. A neutron star can also have magnetic fields a million times

strongest magnetic field produced on the earth[5]. As the core of a massive star

is compressed during supernova, and collapse into a neutron star it retains most of

its angular momentum. Since it has only a tiny fraction of its parent’s radius (its

moment of inertia is reduced sharply) so that a neutron star is formed with very high

rotation speed.It gradually slows down due to mostly gravitational radiation initially

and then electromagnetic radiation.

The number of neutron stars in the Galaxy has been estimated to be of the order

109[3,4].The number of observed neutron stars is much lower, about 800 are observed

as radio pulsar[31],and about 150 as X-ray binaries.The population of neutron stars

is concentrated along the disc of the milkway although the spread perpendicular to

the disc is fairly large. The reason for this spread is that neutron stars born with high

speeds (400 km/s) as a result of an imparted momentum kick from an asymmetry

during the supernova explosion.

1.2 The Structure of Neutron Star

The internal structure of neutron stars are less well known because of uncertainties

in the equation of state of degenerate nuclear matter. The problems involved in

determining the equation of states are elegantly presented by Shapiro and Teukolsky

(1983). Our proposed model for the neutron star is shown in fig. 1.1[1].
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Figure 1.1: Structure of neutron star

Following Shapiro and Teukolsky, the various regions in the model may be de-

scribed as: The surface layers ; are taken to be the regions with density less than

about 109kgm−3. At these large density, the matter consists iron in the form of a

closed packed solid. The outer crust is taken to be the regions with density in the

range (109 − 4.3 × 1014)kgm−3 and consists of a solid region composed of heavy nu-

clei.The inner crust has densities about between (4.3 × 1014 − 2 × 1017)kgm−3.The

neutron liquid has densities greater than about 2 × 1017kgm−3 and consists mainly

of neutrons with a small concentration of protons and electrons.A core region , the

very center of neutron star,has very high densities greater than 3X1018kgm−3.

1.3 Pulsar: Spinning Neutron Star

The first pulsar was are discovered in 1967 by Jocelyn Bell Burnell, a radio source

that blinks on and off at a constant frequency. Pulsars are spinning neutron stars

that have jets of particles moving almost at the speed of light streaming out above
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Figure 1.2: The Pulsar Model

their magnetic poles[11] (Fig 1.2). As the neutron star settles down into its final

state, its crust begins to solidify (crystalize). The solid crust will assume nearly the

oblate axisymmetric shape that centrifugal forces are trying to maintain with poloidal

ellipticity, εpα ( α is angular velocity of rotation). However the principal axis of the

star’s moment of inertia tensor may deviate from its spin axis by some small ”wobble

angle”, and the star may deviate slightly from axisymmetry about its principal axis

.As this slightly imperfect crust spins, it will radiate gravitational wave[8]. So a pulsar

must be axisymmetric in order to radiate gravitationally. A wobbling pulsar may thus

radiate gravitational wave.

A pulsar produces beams of radio emission above its magnetic poles and these sweep

like lighthouse beams across the sky. The Jodrell Bank scientists ( Ingrid Stairs,

Andrew Hyne and Setnam Sheman ) have been studying the pulsar PSR 131828-11

for 13 years. This pulsar rotates 2.5 times per second , but, unlike any other, wobbles

regularly with a period of about 1000days. The motion is very much similar like
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the wobble of a top or gyroscope. This wobble or precession causes the observed

pulse to change its shape and causes the time between pulses to vary, becoming

sometimes shorter and sometimes longer. The Manchester astronomers argued these

variation imply that the neutron star instead of being perfectly spherical is slightly

oblate[12]. Stairs explains ” The bulge in neutron star causes the angle between the

pulsar’s rotation axis and its radio beam to change with time creating the wobbling

effect that we measure. ” Current theories predict that the interaction between the

superfluid and the crust should cause any precession to die out extremely quickly. ”

But this pulsar is 100,000 years old, and it’s still wobbling!” exclaims Lyne.

1.4 Sources of Gravitational Waves

Gravitational waves are one of the features of General Relativity. The brightest grav-

itational wave sources are objects with strong gravitational fields, so the study of

gravitational waves is a study of General Relativity[10] and the detection of gravita-

tional waves can certainly test General Theory of Relativity and opens a window for

us to observe astrophysical phenomena in the universe.

Sources of gravitational waves are best understood by drawing analogies to the case of

electromagnetic radiation emission. Waves are formed by time change in the position

and distribution of the ’charges’ in the systems, whether those charges are electric or

gravitational. The most obvious way to produce electromagnetic waves should be to

change the total amount of charge in the system with time ( called a monopole mo-

ment). However this violates the law of conservation of charges, and is not physically

acceptable. The next best way to accomplish electromagnetic radiation is to vary the

distribution of charge or to have a time-varying dipole moment. The time-varying
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dipole moment is the dominant contributor to electromagnetic waves.

Now consider gravitational waves. There can not be monopole in gravitational system

for the same reason for that of there are no magnetic monopoles. The next solution

is to have a time-varying gravitational dipole moment. This, however, is found to be

impossible because of violation of conservation of angular momentum. We therefore

have to look to the next higher moment of mass distribution, the quadrupole moment,

for the possible emission of gravitational radiation, and, this is found to be physically

acceptable.

However, this presents another challenge that the gravitational wave produced by

’everyday’ matter, moving with time-varying quadrupole moment are so extraordinary

small that they are not worth considering. The waves only become significant in

systems that move at near relativistic speeds and are very massive. The only known

sources of gravitational waves strong enough to be detected are those involved in

astrophysical phenomena. Only in deep space are very massive bodies found moving

fast enough to produce gravitational wave signals and among these are:

� rotating neutron stars

� binary star systems

�black holes

� supernovas

�colliding galaxies etc.

Here we will describe only about rotating neutron star, although further mathematical

details on it will be given in chapter 3 and 4 of this thesis.Neutron stars may appear

as:

� isolated objects or
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� binary systems.

Isolated rotating neutron stars emit gravitational radiation if their configuration is

not axisymmetric with respect to the rotation axis. The assymmetry can be the

consequence of deformation of the stars’ shape or of a misalignment of the symmetry

axis with respect to the rotation axis. Thus there are two basic configuration of a

rotating neutron star: rotation around a principal axis of inertia and rotation around

an axis differen from the principal axis of inertia. As a result of stars quakes, strong

internal magnetic fields or interactions with other stars, the rotation of a neutron star

can be different from one of its principal axis of inertia and thus two different cases

have been analyzed in the literature

� wobbling or precession of a rigid neutron star and

� rotation of a distorted fluid neutron star.

The gravitational waves emitted by a wobbling neutron star will carry energy and

momentum away to infinity. So, over time, the wobbling neutron star slows down

and tends to decrease the wobble angle. That means gravitational radiation reaction

torque damp out the as consequently align the axes. We will calculate the time for

the alignment.



Chapter 2

Linearized Einstein Field Equation

In general relativity laws of nature remain invariant with respect to any space time

coordinate system while in special relativity this will be true in inertial frame. So we

must express all laws of nature in terms of covariant equations that make no use of

particular coordinate system.Such equations are referred to as ”covariant”. In this

chapter we derive the so called Einstein’s equations for gravity, which are general

covariant in nature, and linearize them.

2.1 Einstein Field Equations

The Einstein field equations (EFE) or Einstein’s equations are a set of ten equations

in the theory of general relativity which describes the fundamental force of gravita-

tion as a curved space time caused by matter and energy[7].They collectively form a

tensor equation and equate the curvature of space time with the energy and momen-

tum. The EFE are used to determine the curvature of space time resulting from the

presence of mass and energy. Because of the relationship between the metric tensor

of space time and the Einstein tensor, the EFE becomes a set of coupled, non-linear

differential equations.Unlike Maxwell equation, which are linear, the non linearity of

11
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EFE represents the effect of the gravitation on it self.

We now derive the field equations. Newtonian gravitation can be written as the

theory of a scalar field, Φ:

∇2Φ(~x, t) = 4ΠGρ(~x, t) (2.1.1)

where G is universal gravitational constant and ρ is mass density. The orbit of a free

falling test particle satisfies

ẍ(t) = −∇Φ(~x, t) (2.1.2)

In tensor notation (2.1.1) and (2.1.2) become:

Φ,ii = 4ΠGρ (2.1.3)

x, 00 = −Φ,i (2.1.4)

where the comma (,) indicates ordinary partial differentiation and in general relativity,

these equations are replaced by,

Rµυ = C(Tµυ −
1

2
gµυT ) (2.1.5)

for some constant C and the geodesic equations:

d2xλ

dτ 2
= −Γλ

µυ

dxµ

dτ

dxυ

dτ
(2.1.6)

where Rµυ is the Ricci tensor, Tµυ is the energy-momentum tensor, gµυ is the

metric tensor and Γλ
µυ is the Christoffel symbol defined by

Γλ
µυ =

1

2
gλρ(gρµ,υ + gρυ,µ − gµυ,ρ) (2.1.7)
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To see how (2.1.6) reduces to (2.1.4)actually using the Post Newtonian approximation

we have

(
dτ

dt
)2 = −g00 − 2gi0v

i − gijv
ivj (2.1.8)

Assuming ~v = 0

dτ

dt
)2 = −g00

or

(
dt

dτ
)2 = −g−1

00

To the order of v−4 this gives

(
dt

dτ
)2 = 1− [v2 + ...]

where ~v = GM/r. So, for ~v = 0

dt

dτ
' 1

d

dt
(
dt

dτ
) ' 0 (2.1.9)

and the metric and its derivative are approximately static and that the square of

derivatives from the Minkowiski metric are negligible.Applying these simplifying as-

sumptions the special components of the geodesic equations (2.1.6) gives:

d2xi

dτ 2
' −Γi

00

Hence,

d2xi

dt2
' −Γi

00 (2.1.10)

where two factors of dt
dτ

have been divided out.Then (2.1.10) will reduce to its new-

tonian counterpart,provided

Φ,i
∼= Γi

00 =
1

2
giρ(gρ0,0 + g0ρ,0 − g00,ρ) (2.1.11)
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The time derivatives to be zero, this simplifies to

2Φ,i
∼= gij(−g00,j) ∼= −g00,i (2.1.12)

Since giρ → gij and gi0  v3 << 1 which is satisfied by letting the time-time

component of the metric tensor as:

g00
∼= −(1 + 2Φ) (2.1.13)

where Φ is the Newtonian potential.

Further more the energy density T00 for non relativistic matter is equal to its mass

density.That is

T00 ≈ ρ (2.1.14)

Combining this with ( 2.1.3) and (2.1.13), we have then,

∇2g00 = −8ΠGT00 (2.1.15)

This field equation is only supposed to hold for weak static fields generated by non-

relativistic matter and is not Lorentz invariant as it stands.However (2.1.15) leads us

to guess the field equation for a general distribution Tµυ of energy and momentum as:

Gµυ = −8ΠGTµυ (2.1.16)

where Gµυ is a tensor which is a linear combination of the metric gµνand its first and

second derivative.The nature of Gµυ

- by definition it is a tensor

- by assumption it contains only terms that are either linear in the second

derivatives or quadratic in the first derivative of the metric.
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- it is symmetric, since Tµυ is symmetric

- it is conserved, since Tµυ is conserved. That is,

Gµ
υ;µ = 0 (2.1.17)

- for a weak static field limit

G00
∼= ∇2g00 (2.1.18)

To find Gµυ,we construct the so called Riemann- Christofell curvature tensor Rλ
µυk,

given as

Rλ
µυk = Γλ

µυ,k − Γλ
µk,υ + Γη

µυΓ
λ
kη − Γη

µkΓ
λ
υη (2.1.19)

which may also be rewritten as:

Rλµυk = gλσR
σ
µυk (2.1.20)

The curvature tensor satisfies the Bianchi identities written as

Rλµυk;η +Rλµηυ;k +Rλµkη;υ = 0 (2.1.21)

where ”;” represents the covariant differentiation which can be defined as

Tµν;α = Tµν,α − Γλ
µαTλν − Γλ

ναTµλ (2.1.22)

where Tµν is a tensor of rank two. From (2.1.19) we may read off the following

algebraic properties of the curvature tensor:

- symmetry :

Rλµυk = Rυkλµ (2.1.23)
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- antisymmetry :

Rλµυk = −Rµλυk = −Rλµkυ = +Rµλkυ (2.1.24)

- cyclicity :

Rλµυk +Rλkµυ +Rλµkυ = 0 (2.1.25)

Then (2.1.21) shows that there are only two tensors that can be formed by contracting

Rλµυk. These are the Ricci tensor:

Rµk = gλυRλµυk = Rλ
µλk

or

Rµk = Γλ
µλ,k − Γλ

µk,λ + Γη
µλΓ

λ
kη − Γη

µkΓ
λ
ηλ (2.1.26)

and the curvature scalar:

R = gµkRµk = Rµ
µ (2.1.27)

Hence the first and the second properties of Gµυ require it to take the form:

Gµυ = CRµυ + C ′gµυR (2.1.28)

where C and C ′ are constants.

and on contraction of λ with υ, (2.1.27) becomes

Rµk;η −Rµη;k +Rυ
µkη;υ = 0 (2.1.29)

Contracting this again gives

R;η −Rµ
η;µ −Rυ

η;υ = 0

or

(Rυ
η −

1

2
δµ
ηR);µ = 0 (2.1.30)
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The covariant divergence of Gµυ then gives us

Gµ
υ;µ = (

C

2
+ C ′)R;υ (2.1.31)

So the conservation of Gµυ allows two possibilities: either C ′ = −C
2

or R;υ vanishes

every where. Ignoring the second possibility, because ( 2.1.24) and (2.1.5) give

Gµ
µ = (C + 4C ′)R = −8ΠGT µ

µ (2.1.32)

So (2.1.26) becomes

Gµυ = C(Gµυ −
1

2
gµυR) (2.1.33)

Finally we use the last property of Gµυ (2.1.5) which is

∇2g00 = 8ΠGT00

or (2.1.18)

G00 = ∇2g00 (2.1.34)

to fix C. A non-relativistic system always has

|Tij| << |T00|

So

|Gij| << |G00|

Gij ' 0 (2.1.35)

Then equation (2.1.32) becomes

Gij = C(Rij −
1

2
gijR) (2.1.36)

Substitution of (2.1.34) follows

0 ' C(Rij −
1

2
gijR)
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Rij '
1

2
gijR (2.1.37)

Since we deal with a weak field:

gµυ ' ηµυ (2.1.38)

Thus using (2.1.36) and (2.1.37)

ηijRij =
1

2
ηijηijR

Rii =
3

2
R (2.1.39)

and

Rii −R00 ' ηµυRµυ

3

2
R−R00 ' R

R ' 2R00 (2.1.40)

Thus using equations( 2.1.37) and (2.1.39) in (2.1.32) we obtain

G00 = C(R00 −
1

2
η00R)

G00 = 2CR00 (2.1.41)

To calculate R00 for weak field we may use the linear part of Rλµυk:

Rλµυk '
1

2
(gλυ,kµ − gµυ,kλ − gλk,µυ + gµk,υλ

When the field is static all time derivatives vanish, and the component we need

become

R0000 ' 0, Ri0j0 '
1

2
R00,ij
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But from (2.1.24),we have

R00 = gλνRλ0ν0

= ηλνRλ0ν0

= Rioio −R0000

Hence,

G00 ' 2C(Rioio −R0000)

G00 ' 2C(
1

2
∇2g00 − 0)

G00 ' C1∇2g00 (2.1.42)

Comparing this with (2.1.18) we find that the fourth properties of Gµν is satisfied if

and only if C = 1 in (2.1.32),and we get:

Gµν = Rµν −
1

2
gµνR (2.1.43)

with (2.1.16), this gives the Einstein field equations :

(Rµν −
1

2
gµνR) = −8ΠGTµν (2.1.44)

Contracting this with gµν gives:

R− 2R = −8ΠGT µ
µ

or

R = 8ΠGT µ
µ (2.1.45)

plugging this in to (2.1.43),the Einstein field equations can be rewritten in the equiv-

alent form as

Rµν = −8ΠG(Tµν −
1

2
gµνT

λ
λ ) (2.1.46)
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In a vacuum Tµν vanishes, so from (2.1.43) the Einstein field equation is empty space

are

Rµν = 0

The Einstein field equation may be written in the form:

Rµν −
1

2
gµνR−

1

2
gµνΛ = −8ΠGTµν (2.1.47)

The term Λgµν was originally introduced by Einstein for cosmological reasons; for

this reason, Λ is called cosmological constant.Through out this thesis Λ is considered

as zero.

2.2 Weak Field Approximation

Einstein field equations, discussed in the previous section, are highly non-linear and

hence difficult to handle [2]. However, if the field is weak ( in the Newtonian sense)

then it is natural to expect that the field equations can be adequately approximated

by a set of linear equations which are much easier to work with.We will demonstrate

this approximation in this section.

We estimate the metric gµν as

gµν = ηµν + hµν (2.2.1)

where |hµν | << 1 and

ηµν = dia(−1,+1,+1,+1)

is the usual metric of flat space, Minkowski metric tensor. The assumption that

|hµν | << 1 allows us to ignore higher order of hµν , from which we obtain

gµν = ηµν − hµν (2.2.2)
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where

hµν = ηµρηνσhρσ

Using equations (2.2.2) and (2.2.3) in (2.1.7) we get:

Γλ
µν =

1

2
(ηλρ − hλρ)[(ηρµ + hρµ),ν + (ηρν + hρν),µ − (ηµν + hµν),ρ]

Γλ
µν
∼=

1

2
ηρλ(hρν,µ + hρµ,ν − hµν,ρ) (2.2.3)

Now we need to solve for the Riccii curvature tensor (2.1.24):

Rµk = Γλ
µλ,k − Γλ

µk,λ + Γλ
kηΓ

η
µλ − Γλ

ληΓ
η
µk

Then under this approximation,the terms that are products of two Γ are order of h2

and taking this terms to be zero,we obtain:

Rµk
∼= Γλ

µλ,k − Γλ
µk,λ

or with k → ν

Rµν
∼= Γλ

µλ,ν − Γλ
µν,λ (2.2.4)

Substituting (2.2.4) in to (2.2.5), we find

Rµν
∼= [

1

2
ηρλ(hρλ,µ + hρµ,λ − hµλ,ρ)],ν − [

1

2
ηρλ(hρµ,ν + hρν,µ − hµν,ρ)],λ

Rµν
∼= [

1

2
(hλ

λ,µ + hλ
µ,λ − hρ

µ,ρ)],ν − [
1

2
(hλ

ν,µ + hλ
µ,ν − ηρλhµν,ρ)],λ

Rµν
∼= [

1

2
(ηρλhµν,ρλ + hλ

λ,µν − hλ
ν,µλ − hρ

µ,ρν)

or

Rµν
∼= [

1

2
(2hµν + hλ

λ,µν − hλ
ν,µλ − hρ

µ,ρν) (2.2.5)

Where 2 is the D’Alembertian operator defined by

2hµν = ηρλhµν,ρλ (2.2.6)
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Plugging (2.2.6) in to Einstein field equation (2.1.43) gives:

1

2
(2hµν + hλ

λ,µν − hλ
ν,µλ − hρ

µ,ρµ)− 1

2
(ηµν + hµν)R = −8ΠGTµν (2.2.7)

Compared to ηµνR, hµνR is small and using R = 8ΠGT µ
µ from (2.1.44), then equation

(2.2.8) becomes

1

2
(2hµν + hλ

λ,µν − hλ
ν,µλ − hρ

µ,ρµ)− 1

2
(ηµν(8ΠGT

µ
µ ) = −8ΠGTµν (2.2.8)

or

2hµν + hλ
λ,µν − hλ

ν,µλ − hλ
µ,λν = −16ΠGSµν (2.2.9)

where Sµν = Tµν − 1
2
ηµνT

µ
µ

Let us choose some particular convenient choice of a coordinate system which is

represented by the harmonic coordinate condition:

Γλ = gµνΓλ
µν = 0 (2.2.10)

Plugging Eqns.(2.2.3) and (2.2.4) into (2.2.11) we find

(ηµλ − hµλ)[
1

2
(ηµρ + hµρ)[(ηρν + hρν),λ + (ηρλ + hρλ),ν − (ηνλ + hνλ),ρ] = 0 (2.2.11)

Neglecting higher order terms of h, this becomes

1

2
ηµρηνλ(hρν,λ + hρλ,ν − hνλ,ρ) = 0

1

2
ηµρ(hλ

ρ,λ + hλ
ρ,λ − hλ

λ,ρ) = 0

1

2
ηµρ(2hλ

ρ,λ − hλ
λ,ρ) = 0

Letting µ = ρ and hence

hλ
ρ,λ −

1

2
hλ

λ,ρ = 0
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hλ
ρ,λ =

1

2
hλ

λ,ρ (2.2.12)

From this we can get

hλ
ρ,λν =

1

2
hλ

λ,ρν (2.2.13)

and

hλ
ν,λρ =

1

2
hλ

λ,ρν (2.2.14)

Adding the expressions (2.2.13) and (2.2.14) gives

hλ
ρ,λν + hλ

ν,λρ = hλ
λ,ρν

or rearranging and with ρ→ µ, this becomes

hλ
λ,µν − hλ

ν,µλ − hλ
µ,λν = 0 (2.2.15)

Now plugging (2.2.15) in to (2.2.10),we get

2hµν = −16ΠGSµν (2.2.16)

Alternatively plugging (2.2.16) in to the linearized Einstein field equations (2.2.10) it

simplifies to:

2hµν −
1

2
ηµν2h = −16ΠGTµν (2.2.17)

which represents an inhomogeneous wave equation establishing the fact that in this

approximation ( far field approximation) the field equations have radiative solution.



Chapter 3

Gravitational Wave

In the previous chapter we saw that the linearized Einstein field equations of general

relativity could be written in the form of a wave equation (2.2.17):

2hµν = −16πGSµν

This suggests that the existence of gravitational wave in analogue manner to that

in which Maxwell’s equations predict electromagnetic waves.In this chapter we dis-

cuss the propagation, generation of gravitational wave and derive the expression for

quadrupole emission in gravitational radiation,the lowest multipole emission in gen-

eral theory of relativity and the quadrupole formula.

3.1 Plane Gravitational Wave Solution

Here we can take the Einstein field equations in a weak field limit (2.1.18)as

2hµν −
1

2
ηµν2h = −16πGTµν (3.1.1)

24
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It is often convenient to work with a slightly different description of the metric per-

turbation hµν defined by

hµν = hµν −
1

2
ηµνh (3.1.2)

This metric tensor is called ’trace-reversed’ perturbation because:

h
µ

µ = −hµ
µ (3.1.3)

The harmonic gauge condition (that is ,gµνΓλ
µν = 0) further reduces to

∂λh
λ

µ = 0 (3.1.4)

The Einstein field equations are then

2hµν = −16πGTµν (3.1.5)

From this we obtain the linearized field equations in vacuum :

2hµν = 0 (3.1.6)

The vacuum equations for hµν are similar to the wave equations in electromag-

netism.These equations admits the plane wave solutions,

hµν = εµνexp(ikαx
α) (3.1.7)

where εµν is a constant, symmetric rank two tensor and kα is a constant four vector

known as wave vector. Of course, in physical application, one uses only the real part of

this expression, allowing εµν to be complex. By the theorems of Fourier analysis, any

solutions of the equation (3.1.6) is a superposition of plane wave solutions. Plugging

the solutions in (3.1.7) in to the wave equation (3.1.6), we obtain

2hµν ≡ 0
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ηαβhµν,αβ = 0

hµν,β = kαhµν

ηαβhµν,αβ = ηαβkαkβhµν = 0

kαk
αhµν = 0

Since hµν 6= 0, we obtain the condition

kαk
α = 0 (3.1.8)

This implies that (3.1.7) gives a solution to the wave equation (3.1.6) if the kα is null;

that is, the tangent to the world line of the photon. This shows that gravitational

waves propagate at the speed of light . The time -like component of the wave vector

is often refers to as the frequency of the wave(ko or ω).The four-vector ,kα is usually

written as kα = (ω,
−→
k ). Since kα is null it means that

|
−→
k |2 − ω2

c2
= 0

If c=1 ,

ω2 = |
−→
k |2 (3.1.9)

where
−→
k refers to ki.

This is often referred to as the dispersion relation for the gravitational wave. We

can specify the plane wave with a number of independent parameter; ten from the

coefficients , εµν and three from the null vector, kα. The Einstein equations only

assume the simple form, if we impose the harmonic condition (3.1.4). Then we find

∂µhµν = 0
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∂µ(εµνeikαxα

) = 0

iεµνkµe
ikαxα

= 0

Or

kµε
µν = 0 (3.1.10)

This imposes a restriction on εµν ; it is orthogonal(transverse) to kµ. The number of

independent components of εµν is thus reduced to six. We have to impose a gauge

condition too as any coordinate transformation which leaves ( 3.1.1) unchanged; is

very small change in the coordinate of the form

x′µ = xµ + ξµ(x) (3.1.11)

where ξµ are functions of the coordinate.This will leave the harmonic coordinate

condition

2xµ = 0 (3.1.12)

satisfied as long as

2ξµ = 0 (3.1.13)

Let’s choose a solution to the wave equation (3.1.13) for ξµ as

ξµ = Bµexp(ikαx
α) (3.1.14)

where Bµ are constants and kα is the same null vector as for our wave solution .This

produces of the coordinate change in our metric perturbation hµν as

h(New)
µν → h(Old)

µν − εν,µ − εµ,ν (3.1.15)

where the new hµν is still small and we are still in acceptable coordinate system.This

change is called a gauge transformation,which is a term used because of the analo-

gies between (3.1.15) and gauge transformation of electromagnetism.Then the gauge
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change in (3.1.15) induces a change in the trace-reversed perturbation.

h
(New)

µν = h(New)
µν − 1

2
ηµνh

(New)

h
(New)

µν = h
(Old)

µν − εν,µ − εµ,ν −
1

2
ηµν(h

(old) − 2ξλ)

h
(New)

µν = h
(Old)

µν − εν,µ − εµ,ν + ηµνξ
λ,λ (3.1.16)

Using equation(3.1.14) and dividing out the exponential factor common to all terms

gives;

εNew
µν = εOld

µν − ikµBν − ikνBµ + iηµνkλB
λ (3.1.17)

Then Bµ can be chosen to impose to two further restriction on εNew
µν ;

ε(New)µ
µ = 0 (traceless) (3.1.18)

and

ε(New)
oν = 0 (3.1.19)

The equations (3.3.10),(3.1.18) and (3.1.19) together are called the ’transverse -

traceless ’ (TT) gauge (or sometimes the radiative gauge). The name comes from the

fact that the metric perturbation is traceless and perpendicular to the wave vector.

Therefore, applying (3.1.18) means

ε(old)µ
µ + 2ikλB

λ = 0 or (3.1.20)

kλB
λ =

i

2
ε(old)µ

µ (3.1.21)

Then we can impose (3.1.20), first for ν = 0;

ε(old)
oo − 2ikoBo +

1

2
ikλB

λ = 0
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ε(old)
oo − 2ikoBo +

1

2
ε(old)µ

µ = 0 (3.1.22)

or

Bo =
−i
2ko

(
ε(old)

oo +
1

2
ε(old)µ

µ

)
(3.1.23)

Then impose (3.1.20) for ν = j

ε
(old)
oj − ikoBj − ikjBo = 0

ε
(old)
oj − ikoBj − ikj[

−i
2ko

(ε(old)
oo + 1/2ε(old)µ

µ )] = 0 (3.1.24)

Bj =
i

2(ko)2

[
−2koε

(old)
oj + kj

(
ε(old)

oo +
1

2
ε(old)µ

µ

)]
(3.1.25)

To show that these choices are mutually consistent we should plug (3.1.25 )and

(3.1.23) back in to (3.1.18) and shows that

ε(New)µ
µ = εNew = 0

ε(New) = ε− 2coko + 2cik
i = 0

Therefore, choosing the harmonic gauge implied the four conditions(3.1.10) brought

the ten independent components in εµν down to six and the remaining gauge freedom

led to the one condition (3.1.18) and the four conditions (3.1.20) bring us to two

independent components. We have used up all of our possible freedom so that these

two independent elements represents the physical information characterizing our plane

wave in this gauge.By replacing new components ε
(New)
µν simply as εµν ,this can be seen

more explicitly by choosing our spatial coordinates such that the wave is travelling

in the x3 direction ;that is,

kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω) (3.1.26)
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Where k3 = ω because the wave vector is null.In this case,

kµεµν = 0 and εoν = 0

together imply

ε3ν = 0 (3.1.27)

The only non-zero component of εµν are therefore ε11, ε12, ε21andε22. But εµν is trace-

less and symmetric ,so we can write it in matrix form as

εµν =


0 0 0 0

0 ε11 ε12 0

0 ε12 −ε11 0

0 0 0 0


Thus ,for a plane wave in this gauge travelling in the x̂3 direction, the two com-

ponents ε11andε12 completely characterize the wave.Ofcourse ,we have been working

with trace-reversed perturbation h̄µν rather than the perturbation hµν it self ; but

since h̄µν ( because εµν is),and is equal to the trace-reverse of hµν ,in trace condition

Eq(3.1.18) we have

h̄TT
µν = hTT

µν (3.1.28)

So we can drop the bars over hµν as long as we are in this gauge.It follows that

hµν comprises two degree of freedom associated with the two polarization states of

gravitational radiation:

hµν =


0 0 0 0

0 h+ h× 0

0 h× h+ 0

0 0 0 0

 (3.1.29)

or

hµν = h+ε
+
µν + h×ε

×
µν (3.1.30)
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in terms of the two polarization tensors ε+µν and ε×µν ,show for propagation along the

z-direction.

3.2 Generation of Gravitational Wave

In section 3.1, we obtained the plane wave solution to linearized Einstein’s field equa-

tions.In this section we discuss the generation of gravitational radiation by sources.For

this purpose it is necessary to consider the equation coupled with matter,

2h̄µν = −16πGSµν (3.2.1)

Here we will make some simplifying ,but realistic ,assumptions.The assumptions are

• the time dependent part of Sµν(
−→x , t) is in sinusoidal oscillation with frequency ω

,that is the real part of

Sµν(
−→x , t) =

∫
sω

µν(x)e
−iωtdω (3.2.2)

and that the region of space in which Sµν 6= 0 is small compared with the wave-

length
(

2π
ω

)
of gravitational wave of frequency.This assumption is not much of re-

striction,since a general time dependence can be reduced to sum over sinusoidal mo-

tion by Fourier analysis.In addition ,many astrophysical sources are roughly peri-

odic;pulsating stars,pulsars ,binary system.

• the typical velocity inside the source region should be much less than one (Ω×size of

the region).That is slow motion assumption.We now consider the gravitational radia-

tion emitted by an isolated far away source .The fourier transformation of the metric

perturbation h̄µν is

˜̄hµν(ω,
−→x ) =

1√
2π

∫
dtexp(iωt)h̄µν(t, ~x) = 0
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or its inverse

h̄µν(t,
−→x ) =

1√
2π

∫
dωexp(−iωt)˜̄h(ω, ~x) (3.2.3)

Then plugging Eq.(3.2.2) and the second equation of Eq.(3.2.3)in to Eq.(3.2.1) the

wave equation take the form :(
∇2 − ∂2

∂t2

) [
1√
2π

∫
dωexp(−iωt)˜̄h(ω, ~x)

]
= −16πGo

∫
T̄ (ω, ~x)exp(−iωt)dω

(∇2 + ω2)˜̄h(ω, ~x) = −16πGoT̄µν(ω, ~x) (3.2.4)

If the sources is considered as a superposition of point sources at ~x′,then each source

potential G(~x, ~x′) should satisfy the relation:

(∇2 + ω2)G(~x, ~x′) = −16πGoδ|~x− ~x′| (3.2.5)

where δ|~x − ~x′| is the delta function source.Multipying Eq.(3.2.5)by T̃ (ω, ~x′) and

integrating it to get;

(∇2 + ω2)

∫
T̄µν(ω, ~x)G(~x, ~x′)d3x′ = −16πGo

∫
T̄µo(ω, ~x

′)δ|~x− ~x′|d3x′ (3.2.6)

Comparing this with the left hand left hand side of the Eq.(3.2.4) we get,

˜̄hµν(ω, ~x) =

∫
T̄µν(~x′)d

3x′ (3.2.7)

To find the solution ˜̄hµν(ω, ~x), first let us determine G(~x, ~x′). Let r be the spherical

polar radial coordinate whose origin is chosen inside the source.So ,far points out side

the source ,we,have

1

r2

d2

dr2
(rG) + ω2G = 0

Integrating this gives :

G =
A

r
e±iωr (3.2.8)
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Thus ,combining these results follow:

˜̄hµν(ω, ~x) = A

∫
T̄µν(ω, ~x

′)

r(~x, ~x′)
e±iωr(~x,~x′)d3~x′ (3.2.9)

or

h̄µν(t, ~x) = A

∫ ∫
T̄µν(ω, ~x

′)

r(~x, ~x′)
e−iωte±iωr(~x,~x′)dωd3x′ (3.2.10)

Next to determine the value of the constant A ,taking (3.2.4) the singularity point

r = 0 ,we find

A∇2(
1

r
) + Aω2

(
1

r

)
' −16ΠGoδ|~x− ~x′|

Integrating this over ~x′ gives:

A

∫
∇2(

1

r
)d3~x′ + Aω2

∫
d3~x′

r
= −16ΠGo

∫
δ|~x− ~x′|d3~x′

A

∫
∇(

1

r
) · d2~x′ + Aω2

∫
d3~x′

r
= −16ΠGo

−A
∫
~r.d2~x′

r3
+ Aω2

∫
d3~x′

r
= −16ΠGo

Neglecting terms of order r−1 term and higher order ,this becomes

−A
∫
dΩ = −16ΠGo

4ΠA = 16ΠGo

A = 4Go (3.2.11)

Plugging (3.2.11) in to (3.2.10),we obtain

h̄(~x, t) = 4Go

∫ ∫
T̄µν(ω, ~x′)e

−iω(t∓r)

r(~x, ~x′)
dωd3x′ (3.2.12)

But ∫
T̄µν(ω, ~x

′)e−iω(t∓r)dω =

∫
T̃µν(ω, ~x

′)e−iωt
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∫
T̃µν(ω, ~x

′)e−iω(t∓r)dω =

∫
T̃µν(~x

′, t∓ r(~x, ~x′))

where t′ = t∓ r

Thus Eq.(3.2.12)leads to

h̄µν(~x, t) = 4Go

∫
Tµν(~x

′, t∓ r(~x, ~x′))

|~x− ~x′|
d3~x′ (3.2.13)

There fore the time retarded solution is

h̄µν(~x, t) = 4Go

∫
Tµν(~x

′, t− |~x, ~x′)|
|~x− ~x′|

d3~x′ (3.2.14)

This is the expression for the gravitational waves generated by the source.From the

expression(3.2.14) ,we observe that the disturbance in the gravitational field at (t, ~x)

is the sum of the influences from the energy and momentum sources at the point

(tr, ~x
′) on the past light cone . As for plane waves we studied in sec .3.1 we have

here the freedom to make further restriction of the gauge ,so that in the TT gauge

we have the simplest form of the wave. Therefore using (3.1.28) (because h̄jk and hjk

differ only in the trace, they have the same TT parts)(3.2.14)becomes:

hTT
jk =

[
4Go

∫
d3~x′Tjk(~x

′, t− |~x− ~x′)

|~x− ~x′|

]TT

(3.2.15)

which may be approximately written as

hTT
jk = 4Go

[
1

r

∫
d3~x′Tjk(~x

′, t− r)

]TT

(3.2.16)

Expanding this to

hTT
jk = 4

Go

r
(

∫
d3~x[

1

2
T oo

,oo(x
′, t− r)x′jx

′
k

+ [x′jTkl(~x
′, t− r) + x′kTjl(x

′, t− r)],l

+ [xkjT
lm(~x′, t− r)],lm)TT (3.2.17)
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But

•(xiT jk), k = δi
kT

jk + xiT jk
,k = T ij − xiT jo

,o (3.2.18)

•(xixjT kl),lk = [(δi
lx

j + xiδj
l )T

kl + xixjT kl
,l ],k

= [T kixj + T kjxi − xixjT ko
,o ], k

= xiT ki
k + δj

kT
ki + T ki

,k x
i + T kjδi

k

− δi
kx

jT ko
,o − xiδj

kT
ko
,o − xixjT ko

,ok

= −xjT io
,o + T ij − xiT jo

,o + T ij

− xjT io
,o − xiT jo

,o + xixjT oo
,oo (3.2.19)

Plugging (3.2.7) in to this equation gives

(xixjT kl),lk = 2T ij − 2(xiT jo
,o + xjT io

,o ) + xixjT oo

(xixjT kl),lk = −2T ij − (xiT jk + xjT ik),k + xixjT oo
,oo

Rearranging this gives :

(xixjT oo
,oo) = 2T ij − 2(xiT jk + xjT ik),k + (xixjT kl),l (3.2.20)

and the last two terms in (3.2.17) vanishes so it becomes

hTT
jk =

2

r

[
d3~x′T oo

,oo(~x, t− r)x′jx
′
k

]TT

hTT
jk =

2

r

d2

dt2

[
d3~x′T oo(~x′, t− r)x′jx

′
k

]TT

hTT
jk =

2

r

[
Ïjk(t− r)

]TT

(3.2.21)

Where

Ijk =

∫
d3~x′T oox′jx

′
k (3.2.22)
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is referred to as the moment of mass distribution and dots represent the time deriva-

tives.It will in fact ,be more convenient to work in terms of the trace-free or reduced

quadrupole moment tensor of the source distribution which is defined by

± =

∫
d3~x′T oo(t− r)(x′jx

′
k −

1

3
δjkx

′2) (3.2.23)

or

± = Ijk −
1

3
δjkI (3.2.24)

Where I = Ij
j is the trace of the original tensor.One immediately see that ± is

simply the traceless version of Ijk. As a result we may write the transverse - traceless

gravitational field tensor or the gravitational wave amplitude as

hTT
jk = h̄TT

jk =
2

r

[
±̈(t− r)

]TT

(3.2.25)

Thus the gravitational wave produced by an isolated non relativistic source is

proportional to the second derivative of the quadrupole moment of the matter density

distribution .By contrast, the leading contribution to electromagnetic radiation comes

from the changing dipole moment of the charge density.

3.3 The Energy of Gravitational Wave

3.3.1 Average Energy -Momentum Tensor

Let us consider Einstein’s field equations (in vacuum) to second order ,and see how the

result can be interpreted in terms of energy momentum tensor for the gravitational

field.If we write the metric as

gµν = ηµν + hµν

and the Ricci tensor that is linear in hµν is given by

R(1)
µν =

1

2

[
hλ

λ,µk − hλ
µ,λk − hλ

k,λµ + hµk,λλ

]
(3.3.1)
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So the exact Einstein equations in this approximation can be rewritten as

R(1)
µν −

1

2
ηµνR

(1)
λλ = −8ΠG(Tµν + tµν) (3.3.2)

where

tµν =

(
1

8ΠG

) [
Rµν −

1

2
gµνR

λ
λ −R(1)

µν +
1

2
ηµνR

(1)λ
λ

]
(3.3.3)

and the tensor tµν is the energy momentum tensor of gravitational field (in weak field

).Agian tµν is conserved in vacuum:

tµν
,µ = 0 (3.3.4)

We can compute tµν as a power of in h and find that the highest term is quadratic :

tµν
∼=

1

8ΠG

[
1

2
hµνR

(1)
λλ +

1

2
ηµνh

ραR(1)
ρα +R(2)

µν −
1

2
ηµνh

ραR(2)
ρα

]
(3.3.5)

where

R(2)
µν =

1

2
(hµλ,νk − hkλ,µν − hµν,kλ + hµk,λν)

+
1

4

(
2hν

α,ν − hν
ν,α

) (
hα

µ,k − hµk,α

)
(3.3.6)

− 1

2
(hαλ,k + hαk,λ − hkλ,α)

(
hα

µ,λ + hαα
,µ − hα

µ,α

)
Then dropping terms having R

(1)
µν (since R

(1)
µν = 0 in vacuum ) (3.3.5) become:

tµν
∼=

1

8ΠG

[
R(2)

µν −
1

2
ηµνh

ραR(2)
ρα

]
(3.3.7)

Plugging the plane wave solution in to R
(2)
µν to calculate :

〈R(2)
µν 〉 = Re(ελρ∗(kµkλενρ − kλkρεµν))

+ (kλε
λ
ρ)

?(kµε
ρ
ν + kνε

ρ
µ − kρεµν)

− 1

2
(kλενρ + kνερλ − kρελν)

?(kλερ
µ + kµε

ρλ − kρελ
µ)
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Using the harmonic condition ,this will be reduced to

〈R(2)
µν 〉 =

kνkν

2

(
ελρ∗ − 1

2
|ελ

λ|2
)

(3.3.8)

But

ηµν〈R(2)
µν 〉 = kνkν

(
ελρ∗ − 1

2
|ελ

λ|2
)

(3.3.9)

Since kνkν = 0.Therefore , the average energy momentum tensor of the plane wave

will be

〈tµν〉 =
1

8ΠG
〈R(2)

µν 〉

or

〈tµν〉 =
kµkν

16ΠG

(
ελρ∗ − 1

2
|ελ

λ|2
)

(3.3.10)

in particular for the wave travelling along z-axis ,x̂3 the average energy-momentum

tensor takes the form

〈tµν〉 =
kµkν

8ΠG

[
|ε11|2 + |ε12|2

]
(3.3.11)

3.3.2 Derivation of Quadrupole Formula

Having the average energy- momentum tensor of a gravitational wave,in sec 3.3.1,an

explicit calculation on far from the source gives[29]

tµν =
c2

32ΠG
〈∂µhαβ∂νhαβ〉 (3.3.12)

Therefore,for a plane wave ,using TT gauge ,the energy density in gravitational wave

is

too =
c2

32ΠG
〈hTT

jk,oh
TT
jk,o〉

too =
c2

32ΠG
〈ḣTT

jk ḣ
TT
jk 〉 (3.3.13)
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or

too =
c2

16ΠG
〈ḣ2

+ + ḣ2
×〉 (3.3.14)

To calculate the rate at which the physical system loses energy,we equate it to the

energy flux of the emitted gravitational radiation evaluated on a sphere of large radius

r centered at the origin .Thus ,if E is the energy of the physical system ,we have

dE

dt
= −r2

∫
tor(~er)dΩ (3.3.15)

Where tor is the gravitational wave energy flux at a radius r in the radial direction

êr and dΩ is an element solid angle.

In general ,using (3.3.12) we may write the gravitational energy flux in a unit spatial

direction ~n as

toi(~n) = toini

=
c4

32ΠG
〈∂th

TT
jk ∂ih

TT
jk 〉ni

toi(~n) =
c4

32ΠG
〈∂th

TT
jk (n̂ · ~∇)hTT

jk 〉 (3.3.16)

where ∂t = ∂
∂t

Thus taking n̂ to lie in the radial direction and writing ∂r = ∂
∂r

,we

have

toi(êr) =
c4

32ΠG
〈∂th

TT
jk ∂rh

TT
jk 〉 (3.3.17)

Using the expression in (3.2.24),the derivations in (3.3.17) for the energy flux are

given by

∂th
TT
jk =

2G

c5r

[...
±jk(t− r)

]TT

, (3.3.18)

∂rh
TT
jk =

2G

c5r2

[
±̈jk(t− r)

]TT

+
2G

c5r

[...
±jk(t− r)

]TT

∂rh
TT
jk ' 2G

c5r

[....
± jk(t− r)

]TT

(3.3.19)
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where ,in the second equation ,we have retained only the term in 1/r which dominates

for large r . Plugging these expression in to (3.3.17), we obtain

toi(êr) =
G

8Πr2c5
〈
...
±

TT

jk (t− r)
...
±

TT

jk (t− r)〉 (3.3.20)

Since at any point on the sphere the direction of the gravitational wave propagation

is radial, the transverse-traceless,
...
±

TT

jk is related to ±ab as

±TT
jk =

(
pa

jp
b
k −

1

2
pjkpab

)
±ab (3.3.21)

where

pjk = δjk − êj
rê

k
r

is the spatial projection tensor which projects tensor components on to the spatial

surface orthogonal to the radial direction at any point .For convenience we now use

(3.3.21) to rewrite the product of transverse traceless quadrapole moment in terms

of reduced unit radial vector by xj:

...
±

TT

jk

...
±

TT

jk = [pja

...
±abpbk −

1

2
pjk

...
±abpab][pjc

...
±cdpdk −

1

2
pjk

...
±cdpcd]

= pacpbd

...
±ab

...
±cd −

1

2
pab

...
±abpcd

...
±cd

1

4
pjkpjk

...
±abpab

...
±cd

= pabpbd

...
±ab

...
±cd −

1

2
pab

...
±cdpcd

...
±cd

Since the last two terms cancels ,it becomes

...
±

TT

jk

...
±

TT

jk = (δac − xaxc)(δbd − xbd)
...
±ab

...
±cd −

1

2

[
xaxb

...
±ab

]2

(3.3.22)

But

(δab − xaxb)
...
±ab ≡ (δcd − xcxd)

...
±cd (3.3.23)

for gauge moving along ê3.Therefore

...
±

TT

jk

...
±

TT

jk =
...
±ab

...
±ab − 2xaxc

...
±ab

...
±cd +

1

2
(xa

...
±(ab)xb) (3.3.24)
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Thus,using (3.3.20), we have

r2tor =
1

8Π

G

c5
〈
...
±jk

...
±jk − 2xi

...
±ij

...
±jkxk +

1

2
xjxk

...
±jkxlxm

...
±lm〉 (3.3.25)

and the total power radiated become

dE

dt
= −r2

∫
tordΩ

dE

dt
= − 1

8Π

G

c5

∫
〈
...
±jk

...
±jk − 2xi

...
±ij

...
±jkxk +

1

2
xjxk

...
±jkxlxm

...
±lm〉 (3.3.26)

Since the reduced quadrupole moments ± is defined as an integral over all space ,it

does depend on the angular coordinate and so may be taken outside the integral .The

remaining angular integrals are easily evaluated as follows.∫
dΩ = 4Π

Ajk =

∫
dΩxjxk = Aδij

and

Bjklm =

∫
dΩxjxkxlxm = B(δjkδlm + δjmδkl + δjlδkm)

where A and B are mutual coefficients.To evaluate the last two integrals we proceed

to contract all indices in the expressions.That is

Aj
j =

∫
dΩ = 3A

The result is A = 4Π
3

In the same way find B = 4Π
15

Now ∫
dΩxjxk =

4Π

3
δjk (3.3.27)∫

dΩxjxkxlxm =
4Π

15
(δjkδlm + δjmδkl + δjlδkm) (3.3.28)
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Using these equations and (3.2.24) becomes

dE

dt
= −4Π

8Π

G

c5
[〈

...
±jk

...
±jk〉 −

2

3
〈
...
±jk

...
±jk

+
1

30
〈
...
±jk

...
±lm〉(δjkδlm + δjmδkl + δjlδkm)]

dE

dt
= −1

2

G

c5
(1− 2

3
+

2

30
) <

...
±jk

...
±jk >

Then the total power radiated becomes

dE

dt
= −1

5

G

c5
<

...
±jk

...
±jk > (3.3.29)

In the literature this equation is generally denoted as quadrable formula

3.3.3 Gravitational Wave Back-Reaction

In the preceding subsection, we have discussed the gravitational wave energy loss in

terms of the the radiation that reaches a distant observer. Here it is desirable to

model a direct back reaction that the wave have on the sources. It is a common to

model the radiation reaction acting on a body of mass m as local force

F rr = −m∇φrr (3.3.30)

and the Burke-Thorne radiation reaction potential

φrr =
1

5

G

c5
xixj±(5)

jk (3.3.31)

In order to be consistent this formula must lead to the energy loss we predict from

the quadrupole formula(4.3.29). Let us consider for a system of N particles , the rate

of energy radiated is given as

dE

dt
=

∑
N

d~xN
j

dt
~FNrr (3.3.32)
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Plugging (3.3.30) and (3.3.31) into (3.3.32) gives

dE

dt
=

∑
N

dxN
j

dt
− (mN

2

5

G

c5
xN

k )±(5)
jk

dE

dt
= −2

5

G

c5
±(5)

jk

∑
N

mN
1

2

d

dt
(xN

j x
N
k )

dE

dt
= −1

5

G

c5
±(5)

jk

d

dt
(
∑
N

mNx
N
j x

N
k ) (3.3.33)

But from (3.2.21) the moment of inertia for the system of particles is given as

Ijk =
∑
N

mNx
N
j x

N
k (3.3.34)

and under ’TT’ gauge condition, this is simply given as

Ijk = ±jk =
∑
N

mNx
N
j x

N
k (3.3.35)

Therefore, using this equation the energy flux becomes

dE

dt
= −1

5

G

c5
±(1)

jk ±
(5)
jk (3.3.36)

where ±(1)
jk = d

dt
(
∑

N mNx
N
j x

N
k ). At this point we recall that the rate of energy loss

we deduced qudrupole formula required averaging over at least one orbit. Carrying

out this averaging essentially corresponds to integrating in time over an entire period

and we can readily use integration by part as

〈
∫

(
dE

dt
)dt〉 = −G

c5
〈
∫

(
1

5
±(1)

jk ±
(5)
jk )dt〉

= −G
c5
〈1
5
±(1)

jk ±
(4)
jk −

1

5

∫
d

dt
[±(1)

jk ±
(5)
jk ]dt〉

= −G
c5
〈1
5
±(1)

jk ±
(4)
jk −

1

5
±(2)

jk ±
(3)
jk +

∫
±(3)

jk ±
(3)
jk 〉 (3.3.37)

= −G
c5
〈
∫

[±(3)
jk ±

(3)
jk ]dt〉 (3.3.38)
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Since the average of the first two terms are cancels out , the average rate of energy

flux is given as

〈dE
dt
〉 = −1

5

G

c5
〈
...
±jk

...
±jk〉 (3.3.39)

Finally if we account for this formula represents the energy change in the system

while our previous result described the energy carried away by the waves we see that

the two pictures are consistent. Further let ua show that there is no gravitational

waves radiated from monopole and dipole moments. Using the energy momentum

conservation law

T µν ;ν = T µν ,ν = 0 (3.3.40)

This may be rewritten as

T µ0,0 +T µi,i = 0 (3.3.41)

which can also be computed as

T 00,0 +T 0i,i = 0 (3.3.42)

T j0,0 +T ji,i = 0 (3.3.43)

Multiplying (3.4.43) xk, integrate over all space, and neglecting the surface terms on

the assumption that T µν goes to zero sufficiently at infinity, we obtain∫
d3xxkT jo,0 = ∂t

∫
d3xxkT jo (3.3.44)

=

∫
d3xxkT ji,i

= −
(
xkT ji −

∫
d3xxk,i T

ji

)
or ∫

d3xT jk = ∂t

∫
d3xxkT jo (3.3.45)
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where we have used also

xk,i = δk
i (3.3.46)

Now multiplying (3.4.42) by xjxk and integrate in the same manner to get∫
d3xxjxkT 00,0 = ∂t

∫
d3xxjxkT 00

= −
∫
d3xxjxkT oi,i

= −
[
xjxkT oi −

∫
d3x

(
xj,i x

k + xjxk,i
)
T oi

]
or ∫

d3x
(
xkT oj + xjT ok

)
= ∂t

∫
d3xxjxkT 00 (3.3.47)

Since T jk is symmetric in jk we may write (3.4.45) as∫
d3xT jk =

1

2
∂t

∫
d3x

(
xkT oj + xjT ok

)
(3.3.48)

Plugging (3.4.47) into (3.4.48) gives∫
d3xT jk =

1

2
∂2

t

∫
d3xxjxkT 00 (3.3.49)

If we multiply (3.4.43) by xk and integrate, we obtain∫
d3xxkT 00,k = ∂t

∫
d3xxkT 00

= −
∫
d3xxkT 0i,i

= −
(
xkT60i−

∫
d3xxk,iT60i

)
or ∫

d3xT 0k = ∂t

∫
d3xxkT 00 (3.3.50)
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Defining:

M =

∫
d3xT 00 (3.3.51)

±k
=

∫
d3xxkT 00 (3.3.52)

±jk
=

∫
d3xxjxkT 00 (3.3.53)

as mass, monopole and dipole moment of the mass-energy distributions,then we have

from (3.4.49) and (3.4.50) ∫
d3xT jk =

1

2
±̈

jk
(3.3.54)

and ∫
d3xT 0k = ±̇

k
(3.3.55)

where the dot represents ∂t.Then from (3.4.51) and (3.4.43) we have

Ṁ =

∫
d3xT 00,0 = −

∫
d3xT 0i,i (3.3.56)

This can be expressed as surface integral using Gauss law.So with the above assump-

tions

Ṁ = 0 (3.3.57)

Likewise by the same argument

±̈
k

=

∫
d3xT 0k,0 = −

∫
d3xT ik,i = 0 (3.3.58)

This indicates there is no gravitational wave emitted from the monopole and dipole

moments. Then from equation (2.4.39) it follows that the total luminosity of the

source is given as

LGW =
1

5

G

c5
<

...
±jk

...
±jk >

gravitational waves not only carry away the energy, but also angular momentum

which will be derived in the next chapter.



Chapter 4

Lifetime Estimate of Neutron Star
Wobble

In this chapter, before solving the problem, we discuss the wobbling of neutron star,

derive the gravitational radiation reaction torque using the radiation reaction poten-

tial and using the mass quadrupole expression for energy and angular momentum

balance.Then we find out the numerical lifetime estimate of a neutron star.

4.1 Wobbling of a Neutron Star

A rotating neutron star, such as pulsar, will emit gravitational waves as a result of

small deviations from symmetry around its rotation axis or if it remains axisymmet-

ric so long as it has a time-varying quadrupole moment.A precessing neutron star

was first discussed as a source of gravitational radiation by Zimmermann(1978)and

Zimmermann and Szedenits(1979), who showed that the mass quadrupole gravita-

tional radiation was produced at frequencies φ̇ and 2φ̇[10]. So one class of emission

mechanisms for gravitational waves from rotating neutron star is free precession i.e.

the wobble of neutron star which has misaligned rotation axis with respect to its

symmetry axis[1].Here, we describe the dynamics of a rigid body rotation i.e. the

47
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classical problem of of free Eulerian motion (Landau and Lifshitz 1960; Greenwood

1980).

Consider an axisymmetric rigid body with principal axes lie along ê1, ê2 and ê3 and

principal moment of inertia I1 = I2 6= I3. J is the total angular momentum of the

body, misaligned from ê3, which is fixed in inertial space because no external torques

act.fig.1.3

An inertial coordinate system is partly aligned by specifying that the unit vector k̂

be parallel to J.The moment of inertia tensor of a rigid body as given in(3.2.22) as,

Iij =

∫
ρ(xixj − 1/3δijr

2)dv (4.1.1)

where i,j equal 1,2 or 3 for x,y and z respectively , r = x and δij is the kronecker

delta.

The set of body coordinate system x′ is related to an inertial system x in terms of

Euler angles as

x′ = Rx (4.1.2)

where

R(φ, θ, ψ) = B(ψ)C(θ)D(φ) (4.1.3)

and (φ, θ, ψ) are Euler angles which describe the orientation of the rigid body (Landau

and Lifshitz 1976). The three separate transformations are given in three separate

coordinate system as[2]

B(ψ) =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (4.1.4)



49

C(θ) =


1 0 0

cos θ sin θ 0

0 − sin θ cos θ

 (4.1.5)

D(φ) =


cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 (4.1.6)

Therefore, using these matrices, the transformation matrix (4.1.3)can be obtained

as

R(φ, θ, ψ) =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1




1 0 0

cos θ sin θ 0

0 − sin θ cos θ




cosφ sinφ 0

−sinφ cosφ 0

0 0 1


(4.1.7)

which is equal to

R(φ, θ, ψ) =


cosφcosψ − sinφcosθsinψ sinφcosψ + cosφcosθsinψ sinθsinψ

−cosφsinψ − sinφcosθcosψ −sinφsinψ + cosφcosθcosψ sinθcosψ

sinθsinφ −sinθcosφ cosθ


(4.1.8)

Then the components of the moment of inertia tensor in the inertial coordinate

system is given as

Iij = RT
ijIRij (4.1.9)

and by spectral theorem, it is possible to find a cartesian system in which it is diagonal,

have the form;

I =


I1 0 0

0 I2 0

0 0 I3

 (4.1.10)

where the coordinate axes are called the principal axes and the constants I1, I2

and I3 are called moment of inertia.
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Thus using (4.1.8) and 4.1.10) the moment of inertia tensor (4.1.9) is explicitly given

as

I11 = I1(cosψcosφ− cosθsinφsinψ)2 + I2(−sinψcosφ− cosθsinφcosψ)2

+ I3(sinθsinψ)2

= I1(cos
2φcos2ψ + cos2θsin2φsin2ψ − 2cosθcosφsinφcosφsinψ

+ sin2ψcos2φ+ cos2θcos2ψsin2φ+ 2cosθcosφsinφcosφsinψ)

+ I3(sinθsinψ)2

= I1(cos
2φcos2ψ + sin2ψcos2φ+ cos2θsin2φsin2ψ + cos2θcos2ψsin2φ)

+ I3sin
2θsin2ψ

= I1(cos
2φ+ cos2θsin2φ) + I3sin

2θsin2φ

= I1(cos
2φ+ I1(1− sin2θ)sin2φ+ I3sin

2θsin2φ

= I1(cos
2φ+ sin2φ)− 1

2
(I1 − I3)sin

2θ(1− cos2φ

= I1 −
1

2
(I1 − I3)sin

2θ︸ ︷︷ ︸ +
1

2
(I1 − I3)sin

2θcos2φ

I11 =
1

2
(I1 − I3)sin

2θcos2φ+ constants (4.1.11)
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I12 = I1[(cosφcosψ − cosφcosθsinψ)(sinφcosψ − cosφcosθsinψ)

+ (−cosφsinψ − sinφcosθcosψ)(−sinφsinψ

+ −cosφcosθcosψ)] + I3(sinθsinψ)(−sinθcosψ)

= I1(sinφcosφcos
2ψ + cosθcos2φsinψcosψ − cosθsin2φsinψcosψ (4.1.12)

− cos2θsinφcosφsin2ψ + sinφcosφsin2ψ − cosθcos2φsinψcosψ

+ cosθsin2φsinψcosψ − cos2θsinφcosφcos2ψ − I3sin
2θsinφcosφ)

= I1(sinφcosφcos
2ψ − cos2θsinφcosφsin2ψ + sinφcosφsin2ψ

− cos2θsinφcosφcos2ψ − I3sin
2θsinφcosφ

= I1[sinφcosφ(cos2ψ + sin2ψ)− cos2θsinφcosφ(sin2ψ + cos2ψ)]− I3sin
2θsinφcosφ

= I1sinφcosφ− I1sinφcosφcos
2θ − I3sinφcosφsin

2θ

=
1

2
I1sin2φ− 1

2
I1sin2φ(1− sin2θ)− 1

2
I3sin

2θsin2φ

=
1

2
I1sin2φ− 1

2
I1sin2φ+

1

2
I1sin

2θsin2φ− 1

2
I1sin

2θsin2φ

=
1

2
(I1 − I3)sin

2θsin2φ (4.1.13)

I13 = I1[(sinθsinψ)(cosφcosψ − cosθsinφsinψ) + (sinθcosψ)

(−cosφsinψ − cosθsinφcosψ)] + I3sinφsinθcosθ

= I1(sinθcosφsinψcosψ − sinθcosθsinφsin2ψ − sinθcosφ

sinψcosψ − sinθcosθsinφcos2ψ) + I3sinθcosθsinφ

= −I1sinθcosθsinφ(sin2ψ + cos2ψ) + I3sinθcosθsinφ

= −I1sinθcosθsinφ+ I3sinθcosθsinφ

= −(I1 − I3)sinθcosθsinφ (4.1.14)
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I22 = I1[(sinφcosψ + cosφcosθsinψ)2 + (−sinφsinψ + cosφcosθcosψ)2] + I3(−sinθcosφ)2

= I1[sin
2φcos2ψ + cos2φcos2θsin2ψ + sin2φsin2ψ + cos2φcos2θcos2ψ

+ 2sinφcosφcosθsinψcosψ − 2sinφcosφcosθsinψcosψ] + I3sin
2θcos2φ

= I1sin
2φ+ I1cos

2θcos2φ+ I3sin
2θcos2φ

= I1sin
2φ+ I1(1− sin2θ)cosφ + I3sin

2θcos2φ

= I1sin
2φ+ I1cos

2φ− I1sin
2θcos2φ+ I3sin

2θcos2φ

= I1 − (I1 − I3)sin
2θcos2φ

= I1 −
1

2
(I1 − I3)sin

2θ(1 + cos2φ)

= I1 −
1

2
(I1 − I3)sin

2θ︸ ︷︷ ︸−1

2
(I1 − I3)cos2φ)

= −1

2
(I1 − I3)sin

2θCos2φ+ constants (4.1.15)

I23 = I1[(sinφcosψ + cosφcosθsinψ) + (−sinφsinψψ + cosφcosθsinψ)

(sinθcosφ)] + I3(−sinθcosφ)cosθ

= I1[sinφsinθsinψcosψ + cosφsinθcosθsin2ψ

− sinφsinθsinψcosψ + cosφsinθcosθcos2ψ]− I3sinθcosθcosφ

= I1sinθcosθcosφ− I3sinθcosθcosφ

= (I1 − I3)sinθcosθcosφ (4.1.16)

I33 = I1[(sinθsinψ)2 + (sinθcosψ)2] + I3(cosθ)
2

= I1sin
2θ + I3cos

2θ

= I1sin
2θ + I3(1− sin2θ)

= I3 + (I1 − I3)sin
2θ︸ ︷︷ ︸

= constants (4.1.17)
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Then the power radiated (3.3.29) can be expressed in terms of the wobble angle θ as

dE

dt
= −1

5

G

c5
<

...
±11

...
±11 + 2

...
±12

...
±12 + 2

...
±13

...
±13 +

...
±22

...
±22 + 2

...
±23

...
±23 > (4.1.18)

Using equations (4.1.11)-(4.1.17),(3.2.24) and taking the third time derivatives these

equations give:

dE

dt
= −1

5

G

c5
< 16 M I2φ̇6sin4θsin22φ+ 32 M I2φ̇6sin4θcos22φ

+ 2 M I2φ̇6sin2θcos2θcos2φ+ 16 M I2φ̇6sin4θsin22φ

+ 2 M I2φ̇6sin2θcos2θsin2φ >

dE

dt
= −1

5

G

c5
M I2φ̇6 < 32sin4θ + 2sin2θcosθ > (4.1.19)

or

dE

dt
= −1

5

G

c5
M I2φ̇6sin2θ(16sin2θ − cos2θ) (4.1.20)

Now it is standard result from the classical mechanics that the body axis ê3 precesses

around ~J with angular/precession frequency:

~̇φ =
Jk̂

I1
(4.1.21)

with ê3 maintaining a constant angle with respect to k̂. In addition, the angular

velocity vector precesses about ê3 with angular frequency:

~̇ψ = ψ̇ê3 =
(1− I3/I1)Jcosθê3

I3
(4.1.22)

where θ is the wobble angle and ψ̇ is also called the intrinsic spin frequency of the

star or body frame precession frequency.

The total angular frequency ~ω can be written as the sum of the two terms as

~ω = ~̇ψ + ~̇φ (4.1.23)
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or

~ω = ψ̇ê3 + φ̇k̂ (4.1.24)

We write the kinetic energy,E stored in the body as

E =
1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3) (4.1.25)

Lastly we obtain

E =
J2(1−4I/I3cos2θ)

2I1
(4.1.26)

where 4I = I3−I1. When 4I > 0,the star is said to be oblate and when is 4I > 0,it

is problate.Ofcourse, the oblate case is the more physically plausible.

4.2 Gravitational Radiation reaction Torque

Here we derive the reaction torque due to the emission of gravitational radiation from

a wobbling neutron star by adding the Burke-Thorne loccal radiation reaction force

to the equation of motion.The gravitational radiation reaction problem was first ad-

dressed by[7],using local formulation.To examine how the emission of gravitational

radiation leads to a loss of angular momentum, the concept of the gravitational radi-

ation reaction potential Φrr (Misner et al.,1973) is used.

The Burke-Thorne radiation reaction potential at a point x is given by[6]:

Φrr =
G

5c5
xjxk±(5)

jk (4.2.1)

where ±jk denotes the trace-reduced quadrupole moment tensor and the superscript

5 represents the 5th time derivatives and the cartesian coordinates xj are centered on

spinning mass. Note that ±jk is related to the moment of inertia tensor, Ijk by as

referred in section 3.2 as:

±jk = Ijk −
2

3
δjkI (4.2.2)



55

The radiation-reaction force,F rr corresponding the energy loss given in (3.3.27) can

be written as a gradient of the Burke-Thorne radiation-reaction potential,Φrr as

F rr = −m
−→
∇Φrr (4.2.3)

where m =
∑

N mN =
∫
ρd3x is the total mass of point particles of the body.

Thus in the absence of any dissipative mechanism other than gravitatiional waves

emission, the angular momentum loss rate/the radiation-reaction torque can be cal-

culated as

dJi

dt
=

∫
εijkxjF

rr
k d3x (4.2.4)

where εijkis the Levi-Civita symbol and F rr
k is the radiation-reaction force on a source

is given as

FNrr
k = −m

−→
∇Φrr = −mφrr,l (4.2.5)

and

−→
∇Φrr =

−→
∇(

1G

5c5
xkxl±(5)

kl ) (4.2.6)

−→
∇Φrr =

2G

5c5
xl±(5)

kl (4.2.7)

Thus using (4.2.6),the total angular momentum loss rate becomes

dJi

dt
=

∫
εijkxj(−

2G

5c5
ρxl±(5)

kl )d3x (4.2.8)

dJi

dt
= −2G

5c5
εijk±(5)

kl

∫
ρxjxld

3x (4.2.9)

But the quadrupole moment of inertia tensor for a system is given as

±jl =

∫
ρ[xjxl −

1

3
δjl(x)

2]d3x (4.2.10)

and using TT-guage condition, as used in the previous section, this equation becomes

±jl =

∫
ρxjxld

3x (4.2.11)
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Now using (4.2.11)in (4.2.8) it becomes

dJi

dt
= −2G

5c5
εijk±jl±(5)

kl (4.2.12)

Taking two integrations of this equation by parts, we find:

∫
(
dJi

dt
)dt = −2G

5c5
εijk

∫
±jl

d

dt
(
d4

dt4
±kl)dt

= −2G

5c5
εijk[±jl

d4

dt4
±kl −

∫
(
d

dt
±jl)(

d4

dt4
±kl)dt]

= −2G

5c5
εijk[±jl

d4

dt4
±kl − [

d2

dt2
±jl

d3

dt3
±kl

−
∫

(
d2

dt2
±jl)(

d3

dt3
±kl)dt]] (4.2.13)

After averaging (4.2.13) over several periods,since the first two terms on the right

hand sides cancel each other,the gravitational radiation-reaction torque become

〈
∫

(
dJi

dt
)dt〉 = 〈−2G

5c5
εijk

∫
(
d2

dt2
±jl)(

d3

dt3
±kl)dt]〉

= −2G

5c5
εijk〈

∫
(
d2

dt2
±jl)(

d3

dt3
±kl)dt〉

and lastly dropping the integration

dJi

dt
= −2G

5c5
εijk〈(±̈jl)(

...
±kl)〉

dJi

dt
= −2G

5c5
εijk〈±̈jl

...
±kl〉 (4.2.14)

where the dots indicates the time derivatives. Now, it is necessary to calculate the

radiation-reaction torque, (4.2.14) for a precessing neutron star in terms of the wobble
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angle,θ.Hence we find

dJ

dt
= −2G

5c5
[ε312〈±̈1l

...
±2l〉+ ε321〈±̈2l

...
±1l〉]

= −2G

5c5
[〈±̈1l

...
±2l〉 − 〈±̈2l

...
±1l〉]

= −2G

5c5
[〈±̈11

...
±21〉 − 〈±̈21

...
±11〉+ 〈±̈12

...
±22〉

− 〈±̈22

...
±12〉+ 〈±̈13

...
±23〉 − 〈±̈23

...
±13〉] (4.2.15)

By making use of equations (4.1.11)-(4.1.17) and finding the second and third time

derivatives of the corresponding moment of inertia components, we can find each term

in equation (4.2.15) as

±̈1l

...
±2l = ±̈11

...
±21

= (−2φ̇2 M Isin2θcos2φ)(−4φ3) M Isin2θcos2φ)

= 8φ5 M I2sin4θcos22φ

In the same way:

±̈21

...
±11 = −8φ̇5 M I2sin4θsin22φ

±̈12

...
±22 = 8φ̇5 M I2sin4θsin22φ

±̈22

...
±12 = −8φ̇5 M I2sin4θcos22φ

±̈13

...
±23 = φ̇5 M I2sin2θcos2θsin2φ

±̈23

...
±13 = −φ̇5 M I2sin2θcos2θcos2φ



58

Plugging these expressions into (4.2.15),we obtain

dJ

dt
= −2G

5c5
[〈8φ̇5 M I2sin4θcos22φ〉 − 〈−8φ̇5 M I2sin4θsin22φ〉

〈8φ̇5 M I2sin4θsin22φ〉 − 〈−8φ̇5 M I2sin4θcos22φ〉

〈φ̇5 M I2sin2θcos2θsin2φ〉 − 〈−φ̇5 M I2sin2θcos2θcos2φ〉]

= −2G

5c5
[〈8φ̇5 M I2sin4θ〉(〈cos22φ〉+ 〈sin22φ〉) + 〈8φ̇5 M I2sin4θ〉

(〈sin22φ〉+ 〈cos22φ〉) + 〈M I2sin2θcosθ〉(〈sin2θ〉+ 〈cos2θ〉)]

= −2G

5c5
[16φ̇5 M I2〈sin4θ〉+ φ̇5 M I2〈sin2θcos2θ〉]

= −2G

5c5
M I2φ̇5〈sin2θ〉(16〈sin2θ〉+ 〈cos2θ〉)

Therefore, the rate of angular momentum loss in terms of the wobble angle,θ, becomes

dJ

dt
= −2G

5c5
M I2φ̇5sin2θ(16sin2θ + cos2θ) (4.2.16)

Alternatively, the radiation torque can be obtained from the power radiated (4.1.20)

from a gravitational waves emitting sources as[35]

dJ

dt
=
dE/dt

dφ/dt
(4.2.17)

Plugging the expression for dE
dt

into this , it gives

dJ

dt
=
− 2G

5c5
M I2φ̇6sin2θ(16sin2θ + cos2θ)

φ̇
(4.2.18)

which is equal to

dJ

dt
= −2G

5c5
M I2φ̇5sin2θ(16sin2θ + cos2θ) (4.2.19)

4.3 Wobble Evolution Equation
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Figure 4.1: For the rigid body the gravitational radiation reaction torque T lies in
the reference plane.It acts perpendicular to the symmetry axis.

4.3.1 By Using Radiation-Reaction Torque

Considering for axisymmetric rigid body, the symmetry axis of the deformation lies

along n which moves in a cone half angle θ around the angular momentum vector ~J

(fig) with the precession frequency φ̇ = ~J/I1.

The precessional motion of the body is then specified by the pair of parameters

(θ, φ̇).We need to find the effect of the torque on the parameter θ which is the wobble

angle.

The action of the torque has two parts;the component along ~J acts to change the iner-

tial precession frequency. If the torque causes the magnitude of the angular momen-

tum to change at a rate of ~̇J , then the precessional evolution equation (i.e.following
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from the differentiation of φ̇ = ~J/I1) can be given as

φ̈ =
J̇

I1
(4.3.1)

or substitution of J̇ in (4.2.16) gives

φ̈ = −2G

5c5
M I2

I1
φ̇5sin2θ(16sin2θ + cos2θ) (4.3.2)

and the component of the torque projected into the reference plane which lies perpen-

dicular to ~J acts to change the wobble angle.If J⊥n is the component of the angular

momentum perpendicular to the symmetry axis n then differentiation of the relation,

i.e using fig 4.1 :

sinθ =
J⊥n

J
(4.3.3)

according[28] this leads to

θ̇ = −T⊥J

J
= −Tcosθ

J
(4.3.4)

where T⊥J is the component of the torque perpendicular to ~J and T is the torque for

free precession,that is from (4.2.16) we have

~T =
2G

5c5
M I2φ̇5sinθ(16sin2θ + cos2θ) (4.3.5)

Substitution of (4.3.5) in (4.3.4) reproduces the the wobble damping equation as:

θ̇ = −2G

5c5
M I2φ̇4sinθcosθ(16sin2θ + cos2θ) (4.3.6)

4.3.2 By Energy and Angular Momentum Balance

Here we re-derive the wobble damping rate for neutron star using energy and angu-

lar momentum balance.To calculate the rate wobble angle, recall the rate of energy
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radiated,that is by differentiation of E = E(J, θ), as[11]

dE

dt
=
∂E

∂J

dJ

dt
+
∂E

∂θ

dθ

dt
(4.3.7)

Substitution of J̇ = Ė/φ̇ to this equation and rearranging it, the rate of change of

the wobble angle become

θ̇ =
J̇ [φ̇− ∂E

∂J
]

∂E/∂θ
(4.3.8)

where the dot represents the time derivative.But the energy of the source(star) is its

kinetic energy as indicated in (4.1.23) i.e.

E =
J2

2I1
[1− cos2θ

M I
I3

] (4.3.9)

Thus

∂E

∂J
=
J

I1
[1− cos2θ

M I
I3

] (4.3.10)

and

∂E

∂θ
=
J2

I1
sinθcosθ

M I
I3

(4.3.11)

Plugging equations (4.3.10) and (4.3.11) into (4.3.8) we find

θ̇ = −
[φ̇− J

I1
(1− cos2θMI

I3
)] 2G

5c5
M I2φ̇6sin2θ(16sin2θ + cos2θ)

φ̇J2

I1
sinθcosθMI

I3

(4.3.12)

This gives the wobble damping equation as

θ̇ = −2G

5c5
M I2φ̇4sinθcosθ(16sin2θ + cos2θ) (4.3.13)

Comparing (4.3.6) and (4.3.13),so the two methods of calculation agree.

4.4 Lifetime Estimate

We can calculate the time on which the alignment occur as

τθ = − sinθ
d
dt
sinθ

=
5c5

2G

1

φ̇4

I1
4I2

1

cosθ(16sin2θ + cos2θ
(4.4.1)
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Radiation-reaction causes sinθ to decrease, regardless of whether the body is oblate

or prolate.In the limit of small wobble angle,θ decreases exponentially0n the timescale

τθ<<1 =
5c5

2G

1

φ̇4

I1
4I2

(4.4.2)

Then we have the following parameters.

c = 3× 1010cm.sec−1

G = 6.67× 10−8cm3/g.sec2

φ̇ = 2πν (4.4.3)

Up on substituting these values into (4.4.2),the lifetime value is

τθ = 0.058557× 1058 gcm
2

s3

1

ν

I1
4I2

(4.4.4)

Parameterizing this equation gives

τθ = 1.8× 106yr

(
10−7

4I/I1

)2 (
kHz

ν

)4 (
1045gcm2

I1

)
(4.4.5)

This is the numerical lifetime estimate of a neutron star wobble modelling it as a

rigid body.



Chapter 5

Discussion and Conclusion

5.1 Discussion

As a newborn neutron star settles down into its final state ,its solid crust has pre-

ferred shape oblate axisymmetric about some preferred axis. If the star’s angular

momentum ~J deviates from the crust’s preferred symmetry axis, the neutron star

will wobble as it spins, with small ’wobble angle’[1].So a rotating neutron star emit

gravitational wave by means of time-dependent quadrupole moment ,generated either

by the lack of body symmetry on the equatorial plane or by precession caused by mis-

alignment of the spin and the symmetry axis.In the later case, wobbling neutron star

emit at frequencies close to the rotation one if the wobble angle is small[2]. As dis-

cussed in chapter four a large mass with a quadrupole moment,rotating about some

axis, generates gravitational waves. The quadrupole radiation approximation says the

gravitational radiation is generated when,not the traceless mass quadrupole moment

tensor, but its second time derivative is nonzero[29].Infact there is an isolated mas-

sive objects which has nonzero but constant traceless quadrupole moment and then

63
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no gravitational radiation results (at least no at mass quadrupole level approxima-

tion).Gravitational radiation is characterized by polarization, amplitude, frequancy

just like electromagnetic radiation where the polarization modes of gravitational ra-

diation are those appropriate to a rank two tensor field.

The averaged energy and momentum fluxes as well as the instantaneous torque, in

equations (3.3.29),(4.2.16)and(4.3.5) respectively, depend only on the orientation of

the mass quadrupole of the source. As described in the preceding chapter the radiation

torque acting on a neutron star has two components: the braking torque, responsible

for the secular spin down of the star and the component associated with the inertia of

the radiation fields whose effect is to make the star to wobble. The alignment rate of

the body due to the gravitational radiation reaction is calculated using two methods;

by energy and momentum balance and by radiation reaction torque in which the

resulting expression is consistent.

5.2 Conclusion

Finally in this thesis,based on the time-varying quadrupole moment model, the evo-

lution of gravitational radiation of a rotating neutron star is discussed. In particular

the resulting gravitational radiation torque produce the alignment of the axis of ro-

tation with the angular momentum vector by damping the wobble angle.We find the

wobble evolution or the gravitational wave damping takes place over a time of [33]

τθ = 1.8X106yr

(
10−7

4I/I1

)2 (
kHz

ν

)4 (
1045gcm2

I1

)
(5.2.1)

This is a good agreement with recently accepted theoretical results found by on the

alignment timescale of neutron star due to gravitational radiation. Further studies
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on the wobble evolution in precessing neutron star due to internal torques and others

(especially considering the superfluid model) seem necessary.
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