PUBLIC TRANSPORT ROUTE PLANNER FOR ADDIS ABABA

By

Addisu Andarge

A project paper
submitted to the School of Graduate Studies of Addis Ababa University
in partial fulfillment of the requirements for the Degree of Master of
Science in Computer Science

June 2010
Public Transport Route Planner for Addis Ababa

By

Addisu Andarge

Name and signature of members of the examining board:

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dr. Yaregal Assabie (Advisor)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENT

I would like to express my deepest gratitude to my advisor Dr. Yaregal Assabie for his guidance and invaluable comments throughout the project. My special thanks go to route planning department of Anbessa City Bus Enterprise for availing me important data, without which this project could not be accomplished. I would also like to thank Ato Wondifraw Abi for his help throughout the data collection process.

I am also indebted to Washera Broadview College, Debre Markos.

Finally, I would like to thank W/ro Melkie Admasu, my family, and friends for their support.
TABLE OF CONTENTS

LIST OF FIGURES ... I

ABBREVIATIONS ... II

ABSTRACT .. III

1. INTRODUCTION.. 1
 1.1 Background .. 1
 1.2 Statement of the Problem ... 2
 1.3 Objective .. 3
 1.3.1 General Objective...3
 1.3.2 Specific Objectives...3
 1.4 Scope of the Project .. 4
 1.5 Methodology .. 4
 1.5.1 Data Collection ..4
 1.5.2 Tools and Techniques ...4
 1.6 Application of Results ... 5
 1.7 Organization of the Document .. 5

2. LITERATURE REVIEW ... 6
 2.1 Characteristics of Public Transport in Addis Ababa ... 6
 2.1.1 Anbessa City Bus Enterprise ..7
 2.1.2 Taxi Service ...10
 2.1.3 Problems in Public Transport Service of Addis Ababa ..11
 2.2 Route Planners ..14

3. GRAPH THEORY AND ALGORITHMS ... 18
 3.1 Graphs ...18
 3.1.1 Types of graph ..18
 3.1.2 Representation of Graph in Computers ...20
 3.2 Applications of Graphs ...22
 3.3 Graph Based Algorithms ...23
 3.3.1 Shortest Path Algorithms ...23
 3.2.2 Path Identification Algorithms for Public Transport Networks25

4. SYSTEM REQUIREMENTS ANALYSIS .. 27
 4.1 Functional Requirements ...27
 4.2 Nonfunctional Requirements... 29
 4.3 System Models ..30
 4.3.1 Use Cases ..30
 4.3.2 Use Case Description ..30
4.3.3 Sequence Diagrams ... 33
4.3.4 Activity Diagram ... 36
4.3.5 Class Diagram ... 37

5. SYSTEM DESIGN ... 39
 5.1 Design Goals ... 39
 5.2 Persistent Data Management .. 40
 5.3 Algorithm Design .. 42
 5.3.1 Construction of the Transfer Matrix 46
 5.3.2 Resource Requirement of the Transfer Matrix 48

6. THE PROTOTYPE ... 50
 6.1 Programming Language ... 50
 6.2 Implementation Challenges and Decisions 50
 6.3 User Interface of the Prototype ... 52

7. CONCLUSION AND FUTURE WORKS 57
 7.1 Conclusion ... 57
 7.2 Future Works ... 58

REFERENCES ... 60
APPENDIX ... 62
DECLARATION ... 63
LIST OF FIGURES

Figure 1: Undirected Graph G1 ... 19
Figure 2: Digraph G2 ... 19
Figure 3: Complete digraph (a) and, complete undirected graph (b) 19
Figure 4: Weighted undirected graph.. 20
Figure 5: Array representation of the graph in Figure 4; (a) vertices of the graph, (b) edges of the graph .. 20
Figure 6: Linked structure representation of the graph in Figure 4 21
Figure 7: The combined array and linked structure representation for the graph in Figure 4 ... 22
Figure 8: Use case model for PTRPAA ... 30
Figure 9: Sequence diagram for Find Journey Route use case 33
Figure 10: Sequence diagram for Update Tariff use case 34
Figure 11: Sequence diagram for View Bus Route use case 35
Figure 12: Sequence diagram for View Tariff use case 35
Figure 13: Activity diagram for PTRPAA .. 36
Figure 14: Class diagram for PTRPAA .. 37
Figure 15: A simple road network with six vertices ... 44
Figure 16: The transfer matrix for the road network shown in Figure 15 44
Figure 17: Taxi service network on six sample locations of Addis Ababa 45
Figure 18: The transfer matrix M for the taxi service network shown in Figure 17 45
Figure 19: The initial values when constructing a transfer matrix 46
Figure 20: The user interface for Find Journey Route use case 52
Figure 21: Route data for a trip from Arat Kilo to Kazanchees using bus................. 53
Figure 22: The user interface for Update Tariff use case after taxi transport service is selected .. 54
Figure 23: The user interface for View Bus Route use case with service number 31 displayed .. 55
Figure 24: The user interface for View Tariff use case .. 56
ABBREVIATIONS

E.C. – Ethiopian Calendar
PC – Personal Computer
PDA – Personal Digital Assistant
SMS – Short Message Service
PTRPAA – Public Transport Route Planner for Addis Ababa
ABSTRACT

Public transport route planners are widely used in many large cities of the world. Route planners are helpful in identifying the best route one should follow in order to travel between two locations. While the public transport network is extensive in Addis Ababa and the majority of the population of the city is dependant on it, there is no route planner system for the city.

The desktop application developed in this project helps users to identify service routes which enable them to travel from a given origin to a destination location in Addis Ababa with less number of transfers. It models transport services offered by taxis and Anbessa city bus at 140 locations of the city. Moreover, users can view the tariff for the two transport services and update it whenever necessary. It is also allows users to see the route (as list of location names) for a given service number of Anbessa city bus.

Keywords: public transport, public transport route planner, public transport of Addis Ababa, public transport route planner for Addis Ababa, transfer matrix
1. INTRODUCTION

1.1 Background

Addis Ababa is the largest city in Ethiopia. Based on the 2007 census report, the population size of the city is more than 2.7 million (2,738,248), constituting 3.7% of the country’s population [1]. The total length of road in the city is 1,329.59 km, out of which 29.7% (395.27 km) is asphalt road [2]. However, the present road space network capacity is badly constrained by poor quality and standard, absence of linkages and lack of alternate shortcut routes, and the absence/inadequacy of pedestrian walkways [3].

According to the Office for the Revision of Addis Ababa Master Plan (ORAAMP), the high rate of population growth coupled with the limited capacity of the public transport resulted in severe pressure on mass transport in the city. The urban mobility of Addis Ababa is highly dependent on public transport. 26% of the city’s population is bus user, while 72% depend on taxis, and only 4% own private cars [2]. Furthermore, the number of bus users in Addis Ababa is 43% higher than that anticipated in the 1986 master plan which forces the city government to increase the number of buses [4]. Given the fact that large proportion of vehicles in Addis Ababa are those for public transport and large number of people are dependent on the public transport on daily basis, it is quite easy to deduce that the public transport sector plays a critical role in the daily socio economic activities of the city.

The public transport of Addis Ababa is composed of three main systems:

- Anbessa City Bus Enterprise which is owned and subsided by the government. Currently, the bus network has ninety three routes covering the city and connecting it with its surrounding towns. According to a study on the urban public transport conditions in Addis Ababa, Anbessa is serving up to 700,000 passengers per day [5].

- Privately owned taxis, with fixed tariff rates and partially defined paths and stops. The network of taxis has the most extensive service coverage in the city and its surrounding. There were over 7,500 registered minibus taxis giving services in Addis Ababa in the year 2005. The study of urban public transport conditions in Addis Ababa has identified
106 taxi routes made up of with more than 300 segments. About 1.2 million passengers depend on taxi services each day [5].

- Midi bus transport service, which is much like taxi but with fixed paths and stops. This public transport service is relatively new to the city and was introduced to relieve the pressures on the core public transport services of Anbessa bus and taxis.

In addition to those mentioned above, privately owned public transport buses and minibuses normally used outside of Addis Ababa operate in the city. They give service specifically during peak hours.

1.2 Statement of the Problem

A route planner (also called journey planner) is an electronic search tool that enables users to find the optimal path between two points by some means of transport. It finds one or more suggested paths between an origin and a destination location. The origin and destination points can be specified as geospatial coordinates, name of places, or other location identifiers such as bus stops, railway stations, and air ports. The search can be optimized on different criteria such as fastest (time criteria), shortest (distance criteria), cheapest (cost criteria), least transfers, etc.

There are different types of route planners. Some common types of route planners are

- **Intermodal route Planner**: combines many modes of transport such as air, bus, and railway services
- **Road Route Planner**: a route planner specialized for road network use.
- **Public Transport Route Planner**: a route planner specialized for use on public transport service.
- **Bus Route Planners**: a route planner for bus transport services

Public transport route planner systems have been widely used in many large cities. Many websites offer trip planning services for large metropolitan areas, or even on national level. In cities with such a system, any person with the intention of using public transport can access the system to gain valuable information. Some of the information one can get include:
• The optimal path to follow to reach a destination from a specific origin.
• Which transportation option could minimize cost; and
• The arrival time of a bus or train on a particular station. This enables users to schedule their time of arrival at that station.

It is not always easy to use public transport service to move around Addis Ababa. Finding travel plans for non recurrent trips is not an easy task even for residents of Addis Ababa, let alone for those new to the city. Often, passengers begin their journey without a plan and gather information on their way. Their main source of information is through informal conversation with people who use similar public transport. However, this is not a good mechanism of planning a journey because it does not guarantee that the path they follow is the optimal. What makes the situation worse in Addis Ababa is that there is no route planner system that helps the public to gain information on the public transport system of the city.

Route planner systems use graph data structure to represent transport network. The nodes of the graph represent locations in the transport network and the edges of the graph represent the path to be taken between two locations. The edges can be weighted using distance, cost, or other metrics.

1.3 Objective

1.3.1 General Objective

The general objective of the project is to develop a system that can be used to identify the optimal path from a given origin to a specific destination in Addis Ababa while using public transport system. The optimality of the path is constrained to the number of transfers required.

1.3.2 Specific Objectives

The specific objectives of the project are:

• identifying the public transport routes in Addis Ababa;
• identifying alternative paths with minimum number of transfers for a given origin and destination location pairs; and
• developing a prototype;
1.4. Scope of the Project

The core public transport services in Addis Ababa are those of Anbessa City Bus Enterprise and taxis. Therefore, this project is limited to these two services. The recently introduced midi bus service is not included for the reason that they have less network coverage and lack of adequate information on their service routes.

As stated earlier, the services provided by Anbessa and taxis are extended to the surrounding towns of Addis Ababa. However, as the main objective of the project is specific within Addis Ababa, services offered to locations outside of the city are not included. The limits of the city are considered to be Dil Ber to the north, Kara Alo to the east, Kaliti to the south east, Kara Kore to the south west, and Asco to the west.

1.5 Methodology

1.5.1 Data Collection

The data used in the project are:

- service routes of Anbessa city buses;
- taxi service routes; and
- transport tariff for both of these public transport services.

The service routes of Anbessa City Bus Enterprise are obtained from the enterprise. The data on public transport tariff, even for taxis, is also obtained from the enterprise. The routes for taxis are not available in recorded form. Thus, route information of taxis is collected mostly through discussion with individuals engaged in the service and some from experience.

1.5.2 Tools and Techniques

Public transport route planner systems can be implemented as web based or desktop applications. Nowadays, the implementation practices of route planners for self-use by the public are inclined to web based. Nevertheless, although it is possible to implement this project as a web based application, it is implemented as a desktop application for the basic reason that while there are a
large number of people in Addis Ababa who have PCs, the number of people with Internet connection is much less.

The tools used in the project are:

- Microsoft Visual C++ for prototype development
- Microsoft Office Word for document preparation
- Microsoft Office Excel for data organization

1.6 Application of Results

The result of the project is mainly targeted to be used by anyone who has the intention of using public transport in Addis Ababa. In practice, this refers to the greater majority of the population of the city who depend on the public transport services on daily basis. Using a route planner, users could easily get information about a journey before they set off.

1.7 Organization of the Document

This document is composed of seven sections including this introduction section. Section 2 deals with literature review on the public transport system of Addis Ababa and properties of route planners. Section 3 presents concepts in graph theory, their computer representation, their real world applications and some of the graph based algorithms. Sections 4 and 5 present the requirements analysis and system design respectively. Section 6 describes implementation issues of the prototype and Section 7 states conclusions and outlines future works.
2. LITERATURE REVIEW

2.1 Characteristics of Public Transport in Addis Ababa

The current governing legislation of urban transport system is the 1992 Proclamation to Provide for the Regulation of Road Transport [5]. The legislation allows regional states to develop their own public transport regulatory framework. It also permits the establishment of the privately owned public transport companies including city bus transport providers. However, city bus transport service was limited to Anbessa City Bus Services Enterprise until recently. The lack of private investors in the city bus sector is mainly attributed to the fact that Anbessa City Bus Services Enterprise is subsidized by the city government administration which affects the commercial competitiveness of possible rivals. The city government subsidy is now reduced year by year and is planned to be terminated gradually.

Another result of the proclamation is the elimination of zonal (Kettana) regulation of minibus taxis. Prior to this proclamation, a license had to be obtained in order to operate in one of the five Kettanas and a taxi was allowed to operate only in the Kettanas in which it had obtained a license. The right to operate city buses was also exclusively given to Anbessa City Bus Enterprise before this proclamation.

After the proclamation, the responsibility of approving operation license for taxis is that of the Bureau of Trade and Industry Development, but has been delegated to the Transport Authority. A taxi owner is expected to pay a permit fee which will be renewed annually. Besides the fee, the efficiency (quality) of the vehicle, the driver’s qualification, and the presence of an attending operator (popularly known as weyala) are also required to get permission. Unlike that obtained during the zonal system, the permit is valid throughout the city.

The proclamation encourages taxi service providers to organize themselves into associations. However, the number of association members is limited to 750 to avoid a possible monopoly of the sector by a single association with large number of members. Since membership to an association is not a precondition to get license, large proportion of the industry are not members of any association. In fact, only three associations exist. Although these associations represent
only a small proportion of the industry, the Transport Authority of Addis Ababa negotiates with them concerning regulations that will be enforced on all.

The public transport services in Addis Ababa can be grouped into two main categories as Anbessa city bus and minibus taxi transport services. Anbessa City Bus Services Enterprise is owned by the Federal government, although it is financially supported by the Addis Ababa City Government. The minibus taxis are privately owned. The next two sub sections present the characteristics of these two public transport services.

2.1.1 Anbessa City Bus Enterprise

Anbessa City Bus Enterprise began operation in 1935 Ethiopian calendar (E.C.) with 10 buses and spare parts which were left by the invading Italian force. Before the number of service routes was increased to 14 in 1952 E.C., there were only four service routes with two buses on each route [21]. The service routes were:

- Service route 1: Legehar to Kechene
- Service route 2: Old Air Port to Menelik Square (Giorgis)
- Service route 3: De Gaulle Square (Piassa) to Lam Beret
- Service route 4: De Gaulle Square to Gulelle

The tariff of that period was Birr 0.40 for round trip and Birr 0.25 for single trip. In 1951 E.C. it was revised to Birr 0.25 for round trip and Birr 0.15 for single trip.

To increase the availability of its service with the increased demand, Anbessa increased its fleet at different times. It has purchased 20 buses in 1957 E.C, and increased the number of buses to 163 by 1966 E.C. Anbessa acquired 100 buses in 1989 E.C, 166 in 1990 E.C, 50 in 1993 E.C, and 150 in 1995 E.C through purchase and aid [21].

The enterprise built its first headquarters in 1957 E.C at Lideta. Currently, Anbessa operates out of three sites (depots): Yeka to the East of Addis Ababa, the other is at Shegole to the northwest, and the third is at Mekanissa to the south of the city. The enterprise’s headquarter is at the Yeka depot. This depot also contains the central workshop and the main spare parts warehouse of the
enterprise. Each of the three depots is capable of basing 300 buses, but is currently under-exploited. Although heavy maintenance is carried out only at the Yeka depot, each depot is self-sufficient [21].

Anbessa is financially dependant on the subsidy of the City Government of Addis Ababa. It does not have the freedom to set its own prices to maximize profit because the government focuses on affordability of the service rather than profit maximization. Despite the fact that the income of the enterprise increases due to the expanding service, it is still unable to cover its expenditures.

According to the information obtained from the enterprise, currently, there are 93 routes operating in Addis Ababa and its surrounding. The service starts at 6AM and continues until 9PM. Most of these routes are operated towards the central business districts of the city, especially toward Merkato. The three main terminals at which administrative and light maintenance services are available are Merkato (Addis Ketema), Giorgis (Menelik Square), and Legehar. The enterprise also operates 4 routes in Jimma town and its surrounding.

From the route map available at the headquarters and the route information obtained, it is possible to deduce that there is a high degree of overlap between service routes. Some service routes even exhibit complete overlap (routes 27 and 60, for example). While most of the routes originate at the suburbs and end up at the business centers of the city, the following 11 routes connect the city business centers with nearby towns by moving out from Addis Ababa in 5 directions [21].

- Service route 7: from Megenagna to Legettafo, Legedady, Sendafa, Beke
- Service route 24: from Piassa to Burayu
- Service route 26: from Merkato to Alemgena, Sebeta
- Service route 30: from Merkato to Sululta
- Service route 43: from Merkato to Burayu, Gefersa, Tattek, Menagesha
- Service route 44: from Merkato to Legettafo, Legedady
- Service route 60: from Legehar to Akaki, Dukem, Bishoftu
• Service route 85: from Merkato to Burayu, Gefersa, Tattek, Menagesha, Holeta
• Service route 88: from Merkato to Sululta, Chancho
• Service route 89: from Merkato to Legettafo, Legedady, Sendafa
• Service route 91: from Merkato to Alemgena, Sebeta, Tefki

All Anbessa routes have schedule timetables, but the timetable information is available for the public at very few major terminals. The schedule is based on the distance between stops and is the same for each trip irrespective of the time of the day and the direction of the trip. The time of the day affects the timetable in such a way that delays happen at rush hours [5]. The direction of trip influences the timetable due to differences in the terrain, which is particularly observed in the northern half of the city. In general, the service fails to run according to the schedules. The failure is attributed to problems in timetable preparation method, time lost at stops while issuing tickets to passengers, poor road network infrastructure, and increased traffic congestion.

The study on urban public transport characteristics of Addis Ababa [5] shows that only 5 routes provide service frequency of 6 or more per hour, 26 routes provide 3 or 4 services, 31 routes provide 2 services and 18 routes only 1 service per hour. The operation frequency of routes operating outside the cities peripheries ranges form 1 in one half to three hours. The normal standard for urban bus service is 6 or more services per hour.

Anbessa offers two types of passenger tickets: single trip tickets and ten-trip student tickets. The later are valid only on school days. Single trip tickets are printed in two colors each of which are used in each direction. The color difference along with the serial numbers helps the enterprise to avoid ticket reuse. At the end of each trip the ticketer fills out a form showing the number of tickets sold, hence the passenger numbers, which enables the enterprise to control its revenue and keep detailed record on the number of passengers.

The urban transport study reported that the passenger carrying of Anbessa can approach 40,000 per day [5]. The average number of passengers per trip (load factor) is estimated to be 110 which could rise to 150 or more during peak hours. This very high load factor is due to the bi-directional nature of the traffic, i.e., a balanced load factor in either directions of a service route.
The average kilometer run of Anbessa city buses is 176 kilometers per bus per day. Taking the number of buses actively engaged in service to be 344, the total kilometer run of Anbessa is equated to 60,544 kilometers per day [5].

2.1.2 Taxi Service

This category of public transport service consists of privately owned minibus and the so called Wuyeit taxis. The later particularly give service on certain routes only. For the sake of simplicity, the term ‘minibus taxis’ or ‘taxis’ is used throughout this document to refer to both taxi types.

The number of minibus taxis operating in Addis Ababa is reported differently in different documents. One of the estimates puts the number between 10,000 and 12,000 [17]. The urban transport characteristics study reported a little more than 7,500 taxis. This information was backed by the computerized registration system at the Transport Authority. The same report also indicated that this number is reduced by 2,400 during the new plate registration introduced in the year 2003.

An attempt to estimate the number of passengers served by a minibus taxi within a day comes up with a range of 132 to 312 [5]. The reason for this wide difference is attributed to attempts of getting extra fair by break up of routes into small segments at peak hours. Another factor is the unavailability of detailed data recording system by taxi owners and drivers. The actual number is expected to be the average of the two and would be consistent to the international experience of similar transport service. The average occupancy of minibus taxis is found to be 10.8 at peak hours and 10.0 at other times. This is due to the bi-directional nature of traffic together with the practice of load maximization. Considering the estimate on the number of minibus taxis on service, the daily total passenger carrying would be about 1.2 million, which is more than half of the total public transport daily carrying capacity.

Although there is no record on the number of minibus taxi routes in Addis Ababa, the urban transport characteristics study identified 106 routes [5]. These routes are usually broken into smaller segments to exploit the authorized fare system. The Transport Authority estimates the number of route segments to be as high as 300. The existence of route segments makes route identification difficult and error prone.
Minibus taxis operate without timetable schedules. The operation principle is fill-and-run. On most taxi terminals, taxis wait in queues to be filled. The consequence of this is long waiting times on routes with few passengers and inconvenience of passengers as they are forced to walk to the nearest taxi terminal and suffer from the expected wait until the taxi is filled.

Taxi queues at terminals are managed by order attendants (*tera askebariwoch*). Taxi drivers pay Birr 0.50 or Birr1.00 to order attendants at departure which sums up to 10 to 20 Birr per day. The order attendants have unions for which they would pay membership fees as high as Birr 2,000 annually [5].

Just like lack of data on the number of passengers, there is no record on daily kilometer run of minibus taxis. The situation is aggravated by the fact that odometers of most taxis are not functional. However, information gathered through interviews with taxi drivers and owners combined with the information on route distances and estimates obtained from the Transport Authority, the daily kilometer run is expected to be 130. The overall daily kilometer run by the industry is estimated to be around 800,000 [5].

2.1.3 Problems in Public Transport Service of Addis Ababa

The report of the study on urban public transport characteristics of Addis Ababa identified the following problems [5].

- **Inadequate service quantity:** From passengers’ perspective, inadequacy of service quantity can be expressed by longer waiting time and overcrowding on vehicles while high profit and high price are its indicators from operators’ point of view. Surprisingly, both of these indicators coexist in Addis Ababa because of the authorized tariff system.

- **Low safety level:** Generally, the safety level of Anbessa is high due to its high operating standards. Accidents are very rarely serious and mostly happen when passengers try to get on board or off board while the bus is still moving. The safety level of taxis is lower than that of buses. More than 20% of accidents are related to taxis. However, the most serious safety problem in relation to public transport is that of pedestrians.
• **Poor service quality:** The most serious service quality problem of bus users is overcrowding and the related petty crime. Another problem is service breakdowns which are less likely to be replaced. What makes bus breakdown problems worse than taxis is that the bus users are less likely to get another vehicle quickly to board on, given its high occupancy. Moreover, bus stops are characterized by lack of passenger information and basic facilities such as shelters. The major service quality problem of minibus taxis is relate to drivers’ level of experience and maturity as well as their assistants’ behavior. The physical condition of vehicles and their cleanliness is also a major concern on minibuses than buses which reflects the poor maintenance culture of their owners and lack of effective enforcement by the government.

• **Low level of affordability:** The monthly household expenditure on public transport is low in comparison to international standards. This can be accredited to the authorized tariff system with the aim of providing affordability and the compact settlement in Addis Ababa. Yet, 60% of pedestrians walking more than two kilometers were found not able to afford using transport service and 83% of bus users were not able to afford minibus fairs. Another issue is the coupling of higher transport costs with low income as households with lower income are forced to live far from the city center where house rents are lower.

• **Low operating speeds:** 73% of minibus passengers interviewed by the urban transport improvement study indicates that they choose minibus for their shorter travel time. Nevertheless, the operating speed of taxis in affected by the fill-and-run operation mechanism particularly at off-peak hours. The operating speed for Anbessa is 16.8 kilometers per hour which appears to be overly optimistic specially at peak hours.

• **Poor service accessibility:** The main indicator for accessibility is walking time to the nearest boarding post, but has not yet been surveyed. The high number of Anbessa bus routes may seem to enhance its accessibility. In reality, it is characterized by lower accessibility because of route overlaps resulting in lower spatial coverage. Anbessa does not offer service to areas with low population density and unsuitable road network. Taxi transport networks provide better area coverage.
• **Inappropriate vehicle type and size:** The core transport service is provided by buses with more than 100 passenger capacity or taxis with passenger size of 14. The late introduction of intermediate capacity buses (so called Higer buses) is a direct consequence of this. The large capacity buses are appropriate on the main roads where there is high demand. Standing passenger configuration for buses with long distance routes is rather less comfortable. The high floors of Anbessa buses also result in access difficulty particularly for the mobility impaired. The lateral seats of *wuye*it taxis are another example of less comfortable and inappropriate transport service.

• **Poor vehicle condition:** The mechanical and passenger saloon conditions of public transport vehicles in Addis Ababa are of poor quality. There is no preventive maintenance culture in the industry and lack of sanctions against vehicles with poor conditions has contributed for the continuation of this culture. The other reasons are lack of spare parts for vehicles of older age, high price of spare parts, and constrained cash flow.

• **Inefficient operating procedures:** The strict rotation of taxis at terminals enforced by order attendants resulted in low priority toward passengers’ needs as they are not able to choose a taxi with regard to its physical and mechanical conditions. The authorized fare structure has its own share to the inefficient operating procedures as long distance trips are broken into smaller ones for the sake of profit maximization by taxi drivers. Another source of passenger inconveniency is the fill-and-run practice which forces them to walk to the nearest taxi terminal even if another boarding point is more suitable for them. All these factors resulted in prioritizing taxi owners’ interests rather than that of passengers’.

• **Inefficient network design:** The main reason for inefficient network design is the authorized fair structure. The price for a route would only be changed when the route is either extended or redesigned which promotes Anbessa to construct a complex network with high degree of overlap. In the minibus sector, the authorized fair created a complex network composed of short length routes derived by profit maximization.
In general, the causes for the afore mentioned problems of public transport in Addis Ababa are attributed to the following points [5].

- Poor operating standards and lack of adequate enforcements
- Lack of profitability and investment
- Lack of skill base by individuals in the industry
- Violent and illegal behavior in the operating industry caused by market competition and administrative corruption. However, the level of violence is very low compared to the conditions in sub-Saharan Africa.
- Lack of economic regulation, network planning, and supporting institutions
- Inappropriate ownership structures and size as observed in single unit, semi-passive ownership of taxis. Similarly, Anbessa is owned by the Federal Government while it is more appropriate to be under the City Administration.
- Inadequate transport infrastructure due to poor road design and conditions, high level of congestion (specially at peak hours), and lack of suitable stops
- Lack of empowerment of transport users

2.2 Route Planners

Transportation plays a crucial role in every society. It facilitates the economic and social integration and development of a society. In fact, the level of transportation network of a country can be taken as a measuring scale of its level of development. With this regard, developed nations are characterized by high quality and quite complex transportation network with a wide variety of options (private cars, buses, trains, etc) while developing nations have low quality and simpler transportation networks with few options.

However, the development of transportation network comes with its own problems. Some of these are: congestion, increased oil consumption which has economic and environmental
impacts, noise and air pollution, and land loss to roads. One way to alleviate these problems is to encourage the use of public transport and make it more attractive [9].

To encourage the use of public transport, authorities in many cities take measures such as banning the use of private cars on specific days or in specific parts of the city and restricting some roads for exclusive use by public transport [6]. Another way of promoting the use of public transport is making timing and transfer information available for the public.

In line with providing public transport information, in many large cities, real time arrival information is available at major bus stops, rail stations, and major transit areas. However, availing such displays at every stop is prohibitively expensive [10]. Therefore, it is important to use other means of communication so that anyone can have the information anywhere. Public transport route planners play a great role as such an alternative.

Before continuing with route planners, it is important to distinguish between two types of vehicle location and navigation systems: route planners and route guidance systems [14]. Route planners are used to identify a route between two locations prior to beginning the travel. Route guidance systems, on the other hand, are real time guiding tools which guide drivers along the route while driving. Route guidance systems can further be divided into two as centralized and decentralized. In decentralized route guidance systems, vehicles use on board computers and static road maps and apply heuristic algorithms to find the shortest path. In centralized route guidance systems, on board computers are linked to traffic management centers which reply path queries. A server at a traffic management center stores all shortest paths available at a given time (dynamic road network map).

Many route planners are in use in many large cities. The increased number of route planners can be considered as an evidence for their popularity. As there are many multi modal route planners (route planners which take several types of transport options into consideration), there are also specialized route planners such as route planners for pedestrians, for cyclists, and for buses. Route planners can be deployed through a variety of channels [8, 10]. For example, a commercial route planner called IPTIS (Integrated Public Transport Information System) [8] comes in the form of:
• an application for standalone PC (IPTIS call center),
• a web site (IPTISNet),
• a web service with PDA interface (PocketIPTIS), and
• SMS accessible web service.

The main goal of route planners is identifying the optimal route from origin to destination under a given set of route selection constraints [8]. Besides identifying the optimal route, some online route planners provide extra information such as weather forecasts, traffic congestion level, and road blockage information.

The optimality of a route is constrained by a number of criteria. For route selection, most route planners have user interfaces which allow their users to set the route selection criteria while some others use a predefined set of criteria hidden from users [11]. The basic criteria for route selection are:

• number of transfers needed (maximum number of transfers tolerable)
• cost of transportation (cheapest), and
• time constraints (fastest, early arrival, late departure, minimum waiting time)

A route planner is expected to take into consideration at least these constraints [12]. Some other route planners provide much refined route selection criteria like:

• which locations to include or exclude (via or not via specific stops)
• which mode of transportation to use or not to use
• walking time and distance to the next stop
• real time road congestions and blockades
• weather conditions
• consideration of scenic locations (specially for cyclists and pedestrians)
• safety level (specially for cyclists and pedestrians)
Taking all these constraints into consideration and allowing the user to set them makes the route planner algorithm much complex. The user interface will also become much cluttered and less usable. On top of the diverse optimization criteria selected by users, the existence of a number of transportation means (buses, train, taxi, etc) and a number of transport operators in a region makes the route planner algorithm even more complex [8]. The use of different charge rates by different transport operators has its own impact on the complexity of the algorithm while considering cost as a route selection criterion [13].

Nowadays, incorporating maps to route planners is becoming a common practice. Maps are primarily used as supplementary output mechanisms by most route planners. The identified route is described in words and then displayed on the map (possibly with a request by the user.) A few route planners use maps for input as well [8, 12]. In such systems, the user can select the origin and destination locations of a journey by clicking on the map. When a user clicks on the map, the system automatically identifies nearby stops. Because using maps for input introduces challenges, most route planners restrict user input in the form of text. Another limitation in using maps for input purpose is that, maps may not contain enough details or scale to be useful to the user. Moreover, some users may not be capable of identifying locations on maps easily.

The algorithms in commercially available journey planners can be grouped into two broad categories [8]:

- **Static (Pre-calculated) algorithms:** pre-calculate and store all possible paths between any two locations and filter the stored paths according to the given user preferences. Unless all possible paths are obtained and stored, finding the best path under the given constraints is not guaranteed. Since discovering all possible paths is very tedious (especially for a large transport network) and needs large amount of storage, only a fraction of them are stored. Routes constrained with different criteria are required to be stored separately to allow users to select routes with different criteria.

- **Dynamic algorithms:** there is no need of preliminary work for calculating and storing paths. The journey planner algorithm tries to identify the optimal path under the given constraints at run time. The downside of these algorithms is that it would take longer time to give response.
3. GRAPH THEORY AND ALGORITHMS

Route planners model transport networks using graph (also called network) data structure. Thus, it is worthwhile to give explanation about graphs. Shortest path algorithms are applied on graph models of transport networks to identify shortest paths between two locations. This section therefore, discusses graphs, shortest path algorithms, and other algorithms particularly useful in public transport route planners.

3.1 Graphs

Graph data structure is a computer representation of the graph theory in mathematics. In mathematics, a graph is a collection of vertices and edges.

- **Vertices**: also called nodes, are collection of points.
- **Edges**: also called arcs, are a set of lines that connect vertices of a graph. Edges represent the relationship among vertices.

Formally, a graph G is defined as G= (V, E); where:

V(G) is a finite, nonempty set of vertices and
E(G) is a set of edges, written as pairs of vertices.

For example, the set of vertices and edges of the graph G1 shown in Figure 1 are:

V(G1)={A, B, C, D, E}
E(G1)=={(A, B), (A, C), (A, D), (B, C), (D, E)}

If a graph is used to represent a road transport network, the vertices of the graph are locations such as bus stops and the edges are roads that connect these locations.

3.1.1 Types of graph

The term graph is a general term. There are several types of graph differing in the number of connectivity and the existence of direction on edges [7].

Undirected graph: A graph in which the edges have no direction. Figure 1 shows an undirected graph. The order of vertices of an edge of an undirected graph is not important. The edges of G1 can be written as:
$$E(G1) = \{(A, B), (A, C), (A, D), (B, C), (D, E)\}$$
or
$$E(G1) = \{(B, A), (C, A), (D, A), (C, B), (E, D)\}$$

Figure 1: Undirected Graph G1

Directed graph (Digraph): A graph in which each edge has a direction. Graph G2 shown in Figure 2 is a directed graph. In a digraph, the order of vertices of an edge has importance. In other words, a pair of vertices representing an edge is an ordered pair. The only way of writing edges of G2 is:
$$E(G2) = \{(A, B), (B, C), (C, A), (D, A), (E, D)\}$$

Figure 2: Digraph G2

Complete graph: A graph in which every vertex is directly connected to every other vertex of the graph. A complete graph could be a complete digraph (Figure 3-a) or a complete undirected graph (Figure 3-b).

Figure 3: Complete digraph (a) and, complete undirected graph (b)
Weighted graph: A graph in which each edge has a value assigned to it. In a road transport network, for example, an edge value can be the distance between vertices, the cost of traveling on the edge, number of points of interest on the edge, or anything that can be used to bias edges. Figure 4 shows a weighted undirected graph.

![Weighted undirected graph](image)

Figure 4: Weighted undirected graph

3.1.2 Representation of Graph in Computers

Similar to other abstract data structures, mathematical graphs can be represented in computers using either arrays or linked structures. Figure 5 shows an array representation of the weighted undirected graph of Figure 4. In this representation, the vertices of the graph are stored in a one-dimensional array while the edges are represented by a separate N×N array (where N is the number of vertices) whose element’s values are the weight of the edges. Such an array is called an adjacency matrix. Any pair of vertices with no edges will have a weight value of 0 (or any other value which can be considered as a “null” value). If the graph is not a weighted graph, a Boolean value adjacency matrix can be used to represent edges. From Figure 5, it can be observed that an adjacency matrix is symmetrical.

![Array representation](image)

Figure 5: Array representation of the graph in Figure 4; (a) vertices of the graph, (b) edges of the graph
The linked structure representation for the weighted undirected graph of Figure 4 is shown in Figure 6. Elements of the graph located on the left most column represent the vertices of the graph while the rest represent edges.

![Graph Diagram](image)

Figure 6: Linked structure representation of the graph in Figure 4

The array representation is suitable for dense graphs (graphs with large number of edges). Otherwise, much memory space is wasted by null valued edges. However, it has a better run time because it allows random access of graph elements through array indices. On the other hand, the linked representation is suitable for sparse graphs since it removes the useless null valued edges. The drawback of the linked representation is that it has slower run time because all access to any of the graph’s elements is only through sequential access. Moreover, the implementation of linked representation of graphs is more complex than its array counterpart.

Another graph representation is one that combines array and linked representations. In this option, the vertices are represented with array while edges are represented as linked structures. As there are no null valued vertices, there is no advantage of representing them as linked structures. This representation option has the advantage of both array and linked structure graph representations. Figure 7 illustrates the combined array and linked structure representation for the graph in Figure 4.
3.2 Applications of Graphs

Graphs are useful in solving many real world problems. Their application ranges from apparently simple problems like determining the existence of a link between two points of interest to a complex problem of finding the shortest possible route that visits every node of a graph exactly once (a problem known as the traveling salesman problem).

The first recorded problem solved using graph theory is the so called the Königsberg bridge problem. In 1736, Leonhard Euler formulated this problem in order to determine the possibility of crossing all the seven bridges over Pregel River in Königsberg, Germany, and returning back to the starting point without crossing a bridge more than once [18]. He finally found out that there is no route with this constraint.

Nowadays, graphs are used to solve diverse real world problems. Some of their application areas include [18]:

- Modeling road networks (the nodes can be cities or road junctions, and the edges are roads connecting the cities or junctions)
• Designing least cost model in telecommunication systems
• To optimize routing algorithms, in computer networks
• Determining the least cost model in pipeline construction
• Modeling fiscal flow
• Identifying the shortest path in a road network for automobile drivers (route guidance systems)
• Identifying optimal paths for public transport users (route planners)
• Computer games
• Designing integrated circuit chips

3.3 Graph Based Algorithms

Since Dijkstra published his famous paper on graphs in 1959, a large number of algorithms have been devised [14]. Even some of these algorithms have a large number of alternatives. Some of the major algorithms which are used to find the shortest path in a graph and those which are specifically designed for public transport are summarized below.

3.3.1 Shortest Path Algorithms

Shortest path problem is the most extensively studied problem in operations research. These are particularly useful on analysis of transport network related problems. The shortest path problems can be categorized as one-to-one, one-to-some, one-to-all, all-to-one, and all-to-all shortest paths depending on the number of nodes used as source and target [14]. There is another category of shortest path algorithms known as K-shortest path (KSP) algorithms which find the first, second, third, …, the kth shortest path between two nodes. Their argument is that, it is better to have other alternative shortest paths if the better shortest paths could not be available.

All graph algorithms are characterized by large memory space requirement and larger run time complexity. In general, the performance of the algorithms is affected by:

• the sparseness of the graph
- the representation of the graph data structure, and
- the presence of edge weights and their use

Dijkstra’s Algorithm: Devised by the Dutch computer scientist Edsger Dijkstra in 1959, the algorithm computes the shortest paths from a node to every other node in a graph with nonnegative edge costs (one-to-all problem). The output of the algorithm is a shortest path spanning tree. This algorithm can be modified and used for one-to-one shortest path problems. Dijkstra’s algorithm is typically used as a benchmark to compare the performance of other shortest path algorithms [14].

A* Algorithm: Dijkstra’s algorithm searches a large area around the source node. A* reduces the search space to the box that bounds the origin and destination nodes [16]. The reduction is due to the fact that A* decides the next node on the path by heuristically checking it is the nearest to the destination. The node selection function [19] (the cost of moving to a node) is
\[f(x) = g(x) + h(x); \]
where
- \(g(x) \) is the cost from the source to the current node, and
- \(h(x) \) is the heuristic estimate of the cost from the current node to the destination

Since the algorithm takes the remaining cost to reach the destination into account, it is considered as an informed search algorithm. For the reason that it also takes the already incurred cost, it differs from greedy best-first search. A* is a widely used one-to-one shortest path algorithm and has variants [14].

Kruskal’s Algorithm: Kruskal’s algorithm works with undirected graphs [18]. It starts with N nodes and iteratively adds the shortest link between two of the nodes that would not form a cycle. The iterative selection of shortest link stops when N-1 links are identified. When the algorithm stops, the shortest spanning tree of a node on the graph is identified. Kruskal’s algorithm is a one-to-all shortest path algorithm.

Bellman-Ford Algorithm: This algorithm calculates the shortest path on a directed weighted graph in which negative edge weights are allowed. When used on graphs with nonnegative vertices, the algorithm is similar to that of Dijkstra’s. It is primarily used on graphs with negative edge weights [20].
Breadth-First Search (BFS) and Depth-First Search (DFS) Algorithms: BFS starts with a node and searches all nodes one-link-away from the sources and then all two-links-away nodes and so on until the destination is reached. On the other hand, DFS starts with a node and works as deep as possible along one branch and then backtracks until the destination is reached. Both BFS and DFS are considered as special cases of A*. The A* algorithm is implemented using priority queue. When the A* algorithm is implemented using FIFO queue on an unweighted graph, it works as BFS. Similarly, when implemented with LIFO stack on an unweighted graph, A* behaves like a DFS.

There are numerous shortest path algorithms proposed over the course of time and, in fact, it is not possible to enumerate them all. Nevertheless, Dijkstra’s and A* algorithms are the most widely used [14].

3.2.2 Path Identification Algorithms for Public Transport Networks

Identifying the optimal route in public transport in a road network is not the same as identifying the shortest driving path [6]. A public transport route planner should consider the route constraint of public transport systems. A public transport service, for example a bus, does not necessarily follow the shortest driving path between two locations and the passengers cannot order the driver to change route.

Although, the so called “standard” shortest path algorithms described above and their variants are widely used on graphs, they have limitations when used on public transport. One of their limitations is that they do not take the dynamic nature of the public transport systems with regard to time constraint. Most public transport systems work according to a well defined schedule. Another limitation is that they do not provide a simple mechanism to identify the route with less number of transfers. The number of transfers has an effect on the cost and time of a trip and thus passengers prefer a path with less number of transfers even if it is not the shortest path [6]. They also assume that one can travel on any of the available edges. This assumption is not true for public transports since there is restriction on their routes. With these motivations, other search algorithms are devised.

Liu et al. present a technique that identifies the number of direct ways one can travel from one point to another by using adjacency matrices [6]. Using this technique, it is possible to identify
the number of alternative direct routes to travel between any two given locations. Liu et al. present another technique that can be used to identify the number of possibilities one can transfer from one service route to another by using connectivity matrices. Both of these techniques use matrix multiplication and are implemented on the service route level, such as a bus service number, rather than on stop level.

Another strategy proposed by Liu et al. to identify the possibility of transfer from one service route to another is through the use of transfer hubs. A transfer hub is a location (node) in the public transport network at which a large number of service routes concentrate. Typically, hubs are business centers or junctions of many roads. Since such locations are common in any transport network, this strategy tries to take advantage of them. When using this strategy, the transport network is divided up into two layers, one layer contains only the hubs and the other layer contains all the nodes.

Other algorithms are also available which tries to consider the working hours of institutions like banks and museums so that users can plan their trips in conjunction with working hours [15].
4. SYSTEM REQUIREMENTS ANALYSIS

4.1 Functional Requirements

Route planners are expected to provide the user a means to input the origin and destination of the trip. The route planner finds the optimal path for the requested origin-destination pair according to some path selection criteria and displays the output.

The primary input and output of route planners is in the form of text. If map is used, it is used as a supplementary output mechanism and, on some systems, for input. When using text input, the main problem is that the user may not know the exact name of the origin and/or destination or they misspelled the name of the location. Hence, it is better to aid the user to identify origin and destination with pull down menus [12]. The location names could be names of streets, institutions, neighborhoods (localities), landmarks, etc.

In PTRPAA (Public Transport Route Planner for Addis Ababa), the user is allowed to enter the origin and destination names with the help of pull down menus. Since the main location identification system in Addis Ababa is neighborhood names, these names are used to identify origin and destination. The output is displayed in textual form. Because a suitable digital map of Addis Ababa is not available, it is not possible to use map to display the selected route. In reality, this will not create a major problem to users because maps are used only to provide supplementary information which has no aim other than creating a visual effect.

Regarding the route selection criteria, particularly in public transport route planners, the basic criteria are time (schedule), cost of transportation, and number of transfers. Even though city buses in Addis Ababa have timetables, it is more convenient to ignore them because the schedules are not well followed and thus it could give misleading information to the user. Moreover, taxis do not have any schedule at all and also can be considered readily available with respect to time. Therefore, the main route selection criterion in this project is number of transfers.
The selection of number-of-transfers as the route selection criteria is due to the following practical conditions of public transport in Addis Ababa.

- It directly affects the fare factor. The cost of traveling on buses may become more than double if one uses two buses instead of one for the same length of ride. Similarly, the cost of traveling on minibuses increases with increasing number of transfers as the charge is based on kilometer ranges rather than exact kilometer runs. This is the main reason for taxi drivers to partition routes into smaller segments to collect extra charge.

- The chance of reducing travel time by increasing the number of bus transfers in minimal as service frequency of buses is low. The same is true for taxi service as there is long waiting time to get taxi at peak hours and due to the fill-and-run working principle at off peak hours.

- Due to lack of adequate shortcut roads and as the public transport is limited to the main corridors of the city, it is unlikely to decrease the kilometer run of a trip by increasing transfers. Moreover, most public transport routes in Addis Ababa interconnect locations on more or less direct paths.

- Since public transport service routes of Addis Ababa have high degree of overlap, it is possible to get a number of alternative direct service routes with buses and, especially on short distance trips, using taxis.

- Increasing transfers also affects the comfort of passengers particularly if they carry luggage, or they have disabilities, and for the elderly. For this reason, it is the main criteria of public transport users to select transport services.

Another issue to consider is the type of public transport service users want to use. In this project, the user is allowed to select service options of bus or taxi. Due to the unavailability of midi bus route data, they are excluded from the system.

It is known that, because of the current fluctuation of global oil price, the Ethiopian Government conducts regular public transport tariff revision. In line with this, the system is required to allow users to update the tariff whenever necessary.
In short, the system has the following functional requirements.

- Allow users to enter origin and destination locations for a trip with the help of pull down menus.
- Select and display a route (routes) with the minimum amount of transfers. If alternative routes with the same number of transfers are available, they will be ranked and displayed in increasing order of cost.
- Users are allowed to select the type of public transport service to use as bus or taxi.
- Allow users to update the public transport tariff whenever there is a change.
- Enable the user to view the route for a given bus service number.
- Enable the user to view the public transport tariff for a selected transport service type.

4.2 Nonfunctional Requirements

Run time and memory requirement: Algorithms with graph data structures like route planners are known for their higher run time complexity and memory requirements. Therefore, the system is required to minimize memory requirements and should have fast response time.

Usability: The system should be easy to use with minimum user interaction. The help provided to the user in entering the origin and destination would increase the usability of the system.

Availability: The system is required to be available to the user whenever necessary.
4.3 System Models

4.3.1 Use Cases

A use case model is a functional model which is used to illustrate the functionality (use cases) of the system. It shows the relationship between actors and functionalities of a system. Just like many desktop applications, there is no distinction between users of PTRPAA. There is a single group of actors called user and four functionalities in the system. Figure 8 shows the use case model for PTRPAA.

Figure 8: Use case model for PTRPAA

4.3.2 Use Case Description

In this section, the flows of actions to be followed to accomplish the use cases illustrated in Figure 8 are described in detail. Since the actor in all the use cases is “user”, the actor is not included in the use case descriptions.
<table>
<thead>
<tr>
<th>Use case name</th>
<th>Find Journey Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Find a route with the least number of transfers for a journey</td>
</tr>
<tr>
<td>Precondition</td>
<td>The system is running</td>
</tr>
</tbody>
</table>
| **List of events** | 1. User enters the origin and destination locations and the type of transport service desired
2. User submits the request
3. System checks the existence of the origin and destination names
4. If origin and destination names exist in the system [Alt A], else [Alt B] |
| **Post condition** | Route (routes) with the least number of transfers under the given constraints is displayed |
| **Alt A** | 5. System identifies a route (routes) with the given constraints
6. System displays the identified route (routes) |
| **Alt B** | 5. System displays error message and returns to Event 1 |

<table>
<thead>
<tr>
<th>Use case name</th>
<th>Update tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Change the transport tariff</td>
</tr>
<tr>
<td>Precondition</td>
<td>The system is running and the user interface for updating tariff is selected</td>
</tr>
</tbody>
</table>
| **List of events** | 1. User selects the type of transport service
2. User enters the new tariff amount for each distance category
3. User submits the updated data
4. System changes the tariff for the selected transport service
5. System displays confirmation message |
<p>| Post condition | The tariff for the selected transport service is updated |</p>
<table>
<thead>
<tr>
<th>Use case name</th>
<th>View Bus Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Display the route for a given bus service number</td>
</tr>
<tr>
<td>Precondition</td>
<td>The system is running and the user interface to view bus route is selected</td>
</tr>
<tr>
<td>List of events</td>
<td>1. User enters the bus service number</td>
</tr>
<tr>
<td></td>
<td>2. User submits the request</td>
</tr>
<tr>
<td></td>
<td>3. If the given bus service number exists in the system [Alt A], else [Alt B]</td>
</tr>
<tr>
<td>Post condition</td>
<td>The route for the given bus service number is displayed</td>
</tr>
<tr>
<td>Alt A</td>
<td>4. System displays the route for the selected bus service number</td>
</tr>
<tr>
<td>Alt B</td>
<td>4. System displays error message and returns to Event 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use case name</th>
<th>View Tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Display the public transport tariff of Addis Ababa</td>
</tr>
<tr>
<td>Precondition</td>
<td>The system is running and the user interface to view public transport tariff is selected</td>
</tr>
<tr>
<td>List of events</td>
<td>1. User selects the type of transport service</td>
</tr>
<tr>
<td></td>
<td>2. User submits the request</td>
</tr>
<tr>
<td></td>
<td>3. System displays the tariff for the selected transport service</td>
</tr>
<tr>
<td>Post condition</td>
<td>The tariff for the selected public transport service is displayed</td>
</tr>
</tbody>
</table>
4.3.3 Sequence Diagrams

A sequence diagram shows the interaction between objects within a use case, emphasizing the timing order of messages. In other words, a sequence diagram shows the dynamic view of a system at the use case level. The sequence diagrams for the four use cases of the system are illustrated in this section. Figures 9 to12 show the sequence diagrams for the four uses cases of the system.

Figure 9: Sequence diagram for Find Journey Route use case
Figure 10: Sequence diagram for Update Tariff use case
Figure 11: Sequence diagram for View Bus Route use case

Figure 12: Sequence diagram for View Tariff use case
4.3.4 Activity Diagram

An activity diagram shows the dynamic aspect of a system graphically. An activity diagram emphasizes the flow of control from activity to activity. In this regard, an activity diagram is similar to a flowchart diagram. It shows the flow of control among the use cases. The activity diagram for PTRPAA is shown in Figure 13.

![Activity Diagram for PTRPAA](image)

Figure 13: Activity diagram for PTRPAA
4.3.5 Class Diagram

A class diagram is a diagram that shows a set of classes and the associations that exist among them. Each class contains a set of attributes and operations. A class diagram models the static design view, mainly focusing on the functional requirements of a system. Figure 14 shows the class diagram for PTRPAA.

Figure 14: Class diagram for PTRPAA
Attribute members of the above classes are described as follows.

vertexInfo class:

- **network**: an array of vertex (location) location. Each vertex has an edge list attached to it.

- **edgeList**: a list of vertex identifiers that are directly connected to a given vertex along with the distance between them. An identifier of a vertex is its index number in network. A list data structure composed of vertexID-distance pair elements is used to construct an edge.

transportService class:

- **serviceNo**: used as an identifier for a transport service route. Buses normally have service numbers but taxis do not. Therefore, each taxi route is assigned a service number artificially.

- **path**: is a queue of vertex identifiers through which a transport service number passes.

- **price**: the cost of traveling from an origin to a destination or a transfer vertex. The price for taxis depends on the kilometer run of the passenger and the tariff. The price of buses depends on the total distance the bus travels, rather than the passenger’s, and the tariff.

- **tariff**: the price a passenger should pay for traveling on a public transport service for a given range of distance. It is the price declared by the government.

transferMatrix class:

- **matrix**: an N×N array of integers that contains the number of transfers one should take to travel from a given vertex to another.

bus class:

- **totalDistance**: the total distance covered by a bus with a given service number. It is used to know the price for traveling on that bus.
5. SYSTEM DESIGN

The requirements analysis model focuses on the functional requirements of the system and is from the users’ point of view. System design, on the other hand, shows the internal details of the system. It is the first step from the problem domain to the solution domain.

5.1 Design Goals

The goals of a system describe the issues the system focuses on. They arise from the nonfunctional requirements of the system described earlier.

Response time: The response time of PTRPAA is required to be fast enough to give response for user’s requests. Since algorithms for route planners are characterized by higher run time complexity which affects the response time, it is important to have an efficient algorithm. In fact, response time is one of the criteria used by users to select a system from a set of alternatives.

Memory: The memory requirement of route planner systems is usually high. To minimize the memory usage of PTRPAA, dynamic memory allocation and de-allocation is used and objects which are no more important are removed from the system. However, there should be a compromise between memory usage minimization and memory usage to improve response time.

Robustness: Any system should be able to revive from possible errors. One source of errors is user input. Therefore, the system’s user interface should be designed in a way that could minimize user input errors.

Reliability: PTRPAA is required to be reliable so that users get the appropriate and correct answers.

Availability: A route planner is expected to be available at any time. In line with this, PTRPAA required to be available at any time.

Usability: PTRPAA is required to be easy to use. The user interface is designed in such a way that it is simple to users to input their request. The user interface elements are labeled to help users to easily identify and use them.
5.2 Persistent Data Management

The PTRPAA system consists of data that need to remain intact even after the program stops running. Among the alternative mechanisms to store data, flat file system is selected for this system. Flat file systems are suitable for PTRPAA for the following reasons.

- The data in the system are unstructured. For example, the number of edges for a vertex can be only one while there can be more than five for another vertex. Similarly, the number of vertices a bus or taxi may pass through varies from one bus/taxi service route to another. Therefore, it is better to store the data in flat files rather than in a database which stores structured data.

- The operations with regard to the persistent data in the system are mostly reading which do not involve complex queries as in report generation. Therefore, there is no need for a database management system.

- The write operation of the system is limited to tariff records, all the rest are read-only operations. Since the number of tariff records is very few and a write operation normally affects all the records, it is possible to overwrite the whole file. Thus, a database is not necessary for record selection.

There are a number of files created for the system. These files can be broadly categorized into four as vertex-edge record, transport route record, tariff record, and number-of-transfers record files. For the sake of optimization, files that adjoin records in two files (similar to tables of a database which link up two tables in a many-to-many relationship) are required to be created and used. The files in the system are:

- Vertices file: contains the vertex name along with their neighboring vertices (edges) and distances between the vertex and each of its neighbors. The records are sorted in ascending order of vertex name.

- Bus route file: stores the bus service numbers and the route (sequence of vertices) for each bus. The records are sorted in ascending order of bus service number.
• Taxi route file: stores taxi route identifier numbers along with the route for each of them. The records are stored in ascending order of taxi route identifier numbers.

• Vertex-Bus file: contains the bus service numbers passing through a given vertex. The records are sorted in ascending order of vertex names. This table serves as a link between the vertices and bus files whose records have many-to-many relationship. Thus, the vertices file and the bus file are equivalent to tables in many-to-many relationship of a relational database and the vertex-bus file is analogous to a table with one-to-many relationship with both tables to link them.

• Vertex-Taxi file: contains vertex names along with route identifiers of taxis which pass through them. The records are sorted in ascending order of vertex names. This file is used as a link between the vertices file and the taxi file.

• Bus tariff file: contains the kilometer range along with the respective tariff for Anbessa city buses.

• Taxi tariff file: contains the kilometer range along with the respective tariff for minibus taxis in Addis Ababa.

• Transfer file: stores the number of transfers needed to move from a given origin vertex to a destination vertex on a transport service. The information in this file can be viewed as a two dimensional array of numbers where each number shows the number of buses/taxis one should take when traveling between two vertices. The vertices are represented by their index instead of their names. Their names can be referred from the vertices file whenever necessary. More on the use of transfer values is presented in the next sub sections.

• Special vertices file: stores locations at the outskirts of Addis Ababa served by Anbessa bus routes that travel out of the boundaries of the city. This special vertices file is necessary because some vertices on these routes are not included in the transport network model yet they are needed in the view bus route use case.
5.3 Algorithm Design

The major use case of the system is Find Journey Route. It involves all the classes and data storage files. The other use cases are implemented as direct reading/writing to a file. These use cases are restricted to accessing one or two files only. Hence, only the algorithm for the Find Journey Route use case is detailed in this section. The series of activities performed in this use case are:

1. The user selects the origin and destination locations (vertices) and the type of transport service to use. Then the user submits the request.

2. The system takes the journey specification parameters and selects the path with the minimum number of transfers.

3. The system displays the transport services available from origin to destination including the locations at which one need to transfer from one bus/taxi to another.

As stated in the requirements section, the selection of origin and destination vertices is required to get aid from the system in such a way that the user can select them from a pull down list. Thus, the origin and destination pull down lists are populated with the list of vertex names.

The activity outlined at the second step is composed of several sub activities that involve all the classes and the files in the system. The sub activities of this step can be stated as follows. For ease of explanation, the steps described below assume that the user selects bus as the desired transport service.

1. Get the index number for the origin and destination vertices. All the subsequent vertex references use index numbers instead of string names for the sake of code simplicity.

2. Get the number of transfers needed to travel from the given origin to the destination with the selected transport service. The vertex indices obtained at step 1 are used to index into the transfer matrix.
3. If the number of transfers obtained for the journey at step 2 is greater than one, resolve it into a list of journey segments with transfer value of 1 by identifying the intermediate transit vertices from the transfer matrix. This step is the main activity of the use case.

4. Using the list of journey segments with transfer value of 1 obtained at step 3, identify the list of buses that pass through both the origin and destination vertices of each segment by reading from the vertex-bus file.

From the above statements, it can be seen that two data structures repeatedly used are: transfer matrix and lists. The transfer matrix is described in detail in the next paragraphs. The list is implemented in a separate class as a regular linked list data structure. The other data structure needed in the system is a graph that contains vertices and their edges. A graph with a structure shown in Figure 7 is used as it is the optimal from memory space and run time perspectives. Queues are also used in the system and are represented in linked structures.

For a public transport route planner in which the main criteria is finding a route with the minimum number of transfers, it is appropriate to create and store transfer matrices rather than calculating the shortest route for each request. A transfer matrix is an $N \times N$ two dimensional array of integers that represent the number of transfers needed to travel between two vertices while using a transport service (Anbessa bus, for example). The matrix indices represent vertex identifiers. A row index of the matrix represents the origin while a column index is considered as a destination vertex index.

The transfer matrix introduced in this project is not the same as the adjacency matrices and connectivity matrices explained in [2]. The main aim of adjacency matrices is to indicate the number of alternative routes one can take to travel between two vertices. The square of an adjacency matrix (i.e. T^2 of an adjacency matrix T) shows the number of alternative routes between two locations if one takes 2 transfers, T^3 shows the number of alternative routes when 3 transfers are taken, and so on. Connectivity matrices, on the other hand, show the number of possibilities a passenger can transfer from one service route to another (not locations). Unlike both adjacency and connectivity matrices, transfer matrices contain the amount of transfers needed rather than the alternative routes or the number of transfers between service routes.
To explain the transfer matrix in detail, let us consider a simple road network with six vertices as shown in Figure 15. Let us assume that it is possible to travel without transfer only between two vertices with an edge. In other words, a transport service connects no more than two vertices. The transfer matrix for this road network is shown in Figure 16.

Figure 15: A simple road network with six vertices

```
0 2 1 2 3 1
2 0 1 1 1 2
1 1 0 1 2 1
2 1 1 0 2 1
3 1 2 2 0 3
1 2 1 1 3 0
```

Figure 16: The transfer matrix for the road network shown in Figure 15

From Figure 16, it can be seen that the transfer matrix is symmetrical about the diagonal. Therefore, it is sufficient to store only either the lower or upper half of the matrix. To save memory space, the transfer matrix for two transport services can be stored in a single matrix, each on either of its halves. The value along the diagonal is 0 indicating there is no need to take any transport service to travel from a vertex to itself. A 0 value at any other location of the matrix indicates that there is no service with the given transport facility at that location. A value of 1 indicates that a direct service is available between a vertex whose index is the row number and a vertex whose index is the column number of the matrix.
To make the concept of transfer matrix clearer, let us take a real example by taking six locations of Addis Ababa and see the transfer matrix for taxi service. The selected locations are Arat Kilo, Haya Hulet Mazoria, Kazanchees, Kebena, Megenagna, and Shola Gebeya. Their index numbers are 1, 2, 3, 4, 5, and 6 respectively. The taxi transport network connecting these points is illustrated in Figure 17. The transfer matrix M for taxi service on these locations is shown in Figure 18. From the transfer matrix we can see that one has to take two taxis to travel from Kazanchees to Shola Gebeya (M[3][6]) or vice versa (M[6][3]) while there is a direct taxi service from Arat Kilo to Kazanchees (M[1][3]) or vice versa (M[3][1]).

Figure 17: Taxi service network on six sample locations of Addis Ababa

Figure 18: The transfer matrix M for the taxi service network shown in Figure 17
5.3.1 Construction of the Transfer Matrix

Initially, only transfer values of 1 are entered in the matrix and all the rest are set to 0. The initial matrix for the network of Figure 15 is shown in Figure 19. The list of vertices with transfer value of 1 (with direct transport services) can be obtained from each bus/taxi service number path information.

\[
\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 1 & \\
0 & 0 & 1 & 1 & 1 & 0 & \\
1 & 1 & 0 & 1 & 0 & 1 & \\
0 & 1 & 1 & 0 & 0 & 1 & \\
0 & 1 & 0 & 0 & 0 & 0 & \\
1 & 0 & 1 & 1 & 0 & 0 & \\
\end{array}
\]

Figure 19: The initial values when constructing a transfer matrix

The next step is filling the appropriate transfer values at the 0 valued locations of the matrix. This process begins at the first row and works down row by row until the last one. For a non-diagonal value of 0 at row i and column j, each pair-wise sum of matrix[i][k] and matrix[k][j], where both values are non-0 and k runs from the first to the last matrix index, is compared and the least sum is taken as the transfer value of matrix[i][j]. The variable which controls the least sum of matrix[i][k] and matrix[k][j] should be initialized to a higher integer value that logically cannot be a transfer value (in the system developed, 100 is used as such an integer).

However, visiting the matrix elements once does not guarantee that all the correct transfer values are obtained. There could be some remaining non-diagonal 0-valued matrix elements. This may happen because it is not possible to get n-transfer values before (n-1)-transfers are identified. Therefore, whenever the least transfer value identified is the special high value integer (100, in this system), it is essential to mark this matrix element by adding it to a queue of matrix elements of similar property for further investigation. The calculation of least transfer values and the marking would continue until the queue is empty. The pseudo code for this algorithm is shown below.
int row, col, minValue, iteration=1
for(row=0 \rightarrow N-1){
 for(col=row+1 \rightarrow N-1){
 if(matrix[row][col] = 0){
 minValue = getMinTransfer(row, col)
 if(minValue ≠ 100)
 matrix[row][col] = minValue
 else
 add matrix[row][col] to queue
 }
 increment col
 }
 increment row
}
while(queue is not empty){
 dequeue first element
 minValue = getMinTransfer(row, col)
 if(minValue ≠ 100)
 matrix[row][col] = minValue
 else
 add matrix[row][col] to queue
}
The pseudocode for the function `getMinTransfer(row, col)` is as follows.

```c
int getMinTransfer( ){
    int sum, minValue=100
    for(i=0 \rightarrow N-1){
        if ((matrix[row][i] \neq 0) and (matrix[i][col] \neq 0)){
            sum=matrix[row][i] + matrix[i][col]
            if(sum<minValue)
                minValue=sum
        }
    increment i
}
return minValue
}
```

5.3.2 Resource Requirement of the Transfer Matrix

The run time complexity of the algorithm is $O(N^3)$. However, it should be noted that the computation is made for half the matrix and out of which much of the transfer matrix values are 1 which would make the third loop to be skipped. For a small transport network with small number of vertices, the computation is not much difficult. Moreover, the preparation of the transfer matrix is done once and the values are stored in a file for further use.

Concerning the memory space requirement of the transfer matrix, a system with 200 vertices would take 80KB if 2 byte integer is used to represent the matrix elements. Because the matrix’s values are small positive integers, it is possible to use 1 byte integer data type and reduce the memory requirement to only 40KB if such integer representation is available in the programming language used. This is a small requirement in today’s PCs which have gigabytes of memory.

By using transfer matrices with such a small memory space requirement, it is possible to improve the performance of the system.

As a further optimization of memory usage, it is possible to store the transfer information of two transport services in a single transfer matrix, each in either of its diagonal halves. However,
special attention should be taken when combining transfer matrices of two transport services because there could be some vertices which are served by one of the two transport services and not served by the other. To avoid this problem, the transfer information of the two transport services should be stored together in a file. Similar technique is used in PTRPAA. The vertices which are not served by a given transport service would have a 0 value entry in the transfer matrix.

The transfer matrix and the vertex graph are required to be constructed at start up of the application by reading data stored in the transfer file and vertices file. These data structures need to remain in memory until the program is terminated because they are used repeatedly. Other data structures such as lists and queues of journey segments and service routes should be deallocated when they are no more necessary.
6. THE PROTOTYPE

6.1 Programming Language

The programming language used to develop the prototype is Microsoft Visual C++ 2005. Visual studio 2005 contains several programming languages which are used to develop Windows applications, console applications, and web applications. Among the programming languages offered in Visual Studio 2005, C++ is selected for its flexibility in dynamic memory allocation. Since almost all variables of the system are allocated dynamically, selecting a programming language with good dynamic memory allocation is essential. Furthermore, a Visual C++ Windows application is user-friendly just like other Windows applications.

Microsoft Visual Studio 2005 is based on the .NET Framework. The .NET Framework is a library that can be used by the various programming languages contained in Visual Studio. In previous versions of Microsoft Visual Studio (before Visual Studio 2003), Visual C++ used a library called Microsoft Foundation Classes (MFC) while Visual Basic (the other language included in Visual Studio) used other sets of libraries. The reason for the use of separate libraries is that, MFC is a customized version of Win32 library of Microsoft Windows was implemented in C and cannot be directly used by Visual Basic. Newer versions of Microsoft Visual Studio versions starting from Visual Studio 2003 use the .NET Framework library, which is shared by all languages contained in the Visual Studio suit. However, the MFC library is still included in newer versions of Visual Studio.

6.2 Implementation Challenges and Decisions

There were a number of challenges related to the collected data and the data collection itself. These issues and the decisions taken are listed and discussed in this sub-section.

- Identification of minibus taxi service routes is difficult. Information on the routes is not readily available as that of Anbessa city buses. As a result, most of the minibus service routes are obtained through consultation with individuals who work on minibus taxis and some from experience.
• Another problem with minibus taxi service routes is that the routes do not have clearly defined starting/end locations. This is especially true on long distance routes. For example, a service route may start from Piassa and end at Megenagna while some taxis on the same route may continue to Kotebe. Short distance routes usually have well defined start and end points. As a solution, long distance routes are assumed to terminate at business centers of the city such as Piassa, Mexico, Merkato, etc. It should also be remembered that, minibus drivers break route into smaller segments to exploit the authorized tariff system.

• Some of the location names for bus stops obtained from Anbessa City Bus Enterprise, such as ‘under the bridge’, are too vague to be used in the prototype. Therefore, they are not included in the system. It is also true that some locations are referred by more than one name (Giorgis and Menelik Square, for example). Such names are identified and one of the names is used for consistency. Another problem with location names is the use of identical names for two or more locations (Hana Mariam, for example.) If two or more locations have identical names and if a name refers to a large geographical area (such as Bole), additional qualifiers are added to the name.

• The distance information used in the system is the inter-bus-stop distance data obtained from Anbessa City Bus Enterprise. Inter-stop distance measure for minibus taxi service is not available. Fortunately, taxi terminals are usually near to bus stops hence the inter-bus-stop distances are used for taxis as well.

In general, the 93 Anbessa bus routes and 75 minibus taxi routes are used in the system. The number of selected locations (neighborhoods) is 140 (see the Appendix). These locations are selected based on the following criteria.

• The location is a business or commercial center;

• The location is a road junction where two or more service routes intersect;

• The location is where a service route begins/terminates;
• Even though the location is not a junction or a business center, the distance between it and a nearby junction or a business center is 1,000 meters or more.

6.3 User Interface of the Prototype

Since the main use case of the system is finding a journey route, the system displays the user interface for this use case upon activation, as shown in Figure 20. The user interface arranges the interfaces for each use case in different tabs. A user can select the interface for a use case by selecting the respective tab.

![User Interface of the Prototype](image)

Figure 20: The user interface for Find Journey Route use case
To find the route for a journey, the user orders the system after selecting the origin and destination locations of the journey and the type of transport service to use. Figure 21 shows the result for a trip from Arat Kilo to Kazanchees using bus.

![Figure 21: Route data for a trip from Arat Kilo to Kazanchees using bus](image-url)
Whenever there is a change in public transport tariff, the user is expected to update the system’s tariff record. The user interface for update tariff use case is available on the Update Tariff tab. When the user selects the transport service type, the currently stored tariff data of that service is automatically displayed. The user can change these records by typing in the provided text boxes and save them. The system confirms the change after saving the new records. Figure 22 displays this interface after taxi transport service is selected.

Figure 22: The user interface for Update Tariff use case after taxi transport service is selected
To view the route information for a given bus service number, the user can select the interface on the View Bus Route tab. The user can order the system to display the route of a bus service number after typing the service number of interest in the provided text box. The user interface for view bus route use case is shown in Figure 23 with the route for service number 31 displayed.

![User Interface for View Bus Route Use Case](image)

Figure 23: The user interface for View Bus Route use case with service number 31 displayed
The user interface for view tariff use case can be accessed by selecting the View Tariff tab. The user can order the system to display the tariff for a transport service type by selecting the desired type of transport. Figure 24 shows this user interface with taxi transport service selected.

Figure 24: The user interface for View Tariff use case
7. CONCLUSION AND FUTURE WORKS

7.1 Conclusion

The development of a route planner needs the processing of large amount of data and longer time as it needs modeling of the transport network which is composed of large number of locations, service routes, and service type/operators. What makes the situation worse in Addis Ababa is that there is lack of readily available data on transport network routes, except that of Anbessa city bus service.

Route planner for personal computer systems can be implemented as web based applications or desktop applications. They can also be developed for use through mobile phones and smart phones. Route planners can be equipped with digital maps as an additional means of origin and destination selection (to accept input) and to display the identified path (graphical display of output).

Another distinction is made among route planners by considering when they identify routes. Some route planners identify optimal routes between any two locations in a transport network with respect to a criterion such as shortest distances and store them in a database. When a query is presented, they retrieve the pre-calculated information and present it to the user. Route planners in the other category try to identify the optimal route on the fly. The application developed in this project is a type of route planner in which the routes with the least number of transfers between locations are stored in the form of a transfer matrix.

Route planners help users to identify the optimal route for a given origin and destination pair in different criteria. The common criteria are shortest distance, least fare, least waiting and travel time, and minimum number of transfers. Given the characteristics of public transport service in Addis Ababa, the most important criterion is minimizing the number of transfers needed. Minimizing number of transfers has implications on minimizing cost, waiting time, and travel distance. Thus, the developed application is targeted in finding only the routes with the least number of transfers.
This project explores the characteristics of public transport services in Addis Ababa. It is found out that there is a high degree of overlap between service routes. The reasons for the overlaps arise from poor transport design, lack of alternate routes suitable for public transport, and the authorized public transport tariff.

The absence of suitable location identification in Addis Ababa is another problem posed at the development of a route planner for the city. It is difficult to give a suitable identifier for some terminals. The other problem with terminals is that taxis board and alight passengers not at defined stops.

7.2 Future Works

Development of route planners for Addis Ababa is still an open research subject. Moreover, since route planners can be developed with the aim of identifying routes optimized in different user criteria, many route planners can be developed in the future. For those who have interest to engage in a similar work, possible extensions and other development issues are outlined below.

- The developed route planner uses pre-calculated and stored paths with minimum number of transfers. Although number of transfers is a major route selection criterion which has influence on distance, cost, and time factors in the current actual transport network of Addis Ababa, it is also possible that routes can be optimized with other parameters, such as distance. Creating such route planners for Addis Ababa is still open.

- Most potential users of the system are Amharic language speakers. Therefore, the developed system can be enhanced by incorporating Amharic language at the interface and data storage level and making it multilingual.

- Currently, the developed system includes public transport services offered by Anbessa City Bus Enterprise and minibus taxis. In a future work, midi bus transport service can be included.

- It is known that the public transport services offered by Anbessa and minibus taxis extend beyond the boundaries of Addis Ababa so as to link the city with surrounding towns.
Such services are not included in the developed system. Therefore, it can be extended by including services to nearby towns.

- Digital maps are used in route planners to visually display identified routes and possibly as a means of input in which the user can click on the map to identify origin and destination locations. Since maps are not included in the current system, it can be included in a future extension of the system. However, it should be noted that due to the unavailability of suitable digital map of Addis Ababa at the present, much preprocessing effort is required to have a suitable map.

- The current application is developed as a desktop application. It is therefore, important to develop web based systems which can be accessed through PCs and mobile phones for alternative accessibility.
REFERENCES

APPENDIX

List of neighborhoods of Addis Ababa included in the PTRPAA prototype

<table>
<thead>
<tr>
<th></th>
<th>Neighborhood</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abnet Hotel</td>
<td>48</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>Abuware</td>
<td>49</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>Addisu Gebeya</td>
<td>50</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>Addisu Sefer</td>
<td>51</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>Adey Abeba</td>
<td>52</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Adwa Dildye</td>
<td>53</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Afncho Ber</td>
<td>54</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>Africa Union</td>
<td>55</td>
<td>102</td>
</tr>
<tr>
<td>9</td>
<td>Alem Bank</td>
<td>56</td>
<td>103</td>
</tr>
<tr>
<td>10</td>
<td>Amanuel</td>
<td>57</td>
<td>104</td>
</tr>
<tr>
<td>11</td>
<td>Ambassador Theater</td>
<td>58</td>
<td>105</td>
</tr>
<tr>
<td>12</td>
<td>Amist Kilo</td>
<td>59</td>
<td>106</td>
</tr>
<tr>
<td>13</td>
<td>Arat Kilo</td>
<td>60</td>
<td>107</td>
</tr>
<tr>
<td>14</td>
<td>Arogew Kera</td>
<td>61</td>
<td>108</td>
</tr>
<tr>
<td>15</td>
<td>Asco</td>
<td>62</td>
<td>109</td>
</tr>
<tr>
<td>16</td>
<td>Atlas Hotel</td>
<td>63</td>
<td>110</td>
</tr>
<tr>
<td>17</td>
<td>Autobus Tera</td>
<td>64</td>
<td>111</td>
</tr>
<tr>
<td>18</td>
<td>Ayat</td>
<td>65</td>
<td>112</td>
</tr>
<tr>
<td>19</td>
<td>Ayer Tena</td>
<td>66</td>
<td>113</td>
</tr>
<tr>
<td>20</td>
<td>Bambis</td>
<td>67</td>
<td>114</td>
</tr>
<tr>
<td>21</td>
<td>Bela</td>
<td>68</td>
<td>115</td>
</tr>
<tr>
<td>22</td>
<td>Bethe Mengist</td>
<td>69</td>
<td>116</td>
</tr>
<tr>
<td>23</td>
<td>Bethel</td>
<td>70</td>
<td>117</td>
</tr>
<tr>
<td>24</td>
<td>Bherawi Mehandis</td>
<td>71</td>
<td>118</td>
</tr>
<tr>
<td>25</td>
<td>Bherawi Theater</td>
<td>72</td>
<td>119</td>
</tr>
<tr>
<td>26</td>
<td>Birchiko Fabrica</td>
<td>73</td>
<td>120</td>
</tr>
<tr>
<td>27</td>
<td>Bisrate Gebriel</td>
<td>74</td>
<td>121</td>
</tr>
<tr>
<td>28</td>
<td>Bole</td>
<td>75</td>
<td>122</td>
</tr>
<tr>
<td>29</td>
<td>Bole Bulbula</td>
<td>76</td>
<td>123</td>
</tr>
<tr>
<td>30</td>
<td>Bole Medhanealem</td>
<td>77</td>
<td>124</td>
</tr>
<tr>
<td>31</td>
<td>Bole Michael</td>
<td>78</td>
<td>125</td>
</tr>
<tr>
<td>32</td>
<td>Building College</td>
<td>79</td>
<td>126</td>
</tr>
<tr>
<td>33</td>
<td>Bulgaria Mazoria</td>
<td>80</td>
<td>127</td>
</tr>
<tr>
<td>34</td>
<td>Chilot</td>
<td>81</td>
<td>128</td>
</tr>
<tr>
<td>35</td>
<td>CMC</td>
<td>82</td>
<td>129</td>
</tr>
<tr>
<td>36</td>
<td>Crown Hotel</td>
<td>83</td>
<td>130</td>
</tr>
<tr>
<td>37</td>
<td>Dil Ber</td>
<td>84</td>
<td>131</td>
</tr>
<tr>
<td>38</td>
<td>Enderase</td>
<td>85</td>
<td>132</td>
</tr>
<tr>
<td>39</td>
<td>Enqulal Fabrica</td>
<td>86</td>
<td>133</td>
</tr>
<tr>
<td>40</td>
<td>Entoto Kidane Mhiret</td>
<td>87</td>
<td>134</td>
</tr>
<tr>
<td>41</td>
<td>Entoto Mariam</td>
<td>88</td>
<td>135</td>
</tr>
<tr>
<td>42</td>
<td>Erer Ber</td>
<td>89</td>
<td>136</td>
</tr>
<tr>
<td>43</td>
<td>Ethio China College</td>
<td>90</td>
<td>137</td>
</tr>
<tr>
<td>44</td>
<td>Ferensay Embassy</td>
<td>91</td>
<td>138</td>
</tr>
<tr>
<td>45</td>
<td>Filwuha</td>
<td>92</td>
<td>139</td>
</tr>
<tr>
<td>46</td>
<td>Genet Hotel</td>
<td>93</td>
<td>140</td>
</tr>
<tr>
<td>47</td>
<td>Gerji (Mebrat Hail)</td>
<td>94</td>
<td>141</td>
</tr>
</tbody>
</table>
DECLARATION

This project is my original work, has not been presented for a degree in any other university and that all sources of material used for the project have been acknowledged.

Addisu Andarge
June 2010

Confirmed by advisor:

Yaregal Assabie (Ph.D.)
June 2010