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Abstract

A rotating neutron star/pulsar can emit gravitational radiation. The third time deriva-
tive of quadrupole moment of of an isolated systems must be non-zero in order for
it to emit gravitational radiation. We follow the emission of gravitational radiation
using quadrupole approximation. The energy and angular momentum of a rotating
neutron star can slowly decrease as it get older.

We estimate the average lifetime of a gravitational wave damping for a neutron
star wobble.Our calculation is based on the well known idea that energy loss within
an isolated wobbling neutron star causes the axis of inertia of the star to align with its
angular momentum vector. We model the neutron star as a rigid body with quadru-
pled deformation of its moment of inertia tensor.We find out the numerical lifetime
estimate of a neutron star with two different dervations of the result: one is by adding
the Burke-Thorne radiation reaction potential to the newtonian equation of motion
and the other is based on energy and angular momentum balance.

Key words: neutron star, quadrupole moment, gravitational radiation, angular mo-

mentum,lifetime of neutron star

viil



Acknowledgements

First of all I would like to thank my God who is blessing me.I would like to express
my deepest gratitude to my advisor Dr. Legesse Wotro Kebede for his unreserved
assistance, constructive guidance, valuable suggestions and the kind hospitality he
has given me during the course of my thesis.

I would like to acknowledge the physics department of Addis Ababa University for
providing materials to carry out my thesis. I would also like to thank W /ro. Tsilat,
secretary of the department, for printing this thesis and cooperation she showed
during my stay in the department.

It is pleasure to thank the astrophysics group: the M.Sc. classmates; Bililign(Bil) and
Shimelis(Shime) for various stimulating discussions and the PhD. students; Anno,
Remudin, Mekuanint and Getachew too. My thanks also goes to my friends ( Ne-
gussie,Serkalem,Belay,Dereje) and to all those who gave me encouragement toward
the betterment of my work.

Lastly,but not least, I would like to express my special thanks to my wife Timihrt
whose patience, honesty and love helped me to complete the work and to my parents,
brothers and sisters for providing me all their best.

Addis Ababa, Ethiopia Tadele Shiferaw

X



Introduction

During the past century, astronomy has been revolutionized by the use of new meth-
ods for observing the universe. The great progress that astronomy has made since
1960 is largely due to the fact that technology has permitted astronomers to begin
to observe in many different parts of the electromagnetic spectrum. Because they
were restricted to observing visible lights, the astronomers of the 1940s could have
no inkling of such diverse and exiting phenomena,neutron stars, giant radio galaxies,
quasars, compact X-ray binaries, molecular -line masses in dense clouds, the cos-
mic microwaves background radiation. Since technology has progressed, since then
spectral region has revealed unexpected and important information. There are still
regions of the electromagnetic spectrum that are largely unexplored, but there is
another spectrum which is as yet complectly untouched: the gravitational wave spec-
trum.The question of gravitational radiation has always been the central issue in the

theory of general relativity[34].

Gravitational waves, i.e. small deformations of space-time travelling at the speed
of light,first pointed out by Einstein (1918), are fundamental of Einstein’s General
Theory of Relativity(GTR).There has been no distinct observation of gravitational
waves so far, although an indirect evidence was found in the observed spiral history of

the binary pulsar PSR 1913416, which agrees perfectly with the prediction of General



Relativity (Weinberg and Taylor(1984)). Gravitational waves are purely transverse,
characterized by two polarization states(referred as to '+’ and 'x’ polarizations). The
two polarizations differ by a rotation of 45 degrees around the the polarization axis,

corresponding to quadrupolar(spin 2) nature of the gravitational field.

The signals of gravitational waves from the astrophysical sources reaching the earth
have very small amplitudes and are nearly plane waves. A linearized version of Ein-
stein field equation (Misner et al. 1973) can therefore be used to describe gravitational
waves in terms of a small metric perturbation h,,. The emission of gravitational
waves is generally well described by the so called quadrupole formula. Also the en-
ergy emission rate in gravitational waves can be expressed in quadrupole formalism.
The quadrupole formalism shows that time-varying mass distribution generally emit

gravitational waves.

Nearly all astrophysical phenomena emit gravitational waves and the most violent
ones give off radiations in copious amounts(as we shall see in chapter 1). In some sit-
uations, gravitational radiation carries information that no electromagnetic radiations

can give us.

Neutron star rotate extremely rapidly starting from their formation due to the con-
servation of angular momentum. Like a spinning ice skaters pulling in her arms, the
slow rotation of the original star’s core speeds up as it shrinks.A newborn neutron
star can rotate several hundred times a second, turning itself into an oblate spheroid
against its own immerse gravity. In wobbling neutron star, energy will be dissipated
within the star,converting the kinetic energy into thermal energy. Also the gravita-
tional wave energy and angular momentum will be radiated to infinity which must be

subtracted from the star’s energy and momentum|25]. The emission of gravitational



radiation determines the evolution of the emitting source due to radiation reaction.
A precessing neutron star is a possible source of gravitational radiation.The first clear
observation of free precession in a pulsar signal was very recently[I1]. In this thesis
we will be concerned on the gravitational radiation reaction torque which affect the
neutron star wobble. We are aimed the analytical study of the effect of the radiation
torque on a neutron star undergoing precessional motion. The effect of gravitational
radiation reaction on precessing axisymmetric rigid bodies was first derived 35 years
ago by Bertotti and Anile[I2] .

The structure of this thesis is as follows. In chapter 1 we briefly describe the neutron
star formation, structure and the rotating neutron star as a source of gravitational
waves and the generating mechanisms. In chapter 2 we deal about Einstein field
equations and the weak field approximation. In chapter 3 we discuss gravitational
wave and its mathematical description. In chapter 4 we deal about the gravitational
radiation reaction torque and alignment timescale of wobbling neutron star. Our

conclusion are given in chapter 5 with some discussion.



Chapter 1

The Physics of Neutron Star

This chapter gives a general overview about neutron star formation and structure,

pulsar,astrophysical sources of gravitational wave and the emission mechanisms.

1.1 Neutron Star Formation

Compact objects such as neutron stars, white dwarfs and ultimately black holes rep-
resents the final states of stellar evolution[26]. When very massive stars (up to 25M ¢
;where Mq is solar mass,die, after they have finished their nuclear fuel, they spew
their outer layers into space in a violent explosion called supernova.The cores of such
stars remain as neutron stars. So, a neutron star is a type of remnant that can result
from the core collapse of a massive star during supernova event[27]. A supernova
occurs when the iron core of a giant star collapses to the density of the nucleus. At
such events high densities,protons and electrons fuse together to form neutrons[1].
Hence the name 'neutron star’. Neutron stars are very hot and are supported against
further collapse because of degenerate neutron pressure resulting from Pauli exclusion
principle. This principle states that no two neutrons can occupy the same quantum

state simultaneously.



In general, compact stars with mass < 1.4 Mg are white dwarfs.On the other hand,a
neutron star is about 20 km in diameter and has mass of about 1.4 M. This means
that a neutron star is so dense that one teaspoonful of neutron star matter would
weigh a billion tons! The result is a surface gravitational field strength about 2 x 10!
times that of the earth. A neutron star can also have magnetic fields a million times
strongest magnetic field produced on the earth[5]. As the core of a massive star
is compressed during supernova, and collapse into a neutron star it retains most of
its angular momentum. Since it has only a tiny fraction of its parent’s radius (its
moment of inertia is reduced sharply) so that a neutron star is formed with very high
rotation speed.It gradually slows down due to mostly gravitational radiation initially

and then electromagnetic radiation.

The number of neutron stars in the Galaxy has been estimated to be of the order
10?[3,4].The number of observed neutron stars is much lower, about 800 are observed
as radio pulsar[31],and about 150 as X-ray binaries.The population of neutron stars
is concentrated along the disc of the milkway although the spread perpendicular to
the disc is fairly large. The reason for this spread is that neutron stars born with high
speeds (400 km/s) as a result of an imparted momentum kick from an asymmetry

during the supernova explosion.

1.2 The Structure of Neutron Star

The internal structure of neutron stars are less well known because of uncertainties
in the equation of state of degenerate nuclear matter. The problems involved in
determining the equation of states are elegantly presented by Shapiro and Teukolsky

(1983). Our proposed model for the neutron star is shown in fig. 1.1[1].
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Figure 1.1: Structure of neutron star

Following Shapiro and Teukolsky, the various regions in the model may be de-
scribed as: The surface layers; are taken to be the regions with density less than
about 10%kgm 3. At these large density, the matter consists iron in the form of a
closed packed solid. The outer crust is taken to be the regions with density in the
range (10° — 4.3 x 101)kgm = and consists of a solid region composed of heavy nu-
clei.The inner crust has densities about between (4.3 x 10 — 2 x 10'")kgm~3.The
neutron liquid has densities greater than about 2 x 10'"kgm =2 and consists mainly
of neutrons with a small concentration of protons and electrons.A core region , the

very center of neutron star has very high densities greater than 3X10%¥kgm=3.

1.3 Pulsar: Spinning Neutron Star

The first pulsar was are discovered in 1967 by Jocelyn Bell Burnell, a radio source
that blinks on and off at a constant frequency. Pulsars are spinning neutron stars

that have jets of particles moving almost at the speed of light streaming out above



Figure 1.2: The Pulsar Model

their magnetic poles[11] (Fig 1.2). As the neutron star settles down into its final
state, its crust begins to solidify (crystalize). The solid crust will assume nearly the
oblate axisymmetric shape that centrifugal forces are trying to maintain with poloidal
ellipticity, e,a ( « is angular velocity of rotation). However the principal axis of the
star’s moment of inertia tensor may deviate from its spin axis by some small ”wobble
angle”, and the star may deviate slightly from axisymmetry about its principal axis
.As this slightly imperfect crust spins, it will radiate gravitational wave[8]. So a pulsar
must be axisymmetric in order to radiate gravitationally. A wobbling pulsar may thus

radiate gravitational wave.

A pulsar produces beams of radio emission above its magnetic poles and these sweep
like lighthouse beams across the sky. The Jodrell Bank scientists ( Ingrid Stairs,
Andrew Hyne and Setnam Sheman ) have been studying the pulsar PSR 131828-11
for 13 years. This pulsar rotates 2.5 times per second , but, unlike any other, wobbles

regularly with a period of about 1000days. The motion is very much similar like



the wobble of a top or gyroscope. This wobble or precession causes the observed
pulse to change its shape and causes the time between pulses to vary, becoming
sometimes shorter and sometimes longer. The Manchester astronomers argued these
variation imply that the neutron star instead of being perfectly spherical is slightly
oblate[12]. Stairs explains ” The bulge in neutron star causes the angle between the
pulsar’s rotation axis and its radio beam to change with time creating the wobbling
effect that we measure. 7 Current theories predict that the interaction between the
superfluid and the crust should cause any precession to die out extremely quickly. ”

But this pulsar is 100,000 years old, and it’s still wobbling!” exclaims Lyne.

1.4 Sources of Gravitational Waves

Gravitational waves are one of the features of General Relativity. The brightest grav-
itational wave sources are objects with strong gravitational fields, so the study of
gravitational waves is a study of General Relativity[10] and the detection of gravita-
tional waves can certainly test General Theory of Relativity and opens a window for

us to observe astrophysical phenomena in the universe.

Sources of gravitational waves are best understood by drawing analogies to the case of
electromagnetic radiation emission. Waves are formed by time change in the position
and distribution of the 'charges’ in the systems, whether those charges are electric or
gravitational. The most obvious way to produce electromagnetic waves should be to
change the total amount of charge in the system with time ( called a monopole mo-
ment). However this violates the law of conservation of charges, and is not physically
acceptable. The next best way to accomplish electromagnetic radiation is to vary the

distribution of charge or to have a time-varying dipole moment. The time-varying



dipole moment is the dominant contributor to electromagnetic waves.

Now consider gravitational waves. There can not be monopole in gravitational system
for the same reason for that of there are no magnetic monopoles. The next solution
is to have a time-varying gravitational dipole moment. This, however, is found to be
impossible because of violation of conservation of angular momentum. We therefore
have to look to the next higher moment of mass distribution, the quadrupole moment,
for the possible emission of gravitational radiation, and, this is found to be physically

acceptable.

However, this presents another challenge that the gravitational wave produced by
‘everyday’ matter, moving with time-varying quadrupole moment are so extraordinary
small that they are not worth considering. The waves only become significant in
systems that move at near relativistic speeds and are very massive. The only known
sources of gravitational waves strong enough to be detected are those involved in
astrophysical phenomena. Only in deep space are very massive bodies found moving
fast enough to produce gravitational wave signals and among these are:

. rotating neutron stars

. binary star systems

.black holes

. supernovas

.colliding galaxies etc.
Here we will describe only about rotating neutron star, although further mathematical
details on it will be given in chapter 3 and 4 of this thesis.Neutron stars may appear

as:

. isolated objects or
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. binary systems.

Isolated rotating neutron stars emit gravitational radiation if their configuration is
not axisymmetric with respect to the rotation axis. The assymmetry can be the
consequence of deformation of the stars’ shape or of a misalignment of the symmetry
axis with respect to the rotation axis. Thus there are two basic configuration of a
rotating neutron star: rotation around a principal axis of inertia and rotation around
an axis differen from the principal axis of inertia. As a result of stars quakes, strong
internal magnetic fields or interactions with other stars, the rotation of a neutron star
can be different from one of its principal axis of inertia and thus two different cases
have been analyzed in the literature

. wobbling or precession of a rigid neutron star and

. rotation of a distorted fluid neutron star.

The gravitational waves emitted by a wobbling neutron star will carry energy and
momentum away to infinity. So, over time, the wobbling neutron star slows down
and tends to decrease the wobble angle. That means gravitational radiation reaction
torque damp out the as consequently align the axes. We will calculate the time for

the alignment.



Chapter 2

Linearized Einstein Field Equation

In general relativity laws of nature remain invariant with respect to any space time
coordinate system while in special relativity this will be true in inertial frame. So we
must express all laws of nature in terms of covariant equations that make no use of
particular coordinate system.Such equations are referred to as ”covariant”. In this
chapter we derive the so called Einstein’s equations for gravity, which are general

covariant in nature, and linearize them.

2.1 Einstein Field Equations

The Einstein field equations (EFE) or Finstein’s equations are a set of ten equations
in the theory of general relativity which describes the fundamental force of gravita-
tion as a curved space time caused by matter and energy|[7].They collectively form a
tensor equation and equate the curvature of space time with the energy and momen-
tum. The EFE are used to determine the curvature of space time resulting from the
presence of mass and energy. Because of the relationship between the metric tensor
of space time and the Einstein tensor, the EFE becomes a set of coupled, non-linear

differential equations.Unlike Maxwell equation, which are linear, the non linearity of

11
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EFE represents the effect of the gravitation on it self.

We now derive the field equations. Newtonian gravitation can be written as the

theory of a scalar field, ®:
V20(7,t) = 4llGp(Z,t) (2.1.1)

where G is universal gravitational constant and p is mass density. The orbit of a free

falling test particle satisfies
i(t) = —=VOo(z,t) (2.1.2)
In tensor notation (2.1.1) and (2.1.2) become:

)

2,00 = —d, (2.1.4)

)

where the comma (,) indicates ordinary partial differentiation and in general relativity,

these equations are replaced by,

1
By = C(Tp = 507) (2.1.5)

for some constant C' and the geodesic equations:

Pt y dxt dx?
dr? Mo dr dr

(2.1.6)

where R, is the Ricci tensor, T, is the energy-momentum tensor, g, is the

metric tensor and Ff;v is the Christoffel symbol defined by

1
F;);v = §gAp(gp,u,v + Gpou — g,uv,p) (217)
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To see how (2.1.6) reduces to (2.1.4)actually using the Post Newtonian approximation

we have
dr , o
(a)Z = —goo — 2giov" — giV'V’ (2.1.8)
Assuming v = 0
dr
a) = —9g00
or
dt _
(E)Q = —9001
To the order of v~* this gives
dt
(E)2 =1—[v?+..]
where v = GM/r. So, for ¥ =0
dt
—~1
dr
d  dt

and the metric and its derivative are approximately static and that the square of
derivatives from the Minkowiski metric are negligible. Applying these simplifying as-

sumptions the special components of the geodesic equations (2.1.6) gives:

d?at

@z = e
Hence,
d*z’ ;
7 ~ I, (2.1.10)

where two factors of g—i have been divided out.Then (2.1.10) will reduce to its new-

tonian counterpart,provided

i 1,
o, =1, = 29 (90,0 + 9op0 — Goo,p) (2.1.11)
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The time derivatives to be zero, this simplifies to
20, = 9" (—goo,j) = —9oos (2.1.12)

Since ¢ — ¢Y and ¢ ~ ©® << 1 which is satisfied by letting the time-time

component of the metric tensor as:
goo = —(1 + 29) (2.1.13)

where ® is the Newtonian potential.

Further more the energy density Ty for non relativistic matter is equal to its mass
density. That is

Too ~ p (2.1.14)

Combining this with ( 2.1.3) and (2.1.13), we have then,

V2g00 = —8TGTho (2.1.15)

This field equation is only supposed to hold for weak static fields generated by non-
relativistic matter and is not Lorentz invariant as it stands.However (2.1.15) leads us

to guess the field equation for a general distribution 7}, of energy and momentum as:
G = —8IGT,, (2.1.16)

where G, is a tensor which is a linear combination of the metric g, and its first and
second derivative.The nature of G,

- by definition it is a tensor

- by assumption it contains only terms that are either linear in the second

derivatives or quadratic in the first derivative of the metric.
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- 4t 18 symmetric, since 1), is symmetric

- 4t is conserved, since T}, is conserved. That is,
Gy, = 0 (2.1.17)
- for a weak static field limit

Goo = VZgoo (2.1.18)

To find G,,we construct the so called Riemann- Christofell curvature tensor R), .,

given as
Ry = Tpor— Do +T0,00, =TI, (2.1.19)

nvk nu,k pk,v

which may also be rewritten as:
Rk = 9o Rk (2.1.20)

The curvature tensor satisfies the Bianchi identities written as

Rk + Byumoie + Rakenzo = 0 (2.1.21)
where 7;” represents the covariant differentiation which can be defined as
T,uz/;a = T,uu,a - F;}aT)\y - F,)j\aTu)\ (2122)

where 7),, is a tensor of rank two. From (2.1.19) we may read off the following
algebraic properties of the curvature tensor:

- symmetry:

Ry = Rukau (2.1.23)
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- antisymmetry:

R)\,wuk — _R,u)mk = _R)\,ukv = +R,u)\kv (2124)

- cyclicity:

R)xuvk + R)\km; + R)\ukv =0 (2125)

Then (2.1.21) shows that there are only two tensors that can be formed by contracting

Ry k- These are the Ricci tensor:
Rur = 0™ Ryur = Ry

or

Rk =T — Topr + ToaTny — Tl (2.1.26)

and the curvature scalar:

R=g" R, = R! (2.1.27)

Hence the first and the second properties of G, require it to take the form:
Guw =CRu +C'guR (2.1.28)

where C and C’ are constants.

and on contraction of A with v, (2.1.27) becomes

RM/W? — leﬂf + RY =0 (2.1.29)

pknsv

Contracting this again gives

or

1
(Ry = 504 R)y =0 (2.1.30)
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The covariant divergence of G, then gives us

C
Gl = (5 + )R (2.1.31)
So the conservation of G, allows two possibilities: either C" = —% or R., vanishes

every where. Ignoring the second possibility, because ( 2.1.24) and (2.1.5) give
Gl = (C+4C")R = —8IIGT}Y (2.1.32)

So (2.1.26) becomes

1
G = C(Guo = 59 R) (2.1.33)

Finally we use the last property of G, (2.1.5) which is
V2900 - 8HGT00

or (2.1.18)
Goo = V4o (2.1.34)

to fix C. A non-relativistic system always has

T3] << [Tool
So
|Gij| << |Gool
Gy~ 0 (2.1.35)
Then equation (2.1.32) becomes
Gy = OBy~ 5uR) (2.1.36)

Substitution of (2.1.34) follows

1
0~ C(RZJ — éng)
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Ry ~ %g,»jR (2.1.37)
Since we deal with a weak field:
Guw ™ My (2.1.38)
Thus using (2.1.36) and (2.1.37)
URNTIES %77” i 1t
R, — ;R (2.1.39)

and
Ri; — R ~ UMURMU
§R - ROO ~ R
2
Thus using equations( 2.1.37) and (2.1.39) in (2.1.32) we obtain

1
Goo = C(Roo - 577003)

Goo = 2C Ry (2.1.41)

To calculate Ry for weak field we may use the linear part of Ry ..:

—_

Ryjon ~ 5(9,\u,iw = Guox — kv T Gk

When the field is static all time derivatives vanish, and the component we need
become

1
Roopoo = 0, RinO = §R00,z’j



But from (2.1.24),we have

Ry = g/\VR)\Ol/O
- nAVRAOVO
Rioio - ROOOO
Hence,
Goo > 2O(Rioio - Roooo)
|
Goo ~ 2C(§V goo — 0)

Goo > Clv2900

19

(2.1.42)

Comparing this with (2.1.18) we find that the fourth properties of G, is satisfied if

and only if C'=1 in (2.1.32),and we get:

1
G/u/ = Ruu - §guuR

with (2.1.16), this gives the Finstein field equations:

1
(R — §gu,,R) = —8IIGT,,

Contracting this with g*” gives:

R —2R = —SIIGT!

or

R = 8IGT!

(2.1.43)

(2.1.44)

(2.1.45)

plugging this in to (2.1.43),the Einstein field equations can be rewritten in the equiv-

alent form as

1
R,, = —81G(T,, — 5gWT;)

(2.1.46)
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In a vacuum 7}, vanishes, so from (2.1.43) the Einstein field equation is empty space

are
R, = 0

The Einstein field equation may be written in the form:

1 1
Ry, — 59“”R — §QWA = —8IIGT,, (2.1.47)

The term Ag,, was originally introduced by Einstein for cosmological reasons; for
this reason, A is called cosmological constant.Through out this thesis A is considered

as Zero.

2.2 Weak Field Approximation

Einstein field equations, discussed in the previous section, are highly non-linear and
hence difficult to handle [2]. However, if the field is weak ( in the Newtonian sense)
then it is natural to expect that the field equations can be adequately approximated
by a set of linear equations which are much easier to work with.We will demonstrate

this approximation in this section.

We estimate the metric g, as

Guv = Ny + h;w (221)

where |h,,| << 1 and
N = dia(—1,+1,4+1,4+1)
is the usual metric of flat space, Minkowski metric tensor. The assumption that

|huw| << 1 allows us to ignore higher order of h,,,, from which we obtain

g =" = n (2.2.2)
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where
WY = P g

Using equations (2.2.2) and (2.2.3) in (2.1.7) we get:

1
Fi\w = _(77/\p - hk”)[(mm + hp) o + Mpw + o) — (77/w + h/w),p]
1
F;);u = §np>\(hpv,u + hpu,u - h,uu,p) (223)

Now we need to solve for the Riccii curvature tensor (2.1.24):

U Apn A
Ry =Tl = Taea T 15,00 — T e

Then under this approximation,the terms that are products of two I' are order of h?
and taking this terms to be zero,we obtain:
~ A A
Ruk = Fu,\,k - P,uk,)\

or with k — v
(2.2.4)

~ A A
Rl“/ - Fu/\,u - Fuu,)\

Substituting (2.2.4) in to (2.2.5), we find
~ 1 pPA 1 PA
Ruv = [577 (hpA,u + hpu)\ - hu%pﬂ,u - [577 (hpu,v + h/w,u - huv,p)],k

1 1
Ruu = [E(hﬁ,u + h;);)\ o hlpt»p)],v - [é(hr)/\,u + h//>7V - np)\h/va)}%

1
RNV = [5(77/))%#%/»\ + hi,uu - h/u\,u)\ - hZ,pu)
or
~ 1 A A P
R.U«V - [é(DhHV + h)\,,uu - hu,,u)\ - h,u,pzz) (225)
Where O is the D’Alembertian operator defined by
(2.2.6)

A
Dh/u/ - 77p hul/,p)\
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Plugging (2.2.6) in to Einstein field equation (2.1.43) gives:

1 1
5 (Bl + By — 1 — B2 ) — = (1w + b)) R = —8IIGT,, (2.2.7)

A,pv VA P )

Compared to 7, R, h,, R is small and using R = S8IIGT from (2.1.44), then equation

(2.2.8) becomes

1 1
5 (Bl + My = iy n — 1) — 5 (0w (STIGTY) = —8TIGT,, (2.2.8)

or
Ohyw + B3 — I — 1y s, = —1611G S, (2.2.9)

where S, =T, — %m,,Tﬁ

Let us choose some particular convenient choice of a coordinate system which is

represented by the harmonic coordinate condition:
A 172 nV W
[ =g"T;, =0 (2.2.10)
Plugging Eqns.(2.2.3) and (2.2.4) into (2.2.11) we find

1
(" = NSO+ W) (Mo + )y + (Mo + o) v = (hor + ) ] = 0 (2.2.11)

Neglecting higher order terms of h, this becomes

1
577W77M(hpu,>\ + hp/\,zx - huA,p) =0

1
§Uup(h2,x + h;},,\ - hﬁ,p) =0
1

SRR~ 1) = 0

Letting © = p and hence

1
A A _
hp,A B §h/\,p =0



Wy = %hi’p
From this we can get

Moo= 5H
and

Wia = 57

Adding the expressions (2.2.13) and (2.2.14) gives

Wy s+ hoy, = B

v,Ap — YA pv

or rearranging and with p — p, this becomes
Py — By — R,

A pv viph T v

Now plugging (2.2.15) in to (2.2.10),we get

Ohy, = —1611GS,,,
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(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

Alternatively plugging (2.2.16) in to the linearized Einstein field equations (2.2.10) it

simplifies to:

1
Oy = 5iwDh = —1611GT,,,

(2.2.17)

which represents an inhomogeneous wave equation establishing the fact that in this

approximation ( far field approximation) the field equations have radiative solution.



Chapter 3

Gravitational Wave

In the previous chapter we saw that the linearized Einstein field equations of general

relativity could be written in the form of a wave equation (2.2.17):
Ohy = —167G S,

This suggests that the existence of gravitational wave in analogue manner to that
in which Maxwell’s equations predict electromagnetic waves.In this chapter we dis-
cuss the propagation, generation of gravitational wave and derive the expression for
quadrupole emission in gravitational radiation,the lowest multipole emission in gen-

eral theory of relativity and the quadrupole formula.

3.1 Plane Gravitational Wave Solution

Here we can take the Einstein field equations in a weak field limit (2.1.18)as

1
Dh,u,u - énlu,l/ljh = _167TGT;/,V (311)
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It is often convenient to work with a slightly different description of the

turbation h,, defined by

- 1
Py = by — 577Wh

This metric tensor is called trace-reversed’ perturbation because:

—
Rl = —h

I

The harmonic gauge condition (that is ,g“’TI’)V = 0) further reduces to

A =0

n
The Einstein field equations are then

Ohy, = —167GT,,
From this we obtain the linearized field equations in vacuum :

Ol = 0

25

metric per-

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

The vacuum equations for h,, are similar to the wave equations in electromag-

netism.These equations admits the plane wave solutions,

hy = eexp(ikax®)

(3.1.7)

where €, is a constant, symmetric rank two tensor and k, is a constant four vector

known as wave vector. Of course, in physical application, one uses only the real part of

this expression, allowing €,, to be complex. By the theorems of Fourier analysis, any

solutions of the equation (3.1.6) is a superposition of plane wave solutions. Plugging

the solutions in (3.1.7) in to the wave equation (3.1.6), we obtain

Oh,, =0

w =
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a7,

n hm,,a/g = 0

hywg = kol

'I’]aﬂﬁuu,aﬂ = naﬁkakﬁﬁuy =0

kok®R = 0

Since EW # (0, we obtain the condition

kok® =0 (3.1.8)

This implies that (3.1.7) gives a solution to the wave equation (3.1.6) if the k&, is null;
that is, the tangent to the world line of the photon. This shows that gravitational
waves propagate at the speed of light . The time -like component of the wave vector
is often refers to as the frequency of the wave(k, or w).The four-vector ,k, is usually

e
written as k, = (w, k). Since k, is null it means that

2 W
|k [" — == 0
If c=1,
W= k) (3.1.9)

where ? refers to k;.

This is often referred to as the dispersion relation for the gravitational wave. We
can specify the plane wave with a number of independent parameter; ten from the
coefficients , €, and three from the null vector, k,. The Einstein equations only

assume the simple form, if we impose the harmonic condition (3.1.4). Then we find

Ouhy,, =0
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@L(e“”eikaxa) =0

. y «
ze““k#elk"x =0

ke =0 (3.1.10)

This imposes a restriction on €*”; it is orthogonal(transverse) to k,. The number of
independent components of ¢, is thus reduced to six. We have to impose a gauge
condition too as any coordinate transformation which leaves ( 3.1.1) unchanged; is

very small change in the coordinate of the form
't =zt + M (x) (3.1.11)

where &" are functions of the coordinate.This will leave the harmonic coordinate
condition

Oz* =0 (3.1.12)
satisfied as long as
¢t =0 (3.1.13)
Let’s choose a solution to the wave equation (3.1.13) for & as
&, = Buexp(iky,x®) (3.1.14)
where B, are constants and &, is the same null vector as for our wave solution .This
produces of the coordinate change in our metric perturbation h,, as

hilew) — pO) — ¢, — €., (3.1.15)

where the new h,, is still small and we are still in acceptable coordinate system.This
change is called a gauge transformation,which is a term used because of the analo-

gies between (3.1.15) and gauge transformation of electromagnetism.Then the gauge
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change in (3.1.15) induces a change in the trace-reversed perturbation.

by, =h," = énw,h
—(New) —(0ld) 1 o
hW = hw/ — €y — €py — 577“”(h( Id) 25/\)
—(New —(Old
h/l(l’y ) = h}(U/ ) - 6”7“ - 6/”’7’/ _'_ nHV€A7)\ (3-1-16)

Using equation(3.1.14) and dividing out the exponential factor common to all terms

gives;
e = e — ik, B, — ik, By, + i, kB (3.1.17)
Then B, can be chosen to impose to two further restriction on 5%}6“’;
elee“’)“ =0 (traceless) (3.1.18)
and
glNew) — (3.1.19)

The equations (3.3.10),(3.1.18) and (3.1.19) together are called the ’transverse -
traceless ' (T'T) gauge (or sometimes the radiative gauge). The name comes from the
fact that the metric perturbation is traceless and perpendicular to the wave vector.

Therefore, applying (3.1.18) means

e 4 2ik\ B> = 0 or (3.1.20)
Z’ O
kB = §gl§ld>“ (3.1.21)

Then we can impose (3.1.20), first for v = 0;

1
glotd) —ZikOBo-i-gik?)\B)\ =0



29

O - 1 O
el _ 9ik,B, + Qgg D — (3.1.22)
or
B, = —L(ctoid 4 Lotoiam (3.1.23)
° 2k, \ % 27K

Then impose (3.1.20) for v = j

e _ik,B; —ik;B, = 0

o]

i = By — ik - (€3 + 1/210)] = 0 (3.1.24)
B _ i _op sl o ( (old) L oty (3.1.25)
T e A R o o

To show that these choices are mutually consistent we should plug (3.1.25 )and

(3.1.23) back in to (3.1.18) and shows that

eWNew) — o _9¢ ko + 2¢;k' = 0

Therefore, choosing the harmonic gauge implied the four conditions(3.1.10) brought
the ten independent components in ¢,,, down to six and the remaining gauge freedom
led to the one condition (3.1.18) and the four conditions (3.1.20) bring us to two
independent components. We have used up all of our possible freedom so that these
two independent elements represents the physical information characterizing our plane
wave in this gauge.By replacing new components 5%%) simply as €, ,this can be seen

more explicitly by choosing our spatial coordinates such that the wave is travelling

in the 2 direction :that is,

k' = (w,0,0,k%) = (w,0,0,w) (3.1.26)
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Where k3 = w because the wave vector is null.In this case,
kten =0 and g, =0

together imply
€3, =0 (3.1.27)

The only non-zero component of €, are therefore €11, €12, €21andeg. But ¢, is trace-

less and symmetric ,so we can write it in matrix form as

0 O 0 0

0 €11 €12 0
S

0 €2 —enn O

0 0 0 O

Thus ,for a plane wave in this gauge travelling in the #3 direction, the two com-
ponents e17andejs completely characterize the wave.Ofcourse ,we have been working
with trace-reversed perturbation fzu,, rather than the perturbation h,, it self ; but
since BW ( because €, is),and is equal to the trace-reverse of h,,,in trace condition
Eq(3.1.18) we have

hiy =h.> (3.1.28)
So we can drop the bars over h,, as long as we are in this gauge.It follows that
h,. comprises two degree of freedom associated with the two polarization states of

gravitational radiation:

00 0 0
0 hy hy 0
Dy = L. (3.1.29)
0 he hy O
00 0 0

or

b = hye), + hyep, (3.1.30)
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in terms of the two polarization tensors (—::[V and €,,,show for propagation along the

z-direction.

3.2 Generation of Gravitational Wave

In section 3.1, we obtained the plane wave solution to linearized Einstein’s field equa-
tions.In this section we discuss the generation of gravitational radiation by sources.For

this purpose it is necessary to consider the equation coupled with matter,
Oh,, = —167G S, (3.2.1)

Here we will make some simplifying ,but realistic ,assumptions.The assumptions are
e the time dependent part of S, (7,¢) is in sinusoidal oscillation with frequency w

,that is the real part of

S (T, t) = /sl“jy(:c)ei‘“tdw (3.2.2)
and that the region of space in which S,, # 0 is small compared with the wave-
length (i—”) of gravitational wave of frequency.This assumption is not much of re-
striction,since a general time dependence can be reduced to sum over sinusoidal mo-
tion by Fourier analysis.In addition ,many astrophysical sources are roughly peri-
odic;pulsating stars,pulsars ,binary system.
e the typical velocity inside the source region should be much less than one (2 xsize of
the region).That is slow motion assumption.We now consider the gravitational radia-

tion emitted by an isolated far away source .The fourier transformation of the metric

perturbation }_LW is

~ 1 _
hw(w, @) = — [ dtexp(iwt)h,,(t,7) =0
V2 g
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or its inverse

- 1 e
hu(t, ) = \/—Q_W/dwexp(—zwt)h(w,x) (3.2.3)

Then plugging Eq.(3.2.2) and the second equation of Eq.(3.2.3)in to Eq.(3.2.1) the

wave equation take the form :

(v? - g—;) {\/LQ_W / dwea:p(—z'wt)l:z(w,f)} — 167G, / T(w, 7)ewp(—iwt)dw

(V2 + w)h(w, T) = —167G, T (w, T) (3.2.4)

If the sources is considered as a superposition of point sources at #”,then each source

potential G(Z, ") should satisfy the relation:
(V2 +wHG(E,7) = —167G0|7 — 7| (3.2.5)

where §|Z — | is the delta function source.Multipying Eq.(3.2.5)by T'(w,#’) and

integrating it to get;
(V2 +w?) /Tuu(w,f)G(f, d*r' = —16700/@0(@0,:5")5\;3— o (3.2.6)
Comparing this with the left hand left hand side of the Eq.(3.2.4) we get,
Dy (w, T) = / T, () d* (3.2.7)

To find the solution ;Luy(w, Z), first let us determine G(Z, 7' ). Let r be the spherical
polar radial coordinate whose origin is chosen inside the source.So ,far points out side

the source ,we,have

1 d?
T—Qw(’rG) +w2G =0

Integrating this gives :
A .
G = —eFr (3.2.8)

r
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Thus ,combining these results follow:
~ T ) e
By (w, T) = A / T, T) tirtaat g (3.2.9)

or
// ul/_»w_év —zwte:l:iwr (@,2") dwd3 / (3210)

Next to determine the value of the constant A ,taking (3.2.4) the singularity point
r =20 ,we find
1
AV2( ) + Aw? (

r

) ~ —1611G,6|% — |

Integrating this over I’ gives:

21\ 3 o [P e T B
AV (;)d '+ Aw = —1611G, | 8% — 2'|d°2
1 . d3—*/
A/V(_) .de/+Aw2/ f — —16IIG,
27 3
—A/rd Aw/dx — 161G,
r3 r

Neglecting terms of order r~! term and higher order ,this becomes
—A/dQ = —16I1G,
41TA = 1611G,

A= 4G, (3.2.11)

Plugging (3.2.11) in to (3.2.10),we obtain

1/ e—uu(t:Fr)
) = 4G, / / o 5 dwd’x’ (3.2.12)

I

But
/Tvuu<w7 J—:»/)e—iw(tilir)dw _ /Tuy(w7f,)e_th



/Tw(w,f/)e_iw(tw)dw = /Tuy(f/,t Fr(x, 7))
where t/ =t Fr
Thus Eq.(3.2.12)leads to

T T, v _)/7t _)7 v’ )
h‘wj(f? t) — 4G0/ “ (:E + T("E T ))d?)l’/

—

|7 — 7|

There fore the time retarded solution is

—,

T Tl/ lat_ _’7 i —
T (1) = 4G, / G Jf” Dl
T— 2
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(3.2.13)

(3.2.14)

This is the expression for the gravitational waves generated by the source.From the

expression(3.2.14) ,we observe that the disturbance in the gravitational field at (¢, Z)

is the sum of the influences from the energy and momentum sources at the point

(t.,7") on the past light cone . As for plane waves we studied in sec .3.1 we have

here the freedom to make further restriction of the gauge ,so that in the TT gauge

we have the simplest form of the wave. Therefore using (3.1.28) (because h;; and hyy,

differ only in the trace, they have the same TT parts)(3.2.14)becomes:

BETy(@,t— 2 — )]
it = Jac, [0

|7 — 7|

which may be approximately written as
1 TT
h]T];T = 4G0 |:; / dg.f,irjk<f/,t - T):|

Expanding this to

4 Go

TT
T =
T

1
([ ez s
+ [ Ta(@ t —r) + 2 Ty’ t — 1)),

+ o T @ = )] )

(3.2.15)

(3.2.16)

(3.2.17)
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But
o(x'T*) k= 6, T* + 2' T =TV — &' T (3.2.18)

.($iijkl),lk — [(5;33] + a:i(Slj)T’“l + xiij,lld],k
= [T¥2) + TWa' — 2’2/ T), k
= 2'TF + 6T + T2’ + TH G,
- 6,’;953'77’2" — xzéiTﬁo — xl:c]T’f,%
= /TP +TY —2'T +TY
— TP — 2T 4 2"’ T (3.2.19)

Plugging (3.2.7) in to this equation gives

(@' T) e = 2TV = 2(2'T% + &/ TY) + 2"/ T

("I T*) o = =279 — (2'T9% 4 29T, + xzx]T?}Z
Rearranging this gives :
(2’2’ T%) = 2T — 2(a'T7* + 2/ T™) ), + (¢'2/T™) (3.2.20)

and the last two terms in (3.2.17) vanishes so it becomes

2 00 ( = T
h;kaT = = [dgf'Tm(x, t— T)x;xu
TT 2 d2 3 =/roo( /N T

"

2
Wi == [Ijk(t —r) (3.2.21)

Where
L, = / dPF T, (3.2.22)
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is referred to as the moment of mass distribution and dots represent the time deriva-
tives.It will in fact ,be more convenient to work in terms of the trace-free or reduced

quadrupole moment tensor of the source distribution which is defined by

_ 1 /
+ = /d?’f’Too(t —r)(2)r), — §5jka: %) (3.2.23)
or
_ 1
=1 - §5jk1 (3.2.24)
Where [ = I; is the trace of the original tensor.One immediately see that + is

simply the traceless version of I;;,. As a result we may write the transverse - traceless

gravitational field tensor or the gravitational wave amplitude as

. 2 1o
W= BET =2 [ E )

:|TT
r

(3.2.25)

Thus the gravitational wave produced by an isolated non relativistic source is
proportional to the second derivative of the quadrupole moment of the matter density
distribution .By contrast, the leading contribution to electromagnetic radiation comes

from the changing dipole moment of the charge density.

3.3 The Energy of Gravitational Wave

3.3.1 Average Energy -Momentum Tensor

Let us consider Einstein’s field equations (in vacuum) to second order ,and see how the
result can be interpreted in terms of energy momentum tensor for the gravitational

field.If we write the metric as
Guv = Nuw + h,uzz

and the Ricci tensor that is linear in h,, is given by

1
RELIV) =35 [h:\\,uk - h;);,)\k - him + i (3.3.1)
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So the exact Einstein equations in this approximation can be rewritten as

1
R0 = SR = —8TG(Tu + ) (3.3.2)
where
P Ry — 2g. R — RO 1 Ly pn 3.3.3
w =\ ]TIG v = 5 Jur N uu+§77w/\ (3.3.3)

and the tensor t,, is the energy momentum tensor of gravitational field (in weak field

).Agian t,,, is conserved in vacuum:
thy =0 (3.3.4)

We can compute ¢, as a power of in h and find that the highest term is quadratic :

b 2 i S B+ S B + RE) — bR (33.5)
where
R} = % (P = Peaur = Ppvior + Puka)
+ i (217, = Dia) (R = Pua) (3.3.6)
— % (haak + Pakr — hixa) (R0 + RS2 — hSL)

Then dropping terms having R,(}l,) (since RE}V) =0 in vacuum ) (3.3.5) become:

1 1
ty & —— R2 _ =
K {IIG | # 2

1

N R (3.3.7)
Plugging the plane wave solution in to R,(?,,) to calculate :

(RQ)Y = Re(e™* (kukxgwy — knkpepw))
+ (k,\ez)*(kusﬁ + kel — kPe)

1
— é(kka,,p T kpgk,,)*(k:keﬁ + kﬂg’” — /{:"52)
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Using the harmonic condition ,this will be reduced to

k k 1
2)\ __ whiw Ap* A2
(R)) = =5~ (8 = SlEl ) (3.3.8)
But
L1
1" (RE)) = Kk, (e”’ - §|e§|2) (3.3.9)

Since k”k, = 0.Therefore , the average energy momentum tensor of the plane wave

will be
1
-~ (R®
<t,lw> STIG <R,uu >
or
k. k, . 1
(tuw) = 16%(} (5” — §|5§|2) (3.3.10)

in particular for the wave travelling along z-axis ,3 the average energy-momentum

tensor takes the form
B k. k.,

(tw) = gres Llen + lel’] (3.3.11)

3.3.2 Derivation of Quadrupole Formula

Having the average energy- momentum tensor of a gravitational wave,in sec 3.3.1,an
explicit calculation on far from the source gives[29]
2

b = e (DuhasOyhas) (3.3.12)

Therefore,for a plane wave ,using T'T gauge ,the energy density in gravitational wave

is
2

_ ¢ TT ; TT
too - 32HG< jk,o jk7o>
< rrirr
too - W(hjk hjk > (3313)
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or
2

tOO
16I1G

(h% + h2) (3.3.14)

To calculate the rate at which the physical system loses energy,we equate it to the
energy flux of the emitted gravitational radiation evaluated on a sphere of large radius

r centered at the origin .Thus ,if F is the energy of the physical system ,we have

E
Oil_t = —r? / o (€,)d (3.3.15)

Where t°" is the gravitational wave energy flux at a radius r in the radial direction
é, and df2 is an element solid angle.
In general jusing (3.3.12) we may write the gravitational energy flux in a unit spatial

direction 7 as

(1) = tn,

4
= (@h ) hf,f V1,

3211G
ct -

(i) = 32HG<ath T(n V)hfkT) (3.3.16)
where 0; = 8t Thus taking n to lie in the radial direction and writing 0, = % ,We
have

t(e,) = 32; G@thT O:hiyl) (3.3.17)

Using the expression in (3.2.24),the derivations in (3.3.17) for the energy flux are

given by
2G - T
ol = = [ijk(t - 7’)] , (3.3.18)
2G - T 2G T
8TthkT = W |::l:jk(t—7”)i| —f—E |::|:Jk<t—7’):|

... T
O ~ = [ijk(t - r)] (3.3.19)
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where ,in the second equation ,we have retained only the term in 1/r which dominates
for large r . Plugging these expression in to (3.3.17), we obtain

0i /A G =TT =TT

Since at any point on the sphere the direction of the gravitational wave propagation

. . =TT —
is radial, the transverse-traceless, &, is related to £, as

— 1 —
:l:;[kT = (p?pz - §pjkpab) Tab (3.3.21)

where

P =t - el
is the spatial projection tensor which projects tensor components on to the spatial
surface orthogonal to the radial direction at any point .For convenience we now use
(3.3.21) to rewrite the product of transverse traceless quadrapole moment in terms
of reduced unit radial vector by z;:

=TT TT i J R it J

T E = [PjaTapor — §pjkiabpab] [PjcEcapar — §pjk:j:cdpcd]
= PacPbdTapTcd — §pab:|:abpcd:|:cd;lpjkpjkiabpabicd
= PabPodTabTed — §pab:|:cdpcd:|:cd

Since the last two terms cancels ,it becomes

=TT TT piad

:l:jk :i:jk = (6(16 — .’/lZaZEC) (5bd — xbd):l:ab:i:cd — 5 [maxb:i:ab} (3322)

But

(5ab — Jfaxb):tab = (5cd — .Tcl’d):l:cd (3323)

for gauge moving along é3.Therefore

TTTT - 1, =

Ep T = TavFa — 20ateEap T + 5 (TaE(ab)zs) (3.3.24)
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Thus,using (3.3.20), we have

<:|:jk:|:jk — 2wt + E-zjk:l:jkl'lxmilm) (3325)

2 0r
= ——
" 8II ¢?

and the total power radiated become

dE
22— 2 [ gergn
a /

E - _8_1—[5 <:tjk:|:jk - iniijijkxk + §l‘jl‘kijk$ll‘m:f:lm> (3.3.26)

Since the reduced quadrupole moments £ is defined as an integral over all space ,it

does depend on the angular coordinate and so may be taken outside the integral . The

remaining angular integrals are easily evaluated as follows.

/dQ:4H

Ajk = /dQ]?]JZk = Aém
and

Bjklm = /dQ:CjilfkiL'ﬂ?m = B<5jk5lm + 5jm5kl + 5jl§km)

where A and B are mutual coefficients.To evaluate the last two integrals we proceed

to contract all indices in the expressions.That is
Al = / Q) = 3A

The result is A = % In the same way find B = %

Now

411
411

/dQ{L‘jZL‘kZL‘lIm = E((Sjk(slm + 5jm5kl + 5j15km) (3328)
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Using these equations and (3.2.24) becomes

dFE AI1 G| e e 2 e e
U - T as (Eintjn) — §<1ijijk
+ %<ijkilm>(5jk5lm + 0Ok + 6j10km,)]
dE 1G 2 2
@~ 2el T3 ) < Eada>
Then the total power radiated becomes
dE 1G =
— =":3 < :I:ka:]k > (3.3.29)

In the literature this equation is generally denoted as quadrable formula

3.3.3 Gravitational Wave Back-Reaction

In the preceding subsection, we have discussed the gravitational wave energy loss in
terms of the the radiation that reaches a distant observer. Here it is desirable to
model a direct back reaction that the wave have on the sources. It is a common to

model the radiation reaction acting on a body of mass m as local force
F'" = —mVe¢'™ (3.3.30)

and the Burke-Thorne radiation reaction potential

16 6

¢ = = 5T SR (3.3.31)

In order to be consistent this formula must lead to the energy loss we predict from
the quadrupole formula(4.3.29). Let us consider for a system of N particles , the rate

of energy radiated is given as

Z dﬂ FNer (3.3.32)
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Plugging (3.3.30) and (3.3.31) into (3.3.32) gives

dE dz 2G

. T(5)
&2 q Mgt E
N
dE 2G_(5) d N N
&= 5ok 2y g )
N
dE 1G__5d
N

But from (3.2.21) the moment of inertia for the system of particles is given as

Ly =Y myalzy (3.3.34)
N

and under "T'T” gauge condition, this is simply given as

Ly =T =) mya)ay (3.3.35)
N
Therefore, using this equation the energy flux becomes

dE  1G_)
_ _1Gz0ze

- SERE (3.3.36)

where '+ k = (Z N me z). At this point we recall that the rate of energy loss
we deduced qudrupole formula required averaging over at least one orbit. Carrying
out this averaging essentially corresponds to integrating in time over an entire period

and we can readily use integration by part as

([ iy = G GEED



44

Since the average of the first two terms are cancels out , the average rate of energy

flux is given as

(=) = —<(Eatu) (3.3.39)

Finally if we account for this formula represents the energy change in the system
while our previous result described the energy carried away by the waves we see that
the two pictures are consistent. Further let ua show that there is no gravitational
waves radiated from monopole and dipole moments. Using the energy momentum

conservation law

™, =T",=0 (3.3.40)
This may be rewritten as

T o +TH ;=0 (3.3.41)
which can also be computed as

T 0 +T",;=0 (3.3.42)

T 0 +T7 ;=0 (3.3.43)

Multiplying (3.4.43) z*, integrate over all space, and neglecting the surface terms on

the assumption that T" goes to zero sufficiently at infinity, we obtain

/me%oz @/fmww (3.3.44)

= /d%kaﬁ,i
= — (kaﬂ — /d%xk,i le)

/d?’ijk = 8t/d3xkaj° (3.3.45)

or
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where we have used also

a* = oF (3.3.46)
Now multiplying (3.4.42) by 272" and integrate in the same manner to get
/d?’xxjkaOO,o = at/d3xxjka00
= — /dsazxjkaOi,i
= — [xjkaOi — /d3x (xj,l- x4+ :I:jxk,i) T
or
/d?’x (a:kTOj + ijOk) = 8t/d3xxjka00 (3.3.47)
Since T7* is symmetric in jk we may write (3.4.45) as
/ PaT7* = %at / dPx (2T + 2T°F) (3.3.48)
Plugging (3.4.47) into (3.4.48) gives
/dngjk = %8f/d3xxjka00 (3.3.49)
If we multiply (3.4.43) by z* and integrate, we obtain
/dekaOO,k = 6t/d3xka00

= —/d?’m:kTOi,i
= — <ka60¢— / d%xk,iTGOz’)

/ BxT% = 9, / BT (3.3.50)

or
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Defining:
M — / A (3.3.51)
ES = / dPra* T (3.3.52)
F* = [ dBaalabT™ (3.3.53)

as mass, monopole and dipole moment of the mass-energy distributions,then we have
from (3.4.49) and (3.4.50)
/ BT = %é‘jk (3.3.54)
and
/ BaT% = £ (3.3.55)
where the dot represents d;.Then from (3.4.51) and (3.4.43) we have

M= / PRI e / R A (3.3.56)
This can be expressed as surface integral using Gauss law.So with the above assump-
tions
M =0 (3.3.57)
Likewise by the same argument

T = / dBarT% = — / BrT™ ;=0 (3.3.58)

This indicates there is no gravitational wave emitted from the monopole and dipole
moments. Then from equation (2.4.39) it follows that the total luminosity of the
source is given as

Low = o < Epy >
gravitational waves not only carry away the energy, but also angular momentum

which will be derived in the next chapter.



Chapter 4

Lifetime Estimate of Neutron Star
Wobble

In this chapter, before solving the problem, we discuss the wobbling of neutron star,
derive the gravitational radiation reaction torque using the radiation reaction poten-
tial and using the mass quadrupole expression for energy and angular momentum

balance.Then we find out the numerical lifetime estimate of a neutron star.

4.1 Wobbling of a Neutron Star

A rotating neutron star, such as pulsar, will emit gravitational waves as a result of
small deviations from symmetry around its rotation axis or if it remains axisymmet-
ric so long as it has a time-varying quadrupole moment.A precessing neutron star
was first discussed as a source of gravitational radiation by Zimmermann(1978)and
Zimmermann and Szedenits(1979), who showed that the mass quadrupole gravita-
tional radiation was produced at frequencies ¢ and 2@[10]. So one class of emission
mechanisms for gravitational waves from rotating neutron star is free precession i.e.
the wobble of neutron star which has misaligned rotation axis with respect to its

symmetry axis[1].Here, we describe the dynamics of a rigid body rotation i.e. the
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classical problem of of free Eulerian motion (Landau and Lifshitz 1960; Greenwood
1980).

Consider an axisymmetric rigid body with principal axes lie along é1,é; and é3 and
principal moment of inertia Iy = [y # I3. J is the total angular momentum of the
body, misaligned from é3, which is fixed in inertial space because no external torques
act.fig.1.3

An inertial coordinate system is partly aligned by specifying that the unit vector k

be parallel to J. The moment of inertia tensor of a rigid body as given in(3.2.22) as,

where i,j equal 1,2 or 3 for x,y and z respectively , » = x and ¢;; is the kronecker
delta.

The set of body coordinate system z’ is related to an inertial system z in terms of
Euler angles as

' = Rz (4.1.2)

where
R(¢,0,¢) = B(y)C(0)D(o) (4.1.3)

and (¢, 6,1) are Euler angles which describe the orientation of the rigid body (Landau
and Lifshitz 1976). The three separate transformations are given in three separate
coordinate system as[2]

cosyp  siny 0

B(y) = | —siny cosyp 0 (4.1.4)
0 0 1
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1 0 0
C(0) =1 cos® sinfd 0 (4.1.5)
0 —sinf cosf
cosp sing 0
D(¢) = | —sing cosp 0 (4.1.6)
0 0 1

Therefore, using these matrices, the transformation matrix (4.1.3)can be obtained

as
costyp  siny 0 1 0 0 cosp sing 0
R(¢,0,¢) =1 —sinyp cosyp 0 cosf siné 0 —sing cos¢ 0
0 0 1 0 —sinf cosf 0 0 1

(4.1.7)

which is equal to

cospcosyy — singcosfsiny  singcosy + cospcosfsiny  sinfsiny

R(9,0,¢) = | —cospsiny — sinpcosfcosty —singsiny + cospcosfcosyy  sinfcosyp
stnfsing —sinfcoso costl
(4.1.8)

Then the components of the moment of inertia tensor in the inertial coordinate
system is given as
and by spectral theorem, it is possible to find a cartesian system in which it is diagonal,

have the form;

Ii 0 0
I=( 0 I, 0 (4.1.10)
0 0 I3

where the coordinate axes are called the principal axes and the constants Iy, I5

and I3 are called moment of inertia.
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Thus using (4.1.8) and 4.1.10) the moment of inertia tensor (4.1.9) is explicitly given

as

I (cosypcosp — cosBsingsini)? + Ir(—sincosd — coslsinpcosi)?
I3(sinfsiny)?

I1(cos*pcos*p + cos*Osin’psinh — 2cosfcospsingcosdsin
sin®cos®g + cos*Ocos*hsin®g + 2coslcospsindcospsini)
I3(sinfsiny)?

I (cos*pcos*p + sin*ipcos® ¢ + cos*Osin®psin® + cos*Ocos*sin’p)
I3sin?0siny

I1(cos*¢ + cos*0sin*¢) + Izsin*0sin’

I1(cos’¢ + I (1 — sin*0)sin’¢ + I3sin*Osin’p

I1(cos®¢ + sin*¢p) — %(Il — I3)sin*0(1 — cos2¢

1 1
I, — 5([1 — I3)sin*0 —1—5(]1 — I3)sin*0cos2¢

-

1
— (I — I3)sin*0cos2¢ + constants 4.1.11
2
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ol

L [(cospcosth — cospcoshsini)(singcosy — cospeosfsiny)

(—cospsiny — singcosfcosy))(—singsini

—cospcosfcosy)] + I3(sinbsiny)(—sinbcosy)

I (singcospcos®yp + coshcos® psinipcosyy — coshsin’psinipcosi) (4.1.12)
cos*Osinpcospsin® + singcospsin®y — coscos® psinihcosi

cosfsin’¢sinihcosy — cos*Osingcospcos®yh — Izsin*0sindcose)

I (singcospcos®yp — cos*Osingcospsin®y + sinpcospsini

cos*0sinpcospcos*y — Izsin*Osingcosd

I [singcosd(cos®p + sin*) — cos*Osinpcosg(sin* + cos*)] — Izsin*Osingcose
I singcosp — I sindcospcos®d — Izsinpcospsin’l

%Ilsin&b - %Ilsm&ﬁ(l — 5in%0) — %[3sin263in2¢

%Ilsianb — %]1sin2gb + %Ilsin298in2¢ — %Ilsin293in2¢

1

5(11 — I3)sin*0sin2¢ (4.1.13)

Lis = L(sinfsiny)(cospcosy — cosbsingsiny) + (sinfcosi))
(—cosgsiny — cosOsinpcosy))] + Izsingsinfcosd
= I (sinfcospsinipcosy) — sinfcoslsingsiny — sinfcosg
sinycos — sinfcosfsingcos®)) + Issinfcosfsing
= —I;sinfcosfsing(sin*y + cos®y) + Izsinfcoshsing
= —I1sinfcoslsing + Issinfcosfsing

= — (I — I3)sinfcosbsing (4.1.14)
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Iy = §L[(singcosy + cospcoshsini)? + (—singsiny + cospcosfcosp)?] + Iz(—sinfcosp)?
= I[sin®¢cos® + cos*pcos*Osin®y + sinpsin*i + cos>pcos>Ocos®)
+  2singcospcoshsinicosy — 2sinpcospcostsinicosi] + Izsin®Ocos®d
= Lisin’¢ + Lcos*cos’ ¢ + I3sin*Ocos’
= ILisin*¢ + I, (1 — 5in®0)cos® 4 I3sin*Ocos’¢
= Lisin¢ + Licos’p — I, sin*0cos* ¢ + I3sin*fcos® ¢

= I, — (I} — I3)sin*0cos*¢

1
= I — 5(1'1 — I3)sin*0(1 + cos2¢)
1 1
= ]1 — 5(]1 — ]3)32'7120 —5(]1 — Ig>6082¢)
1
= —5(11 — I3)sin*0C0s2¢ + constants (4.1.15)

Ly = L[(singcosyy + cospcoslsiny) + (—singsinyiy + cospcosfsiny)
(sinfcosd)| + I3(—sinfcosg)cosl
= I [singsinfsinipcosy) + cospsinfcosfsini
—  singsinfsiniycosy + cospsinfcosfcos*p] — Izsinfcosfcosg
= Iisinfcosbcosp — I3sinfcosbcoso

= (I — I3)sinfcosbcosp (4.1.16)

Iz = L[(sinfsiny)® + (sinficosy)?] + I3(cosh)?
= [,5in?0 + I5co0s*0
= Lsin*0 + I3(1 — sin0)

= [3 -+ ([1 — Ig)S’in2¢9

-~

= constants (4.1.17)
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Then the power radiated (3.3.29) can be expressed in terms of the wobble angle 6 as

dE 1G =
- EE < FuFn + 2F10F 1 + 2F15F1s + ForFon + 2F0sFns > (4.1.18)

Using equations (4.1.11)-(4.1.17),(3.2.24) and taking the third time derivatives these
equations give:

dE 1G
o - e < 16 & I?¢%sin*0sin®2¢ + 32 A I*¢0sin*0cos?26

+ 2 A I?¢5sin0cos*0cos®p + 16 A I*¢0sin*0sin®2¢
+ 2 A I?¢%sin®0cos®0sin’¢ >

dE 1G

— = I?¢° < 32sin*0 + 2sin® 4.1.1
o 55A ¢° < 32sin*0 + 2sin*0cos’ > ( 9)
or
dE 1G
P A T2¢55in?0(16sin0 — cos0) (4.1.20)

Now it is standard result from the classical mechanics that the body axis é3 precesses

around .J with angular /precession frequency:
o= (4.1.21)

with €3 maintaining a constant angle with respect to k. In addition, the angular

velocity vector precesses about é;3 with angular frequency:

e . 1—-15/1 e
b = ey = ( 3/[1)J6089€3
3

(4.1.22)

where 6 is the wobble angle and ¢ is also called the intrinsic spin frequency of the
star or body frame precession frequency.

The total angular frequency & can be written as the sum of the two terms as

4+ (4.1.23)
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or
& = eés + ok (4.1.24)
We write the kinetic energy,E stored in the body as

1
E = 5(1193 + L5 + 1303) (4.1.25)

Lastly we obtain

J?(1 — AI/I3c08%0)
21

where AI = I3—1;. When AT > 0,the star is said to be oblate and when is AT > 0,it

E = (4.1.26)

is problate.Ofcourse, the oblate case is the more physically plausible.

4.2 Gravitational Radiation reaction Torque

Here we derive the reaction torque due to the emission of gravitational radiation from
a wobbling neutron star by adding the Burke-Thorne loccal radiation reaction force
to the equation of motion.The gravitational radiation reaction problem was first ad-
dressed by[7],using local formulation.To examine how the emission of gravitational
radiation leads to a loss of angular momentum, the concept of the gravitational radi-
ation reaction potential ®" (Misner et al.,1973) is used.

The Burke-Thorne radiation reaction potential at a point x is given by|[6]:

G .
' — ﬁx’xkiﬁ) (4.2.1)

where £;; denotes the trace-reduced quadrupole moment tensor and the superscript
5 represents the 5 time derivatives and the cartesian coordinates x; are centered on
spinning mass. Note that £, is related to the moment of inertia tensor, I, by as
referred in section 3.2 as:

_ 2
i = L — 50l (4.2.2)
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The radiation-reaction force,F"" corresponding the energy loss given in (3.3.27) can

be written as a gradient of the Burke-Thorne radiation-reaction potential,®"" as
_)
F'"=—mVao™ (4.2.3)

where m =Yy my = [ pd®z is the total mass of point particles of the body.
Thus in the absence of any dissipative mechanism other than gravitatiional waves
emission, the angular momentum loss rate/the radiation-reaction torque can be cal-

culated as

(iljl = /Eij]gl’jFI:Td?)I (424)

where €;;is the Levi-Civita symbol and F}" is the radiation-reaction force on a source

is given as
N, —
F,'"m=—mV®" = —me¢"", (4.2.5)
and
1G —
Vo = ?(gﬂnkzlﬂ:,ﬁ?)) (4.2.6)
o 2G

Thus using (4.2.6),the total angular momentum loss rate becomes

dJ; 2G
dJ; 2G
i —%eijki,(j)/pxjxld% (4.2.9)

But the quadrupole moment of inertia tensor for a system is given as

1

£, = /p[xjxl - 5(5]- (z)?]d*x (4.2.10)

and using TT-guage condition, as used in the previous section, this equation becomes

S :/pxjxld?’x (4.2.11)
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Now using (4.2.11)in (4.2.8) it becomes

dJ; 2G
- =% —enEiEy (4.2.12)
Taking two integrations of this equation by parts, we find:
dJ; 2G _d d*
Ndt = ———eyr | E Tp)dt
/ e Bes Ik / it g (g Tr)dt

26  __ d* d__ _ d*

= e 5€ij[:|:]ldt4j:kl /(dtiﬂ)<dt4 +11)dt]
2G __ dt_ d_ &P _

= T 5Ezgk[ijl@ikl — [ﬁiﬂ%ikl
d? d?

— /(ﬁi )(dt3 k) dt]] (4.2.13)

After averaging (4.2.13) over several periods,since the first two terms on the right

hand sides cancel each other,the gravitational radiation-reaction torque become

([ Gy -

and lastly dropping the integration

dJ;

dt
dJ;

dt

2G d? d3
(~ oz / (CED (o E,

2G d? d?
~ el [ GEn) (G

_ﬁﬂ'jk@:jlikl)

w)dt])

+10)dt)

2G

~ £ € (E) ()

2G T (4.2.14)

where the dots indicates the time derivatives. Now, it is necessary to calculate the

radiation-reaction torque, (4.2.14) for a precessing neutron star in terms of the wobble
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angle,f.Hence we find

C;—i = —?—g[&nz(.i_.uizﬁ + 6321<.i_.21i11>]
= 2T — (k)
_ —g—g[rn_zﬁ — (EnEn) + (Frofa)
- <:.i:_'22':i:_'12> + <i13§23> - <I23£13>] (4.2.15)

By making use of equations (4.1.11)-(4.1.17) and finding the second and third time
derivatives of the corresponding moment of inertia components, we can find each term

in equation (4.2.15) as

TuEx = Eufa
= (=2¢% A Isin®0cos2¢)(—4¢%) A Isin*0cos2¢)

= 8¢° A I*sin*fcos*2¢
In the same way:

ﬂz;glﬂz;ll = —8¢'5 A Isin*0sin®2¢
:'l:_‘lg'j:;QQ = 8¢'5 A I*sin*@sin®2¢
3:_‘22;12 = —8qb.5 A I*sin*0cos®2¢
:.i:_.lg.:t;gg = <ﬁ5 A I?sin*0cos*Osin*

Tyt = —¢° A I*sin®0cos*0cos*¢
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Plugging these expressions into (4.2.15),we obtain

Ccli_i = §€[<8¢5 A Isin0cos*2¢) — (—8¢5 A I*sin*0sin?2¢)
c

(8¢° A I*sin*0sin2¢) — (—8¢5 A I*sin*0cos*2¢)

<¢§5 A I?sin*0cos*0sin’¢) — <—$5 A I?sin*0cos*0cos®¢)]

_ gg[@& A Psint0)((cos?20) + (sin?20)) + (865 A I2sin*6)
((sin?2¢) + (cos*2¢)) + (A I*sin*Gcos®) ((sin*0) + (cos®0))]

= gg [16¢° A I*(sin*0) + 65 A I*(sin*0cos*0)]

= —g—g A 2§ (sin0) (16 (sin0) + (cos?0))

Therefore, the rate of angular momentum loss in terms of the wobble angle.f, becomes

dJ 2G -
— = —=— A I’¢Psin*0(16sin” ? 4.2.1
7 s A I*¢Psin“0(16sin°0 + cos“0) ( 6)

Alternatively, the radiation torque can be obtained from the power radiated (4.1.20)

from a gravitational waves emitting sources as[35]

dJ dE/dt
= 4.2.17
dt  do/dt ( )
Plugging the expression fOr E into this , it gives
dJ _ 26 A I2¢55in%0(16sin20 + cos20) (4.2.18)
dt )
which is equal to
2
% = —5—662 A IP§sin?0(16sin0 + cos?0) (4.2.19)

4.3 Wobble Evolution Equation
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Figure 4.1: For the rigid body the gravitational radiation reaction torque T lies in
the reference plane.It acts perpendicular to the symmetry axis.

4.3.1 By Using Radiation-Reaction Torque

Considering for axisymmetric rigid body, the symmetry axis of the deformation lies
along n which moves in a cone half angle # around the angular momentum vector J
(fig) with the precession frequency b = J /1.

The precessional motion of the body is then specified by the pair of parameters
(0, (ﬁ).We need to find the effect of the torque on the parameter # which is the wobble
angle.
The action of the torque has two parts;the component along J acts to change the iner-

tial precession frequency. If the torque causes the magnitude of the angular momen-

tum to change at a rate of f, then the precessional evolution equation (i.e.following
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from the differentiation of ¢ = J, /I1) can be given as

. J
= — 4.3.1
b=+ (431)
or substitution of .J in (4.2.16) gives
. 2G A T* . .
b= 55T $5s5in*0(165in60 + cos*0) (4.3.2)

and the component of the torque projected into the reference plane which lies perpen-
dicular to J acts to change the wobble angle.If J,,, is the component of the angular
momentum perpendicular to the symmetry axis n then differentiation of the relation,

i.e using fig 4.1 :

. JJ_n
0=— 4.3.3
sin N ( )
according[28] this leads to
. T3 T'cost
0=— = — 4.3.4
7 7 (4.3.4)

where T’ 5 is the component of the torque perpendicular to J and T is the torque for

free precession,that is from (4.2.16) we have

— 2 .
T = 5—62 A IP¢Psinf(16sin*0 + cos0) (4.3.5)
c

Substitution of (4.3.5) in (4.3.4) reproduces the the wobble damping equation as:

. 9 .
0= —5—g A I?¢rsinfcosf(16sin®0 + cos™0) (4.3.6)

4.3.2 By Energy and Angular Momentum Balance

Here we re-derive the wobble damping rate for neutron star using energy and angu-

lar momentum balance.To calculate the rate wobble angle, recall the rate of energy
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radiated,that is by differentiation of E = E(J,0), as[11]

dE _OEdJ JEdf

% = W% + @% (4.3.7)

Substitution of J = E / ¢ to this equation and rearranging it, the rate of change of

the wobble angle become

,_ Jlo—55)
0= aE—/aae (4.3.8)

where the dot represents the time derivative.But the energy of the source(star) is its
kinetic energy as indicated in (4.1.23) i.e.
J? AT

E ="[1— cos*0— 4.3.
211[ 005913] (4.3.9)
Thus
or J .y
and
oK  J* AT
50 = 7182%00089]—3 (4.3.11)

Plugging equations (4.3.10) and (4.3.11) into (4.3.8) we find

() — I—“Z(l — 00329%)]% A I2¢8sin?0(16sin20 + cos®0)

0=— e (4.3.12)
(b‘}—lsm%os&?—;
This gives the wobble damping equation as
) 2G 204 .2 2
0= s A I*prsinfcosh(16sin0 + cos“0) (4.3.13)
c
Comparing (4.3.6) and (4.3.13),s0 the two methods of calculation agree.
4.4 Lifetime Estimate
We can calculate the time on which the alignment occur as
no °1 T 1
S sint  5e 1 (4.4.1)

dsinh ﬁg AI? cosf(16sin20 + cos?6

dt
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Radiation-reaction causes sinf to decrease, regardless of whether the body is oblate

or prolate.In the limit of small wobble angle,f decreases exponentiallyOn the timescale

56 1 I,
To<<1 — %EE (442)
Then we have the following parameters.
c = 3x10%m.sec™?
G = 6.67x10%m?/g.sec?
o= 2mv (4.4.3)
Up on substituting these values into (4.4.2),the lifetime value is
21 1
75 = 0.058557 x 10784 2 (4.4.4)

s3 v AI?

Parameterizing this equation gives

1077 \? (kHz\" 10 gem?
= 1.8 x 10° 4.4.5
0 St <Af/fl> ( v ) ( 5 ) (4:4.5)

This is the numerical lifetime estimate of a neutron star wobble modelling it as a

rigid body.



Chapter 5

Discussion and Conclusion

5.1 Discussion

As a newborn neutron star settles down into its final state ,its solid crust has pre-
ferred shape oblate axisymmetric about some preferred axis. If the star’s angular
momentum J deviates from the crust’s preferred symmetry axis, the neutron star
will wobble as it spins, with small 'wobble angle’[1].So a rotating neutron star emit
gravitational wave by means of time-dependent quadrupole moment ,generated either
by the lack of body symmetry on the equatorial plane or by precession caused by mis-
alignment of the spin and the symmetry axis.In the later case, wobbling neutron star
emit at frequencies close to the rotation one if the wobble angle is small[2]. As dis-
cussed in chapter four a large mass with a quadrupole moment,rotating about some
axis, generates gravitational waves. The quadrupole radiation approximation says the
gravitational radiation is generated when,not the traceless mass quadrupole moment
tensor, but its second time derivative is nonzero[29].Infact there is an isolated mas-

sive objects which has nonzero but constant traceless quadrupole moment and then
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no gravitational radiation results (at least no at mass quadrupole level approxima-
tion).Gravitational radiation is characterized by polarization, amplitude, frequancy
just like electromagnetic radiation where the polarization modes of gravitational ra-
diation are those appropriate to a rank two tensor field.

The averaged energy and momentum fluxes as well as the instantaneous torque, in
equations (3.3.29),(4.2.16)and(4.3.5) respectively, depend only on the orientation of
the mass quadrupole of the source. As described in the preceding chapter the radiation
torque acting on a neutron star has two components: the braking torque, responsible
for the secular spin down of the star and the component associated with the inertia of
the radiation fields whose effect is to make the star to wobble. The alignment rate of
the body due to the gravitational radiation reaction is calculated using two methods;
by energy and momentum balance and by radiation reaction torque in which the

resulting expression is consistent.

5.2 Conclusion

Finally in this thesis,based on the time-varying quadrupole moment model, the evo-
lution of gravitational radiation of a rotating neutron star is discussed. In particular
the resulting gravitational radiation torque produce the alignment of the axis of ro-
tation with the angular momentum vector by damping the wobble angle.We find the

wobble evolution or the gravitational wave damping takes place over a time of [33]

1077 \° (kHz\" /10%gem?
= 1.8X10° 5.2.1
=t (2 ) (B0) (1) e

This is a good agreement with recently accepted theoretical results found by on the

alignment timescale of neutron star due to gravitational radiation. Further studies
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on the wobble evolution in precessing neutron star due to internal torques and others

(especially considering the superfluid model) seem necessary.
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