THE SYNTAX OF SIMPLE DECLARATIVE CLAUSES
IN ZAYSÉ

A Thesis
Presented to
The School of Graduate Studies
Addis Ababa University

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts in Linguistics

by
Teshome Yimer
June 1989
Addis Ababa
THE SYNTAX OF SIMPLE DECLARATIVE CLAUSES
IN ZAYSSE

by
Teshome Yimer

Institute of Language Studies

Approved by

Sate Yimer
Advisor

Alemayehu Haile
Examiner

Livingstone Watsa
Examiner
ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to Dr. Baye Yinan, my advisor, whose patient advice, insightful comments and material support had a great contribution in materializing this study. Although his help is invaluable to me, he is not responsible for any error that may appear in this paper.

I would like to extend my thanks to my friends and informants for the various supports they rendered to me.

Finally, I am grateful to my wife, W/ro. Bizunesh Shume, for not only typing the paper but also for the encouragement she has given me in doing my post graduate study.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>List of Abbreviations and Symbols</td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1. The Zaysse People and their Language</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Previous Study</td>
<td>1</td>
</tr>
<tr>
<td>1.3. The Present Study</td>
<td>6</td>
</tr>
<tr>
<td>1.4. The Theoretical Framework: The Syntactic Component</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1. The Base Component</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1.1. The Lexicon</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1.2. The Categorial Component</td>
<td>18</td>
</tr>
<tr>
<td>1.4.2. The Transformational Component</td>
<td>11</td>
</tr>
<tr>
<td>1.5. Limitations of the Study</td>
<td>25</td>
</tr>
<tr>
<td>CHAPTER 2. WORD ORDER IN ZAYSSE</td>
<td></td>
</tr>
<tr>
<td>2.1. The Basic Word Order</td>
<td>26</td>
</tr>
<tr>
<td>2.2. Word Order Variations</td>
<td>40</td>
</tr>
<tr>
<td>CHAPTER 3. THE STRUCTURE OF SIMPLE CLAUSES</td>
<td></td>
</tr>
<tr>
<td>3.1. The Inflection Node</td>
<td>63</td>
</tr>
<tr>
<td>3.2. The Structure of Declarative Clauses</td>
<td>69</td>
</tr>
</tbody>
</table>
3.2.1. The Structure of Intransitive Clauses .. 69
3.2.2. The Structure of Transitive Clauses .. 76
 3.2.2.1. The Structure of Passive Clauses .. 77
 3.2.2.2. The Structure of Causative Clauses .. 81

CONCLUSION .. 86

NOTES .. 88

BIBLIOGRAPHY .. 90
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adjective</td>
</tr>
<tr>
<td>A-</td>
<td>argument</td>
</tr>
<tr>
<td>Acc</td>
<td>accusative</td>
</tr>
<tr>
<td>AGR</td>
<td>agreement</td>
</tr>
<tr>
<td>AP(A")</td>
<td>adjective phrase</td>
</tr>
<tr>
<td>c-command</td>
<td>constituent command</td>
</tr>
<tr>
<td>cs</td>
<td>causative marker</td>
</tr>
<tr>
<td>COMP</td>
<td>complementizer</td>
</tr>
<tr>
<td>cont</td>
<td>continuous</td>
</tr>
<tr>
<td>CP(C")</td>
<td>Complementizer Phrase, clause</td>
</tr>
<tr>
<td>c-selection</td>
<td>categorial selection</td>
</tr>
<tr>
<td>cl</td>
<td>clause marker</td>
</tr>
<tr>
<td>D-S</td>
<td>Deep Structure</td>
</tr>
<tr>
<td>e</td>
<td>empty node</td>
</tr>
<tr>
<td>ed</td>
<td>editor</td>
</tr>
<tr>
<td>EPP</td>
<td>Extended Projection Principle</td>
</tr>
<tr>
<td>EST</td>
<td>Extended Standard Theory</td>
</tr>
<tr>
<td>excl</td>
<td>exclusive</td>
</tr>
<tr>
<td>f</td>
<td>feminine</td>
</tr>
<tr>
<td>foc</td>
<td>focus marker</td>
</tr>
<tr>
<td>fut</td>
<td>future tense marker</td>
</tr>
<tr>
<td>I (INFL)</td>
<td>inflection</td>
</tr>
<tr>
<td>imp</td>
<td>imperative marker</td>
</tr>
<tr>
<td>incl</td>
<td>inclusive</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>IO</td>
<td>indirect object</td>
</tr>
<tr>
<td>Lat</td>
<td>lateral</td>
</tr>
<tr>
<td>LF</td>
<td>logical form</td>
</tr>
<tr>
<td>LS</td>
<td>lexical structure</td>
</tr>
<tr>
<td>Lt.</td>
<td>literally</td>
</tr>
<tr>
<td>m.</td>
<td>masculine</td>
</tr>
<tr>
<td>ms</td>
<td>masculine singular</td>
</tr>
<tr>
<td>N</td>
<td>noun</td>
</tr>
<tr>
<td>NP(N")</td>
<td>noun phrase</td>
</tr>
<tr>
<td>neg</td>
<td>negative marker</td>
</tr>
<tr>
<td>nom</td>
<td>nominative marker</td>
</tr>
<tr>
<td>P</td>
<td>proposition/postposition</td>
</tr>
<tr>
<td>pf</td>
<td>perfective</td>
</tr>
<tr>
<td>pl</td>
<td>plural marker</td>
</tr>
<tr>
<td>pas</td>
<td>passive marker</td>
</tr>
<tr>
<td>PP(P")</td>
<td>proposition phrase</td>
</tr>
<tr>
<td>PSR</td>
<td>Phrase Structure Rule</td>
</tr>
<tr>
<td>Rel</td>
<td>Relative clause marker</td>
</tr>
<tr>
<td>R & W</td>
<td>Riemsdijk and Williams</td>
</tr>
<tr>
<td>S</td>
<td>sentence</td>
</tr>
<tr>
<td>SC</td>
<td>structural change</td>
</tr>
<tr>
<td>SD</td>
<td>structural description</td>
</tr>
<tr>
<td>Sg</td>
<td>singular</td>
</tr>
<tr>
<td>SCV</td>
<td>Subject Object Verb</td>
</tr>
<tr>
<td>SPEC</td>
<td>Specifier</td>
</tr>
</tbody>
</table>
SPH: Structure Preserving Hypothesis

s-s: Surface Structure

s-selection: semantic selection

SSC: Specified Subject Condition

ST: Standard Theory

t: trace

T-rule: transformational rule

TSC: Tensed-S condition

θ: thematic / theta

θ̄: theta bar

UG: Universal Grammar

V: verb

vd: voiced

vl: voiceless

VP(V"): verb phrase

XP(X"): maximal projection of a lexical head X

α: alpha

*: The following structure is ungrammatical

→: expands into

+: has the value of

: length

-: morpheme boundary

<X/>: boundary of X
Language map taken from Denièr (1976: 298)
CHAPTER 1

INTRODUCTION

1.1. THE ZAYSÈ PEOPLE AND THEIR LANGUAGE

The Zaysè people, who are estimated to be about 21,000 (Bender et al (eds), 1976:15) live in Gardulla district, Gamo Gofa Administrative Region. They are distributed over four peasant associations - Elgo, Wozaka, Damble and Zargulla, all located on the western side of Lake Chamo and the eastern side of the Gardulla mountains. Different scholars write Zaysè as Zaissè, Zaise or Zaysè, to refer to either the people or their language. The Gidoles call the country ko:riy (sic) (Bender (ed), 1976:14).

The language, Zaysè, like Wolayta and Gamo, is an Omotic language belonging to the Omoto clusters. Though an intelligibility test has not been carried out so far, the information gathered from the informants substantiates Bender's claim (Bender 1976:14) that Zaysè is mutually intelligible with Zargulla.

1.2. PREVIOUS STUDY

Though the study of Omotic and Cushitic languages started in the nineteenth century, it can be observed from the comparative studies of Cerulli (1938), Fleming and Bender (Bender et al (eds), 1976), Fleming (Bender (ed), 1976), Zaborski (1980, 1984) and Alemayehu Haile...
(1981) that there is still no detailed study carried out on most of the Omotic languages. Zaborski's (1984:25) statement that "... Any discussion on the Omotic languages is seriously hampered by the lack of sometimes even quite basic data since a number of Omotic languages and their dialects are practically not described so far ..." clearly shows how little the Omotic languages are known. As a result of this, it is difficult whether a speech community is using a language or a dialect of another language.

However, when Zaysse is considered in view of Zaborski's statement, it seems to be in a better position, because there are comparative studies done by people like Cerulli, Hayward and descriptive studies made by Mulugeta Seyoum (1988) and Hirut Wolde Mariam (1988).

In his comparative work *Il Linguaggio Dei Giangero Ed Alcune Lingue Sidama Dell'Omo (Basketo, Ciara, Zaisse)* (1938:189-215), Cerulli recognizes twenty six consonants for Zaysse. He has not dealt with vowels, nor has he described the distributions of the consonants he has recognized.

Concerning the grammar, he has made some general observations about pronouns, nouns, verbs, tenses and articles.
According to Mulugeta Seyoum (1988:20) the consonant phonemes of Zaysse are shown in the following table.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Consonants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>vl, p, t, k, k</td>
</tr>
<tr>
<td></td>
<td>vd, b, d, g</td>
</tr>
<tr>
<td>Affricate</td>
<td>vl, tʰ, ɣ</td>
</tr>
<tr>
<td>Fricative</td>
<td>vl, f, s, ʃ, h</td>
</tr>
<tr>
<td></td>
<td>vd, z, ʒ</td>
</tr>
<tr>
<td>Ejective</td>
<td>p', s', ɣ', k'</td>
</tr>
<tr>
<td>Nasal</td>
<td>m, n</td>
</tr>
<tr>
<td>Implosive</td>
<td>d</td>
</tr>
<tr>
<td>Liquid</td>
<td>l</td>
</tr>
<tr>
<td>Flap</td>
<td>r</td>
</tr>
<tr>
<td>Semi-vowel</td>
<td>w, y</td>
</tr>
</tbody>
</table>

Table I. The Consonant Phonemes of Zaysse

Mulugeta has also identified five phonemic vowels shown in Table II below.

Vowel	

i	u
e	o
	a

Table II. The Vowel Phonemes of Zaysse (1988:26)
Concerning supra-segmental features, length and stress are found to be phonemic; whereas pitch is believed to be phonetic (1988:27-31). According to Mulugeta's analysis, the syllabic structure is C V (V) (C) (C).

The common phonological processes that are observed include spirantization, nasalization, nasal assimilation, aspiration, epenthesis, vowel deletion and vowel contraction. Vowel addition (prothesis and paraγosγ) and metathesis are also found in borrowed words.

Hirut's (1988) "The Noun Morphology of Zayssé" deals with the inflections and derivations of nouns. Nouns are inflected for number, definiteness and case. Gender is expressed in three ways. These are the following:

a) different lexical items for the masculine and feminine;

b) the definite articles, and

c) the modifiers.

Regarding number, the plural is indicated by the regular plural morpheme /-ir/, and by the kinship plural marker /-as'/.

According to Hirut, definiteness is shown by /e-/ in masculine singular and by /i-/ in feminine singular; and by /u-/ in plural. Moreover, demonstrative pronouns like /ha-/ 'these' and /so-/ 'those', are used with plural nouns.
Hirut has also identified the following case morphemes.

a) /-i/ or /-y/ 'nominative',
b) /-us/ or /-s/ 'dative'
c) /-una/ or /-na/ 'instrumental',
d) /-ka/ or /-ga/ 'locative',
e) /-fa/ 'ablative',
f) /-ra/ 'comitative', and
g) /-us/ or /-s/ 'genitive',

The following are personal pronouns in the different cases.

<table>
<thead>
<tr>
<th>Person</th>
<th>Nominative</th>
<th>Accusative</th>
<th>Dative</th>
<th>Genitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sg. 1st</td>
<td>tay</td>
<td>tana</td>
<td>tare</td>
<td>ta</td>
</tr>
<tr>
<td>2nd</td>
<td>ney</td>
<td>nena</td>
<td>nere</td>
<td>ne</td>
</tr>
<tr>
<td>3rdms.</td>
<td>esi</td>
<td>esa</td>
<td>esiro</td>
<td>e</td>
</tr>
<tr>
<td>f.</td>
<td>isi</td>
<td>isa</td>
<td>isiro</td>
<td>i</td>
</tr>
<tr>
<td>Pl. 1st(incl.)</td>
<td>niy</td>
<td>nina</td>
<td>nero</td>
<td>ni</td>
</tr>
<tr>
<td>(excl.)</td>
<td>nuy</td>
<td>nuna</td>
<td>niro</td>
<td>nu</td>
</tr>
<tr>
<td>2nd</td>
<td>wutini</td>
<td>wutuna</td>
<td>wuturo</td>
<td>wu</td>
</tr>
<tr>
<td>3rd</td>
<td>usini</td>
<td>usuna</td>
<td>usuro</td>
<td>u</td>
</tr>
</tbody>
</table>

Table. III. Personal Pronouns of Zayssè

Hirut has also dealt with nouns derived from

a) adjectives with the suffix /-ite/ '-ness'
b) verbs with the suffix /-o/ or /-o/ 'er', and
c) nouns with the suffix /-ute/-ship, -hood/.

In forming compounds, Hirut has shown that nouns can take nouns or adjectives or verbs as a second member to form compound nouns.

1.3. THE PRESENT STUDY

From the review it is noticeable that there has not been any study made on any aspect of the syntax of Zayssè. The comparative and descriptive studies of Cerulli and Hirut respectively deal with morphology. From this follows that the present study should focus on some aspects of the syntax of the language.

In dealing with the simple clauses of Zayssè, the writer hopes to proved syntactic information to linguists engaged in comparative Omotic, and to that extent, he also hopes to contribute to a better understanding and (re)classification of the Omotic languages.

Theoretically, the analysis might also contribute to our knowledge of the universals and particulars of natural languages. It may also have some pedagogical relevance.

This study is based on data collected using 100 Swadesh word-list and self-prepared phrases and sentences. The following people have acted as informants throughout: Mulugeta Wano, at present a third year Biology student in Addis Ababa University; Sit'ota Setto, a daily labourer
in Arba Minch; Waketa Warote and Navu Nat:e, high school students in Gidole; and Tamiru Ut'ayle, a high school teacher in Bahir Dar.

1.4. THE THEORETICAL FRAMEWORK: THE SYNTACTIC COMPONENT

The theoretical framework adopted in this study is the "Extended Standard Theory" (EST) which is introduced in Chomsky (1970) and outlined in Radford (1981) and Riemsdijk and Williams (henceforth R & W) (1986). EST is an outgrowth of the "Standard Theory" (ST) developed in Aspects of the Theory of Syntax (Chomsky 1965).

In both ST and EST the grammar of a language has three components: the phonological, the syntactic and the semantic components. As this study focuses on syntax, I shall consider the syntactic component only.

1.4.1 THE BASE COMPONENT

In EST, like in ST, the syntactic component has a base component and a transformational component. Within the base component are the lexicon and the categorial components (phrase structure rules).
1.4.1.1. THE LEXICON

In both models the lexicon contains a list of all lexical items with their idiosyncratic phonological, morphological, syntactic and semantic specifications (Radford 1981:141). Lexical Redundancy Rules which have positive subcategorizations of every lexical item are also inserted.

In ST, word-formation rules were not considered as part of the lexicon because they were considered to be part of the transformational component (Chomsky 1965:23). However, when Chomsky (1970) took the lexicalist position in "Remarks on Nominalization" (Henceforth Remarks) all word-formation rules became part of the lexicon.

In both theories, we have lexical insertion rules constrained by selectional restrictions showing which word in the lexicon substitutes which terminal symbol in the tree generated by the phrase structure rules.

1.4.1.2. THE CATEGORIAL COMPONENT

The categorial component in ST specifies the Phrase Structure Rules (FSRs) which "... were supposed to be of the context-free variety and limited to expanding a single node into one or more daughter nodes..." (Hoekstra, 1984:23). This was felt to be "... too restrictive in some sense and not restrictive enough in another..." (Baye 1986:15).
It was too restrictive in the sense that lexical categories expand and form phrasal categories. It does not allow categories smaller than the phrasal and larger than the lexical.

On the other hand, the PSRs in ST were not restrictive enough in the sense that phrasal categories could be expanded into any phrasal or lexical categories as in (1) and (2).

(1) \[\text{NP} \rightarrow \text{V - VP} \]
(2) \[\text{VP} \rightarrow \text{DET - N} \] (Radford 1981:102)

To avoid such problems, it was necessary to revise them by introducing certain constraints. Chomsky introduced the X-bar theory of PSRs in Remarks. This was developed in Jackendoff (1977). This convention is schematized in (3) below:

(3) \[X^n \rightarrow (C_0)---(C_j) - X^{n-1} - (C_j + 1) ... (C_k) \]
where \(1 \leq n \leq 3 \) for all \(\theta_j \); either
- \(C_j \) is \(Y^3 \) for some lexical category
- \(Y \), or \(C_j \) is a specified grammatical formative.

According to Hoekstra (1984:24), this convention embodies the following five claims:

(4) i. every category is endocentric
ii. every lexical category projects three levels of superstructure
iii. the head of a phrase is always one bar-level lower than the phrase node immediately dominating it.

iv. only maximal projections may appear as specifiers and complements, except for some non-head terms that are selected in terms of specified grammatical formatives.

v. specifiers will always occur peripheral to the complements of the lexical head of a phrase.

In addition to constraining the PSRs, the primitive syntactic categories (lexical categories) were also defined in terms of syntactic distinctive features. The rationale behind this is "... to capture the similarities and differences between related sets of categories..." (Radford 1981:112). There are a limited number of syntactic distinctive features available in Universal Grammar (UG) which every language "... has to choose... on the basis of the degree of naturalness its syntactic rules may gain when they operate on or across categories at a particular bar level..." (Bayo 1986:19). The distinctive features that are given in Remarks are $\pm N, \pm V$. Thus, in English, major lexical categories are defined as (5):

(5) \[
\begin{array}{ccc}
+ & V & - \tilde{V} \\
+ N & A & N \\
- N & V & P \\
\end{array}
\]

In short, the inclusion of lexical derivation to
the lexicon, the introduction of the X-bar theory and the introduction of syntactic distinctive features for defining lexical categories are the major features of the base component in EST.

1.4.2. THE TRANSFORMATIONAL COMPONENT

As mentioned previously, due to the syntactic derivations of lexical items, the Deep Structure (D-S) in ST was very abstract and powerful. Linguists had to formulate construction specific rules. However, when lexical derivations became part of the lexical transformation rules, and the transformational component was limited to syntactic derivations only, its expressive power was greatly reduced. The focus of linguistic research became not the formalization of particular rules, but the nature of transformations and the search for general conditions on how they operate.

Two such conditions on Wh-extractions are Chomsky's (1968) a-over-a Principle and Ross's (1967) Island Constraints. According to R & W, especially, Ross's conditions on transformations induced linguists to believe that "... many properties of individual transformations are common to larger families of transformations, so that it was possible to extract these properties and make them part of Universal Grammar..." (R & W 1986:58). This brought
about a change in the focus of linguistic research. Linguists made it their goal to discover simple and general principles underlying all individual transformational rules.

Ross's Island constraints were on Wh-movement. Since Wh-movement is typically unbounded, it raised the question of whether all transformational rules (T-Rules) have the same property. In addition, Rosebaum's (1967) proposal of Extrapolation and Identity Erasure transformations led to the same question. As a result, based on the nature of the domain of their applications, transformations were classified as (1) monocyclic: whose domain is a clause; (2) bicyclic: whose domain is across one clause boundary; and (3) unbounded: whose domain is arbitrarily many clause boundaries (R & W 1986:31).

In ST, every T-Rule had a structural description (SD) on which it operates and also a structural change (SC) which results from its application. This means, transformations could change structures. In order to constrain this, Emonds (1970) formulated his Structure Preserving Hypothesis (SPH). According to him, transformations can only be structure preserving, local or root. His constraint states:

(6) A constituent can only be moved by a substitution rule into another category of the same type. (Radford 1981:190)
As it was practised in ST, passive constructions were derived from their active counterparts. The transformational rule requires a SD, and its application results in a SC. In view of the SPH the derivation of passives from actives became controversial, because it was incompatible with SPH.

On the other hand Raising was believed to have some features with passivization, since in both, there is an NP moving from one NP-position to another NP-position. Based on SPH, then, the two transformations came to be treated as instances of one general rule which Chomsky (1973) called "Move NP".

"Move NP" as a general rule has the property in (7):

\[(7) \text{ Move any NP to subject position that does not receive an independent selectional or subcategorization role (R & W 1986:116)}\]

To avoid overgeneration, Chomsky introduced the following two conditions on "Move NP". The first is the Specified Subject Condition (SSC) which states that:

\[(8) \text{ No rule can involve } X, Y \text{ in the structure}\]
\[\text{--- } X \text{ --- [} \begin{array}{c} \infty \ 2 \\ \vdash \ \vdash \end{array} \text{ --- } \begin{array}{c} \infty \ 2 \\ \vdash \ \vdash \end{array} Z \text{ --- } \begin{array}{c} \infty \ 2 \\ \vdash \ \vdash \end{array} Y V \text{ --- } \begin{array}{c} \infty \ 2 \\ \vdash \ \vdash \end{array} \text{ --- }\]
\[\text{where } Z \text{ is the specified subject of } W Y V \text{ in } \infty. \quad \text{(Chomsky 1977:90)}\]
This constraint is paraphrased in Radford (1981:245) as (9).

(9) No rule can move a nonsubject constituent out of a clause (S-bar) or NP with a specified subject (where by nonsubject constituent we mean a constituent which is neither subject nor part of a subject)

The second constraint is the Tensed - S condition (TSC) which states:

(10) No rule can involve \(X, Y \) in the structure

\[
--- X --- \left[_{\Omega} --- Z --- _{-W Y V} --- \right] ---
\]

where (a) \(Z \) is the specified subject of \(WYV \)
or (b) \(Y \) is in COMP and \(X \) is not in COMP
or (c) \(Y \) is not in COMP and \(\Omega \) is a tensed S.

(Chomsky 1977:98)

According to TSC, the rule "Move NP" cannot extract an NP from a tensed clause. Therefore, "Move NP" is constrained by the conditions SSC and TSC.

As mentioned earlier the A-over-A Principle and the Island Constraints were conditions on transformations on Wh-movement. Since the overall programme of linguistic theorizing is to discover principles underlying such rules and conditions on rules, it became necessary to collapse the conditions into one single but general constraint. Such a constraint was introduced by Chomsky (1977:20) under the name Subjacency. Radford (1981:227) states...
it as:

(11) No constituent can be moved out of more than one containing NP - or S - node (in any single rule - application)

Subjacency restricts transformations to one cycle node (bounding). Accordingly, all transformations can be said to be bicyclic. But, Wh-movement is unbounded, in the sense that it allows long distance movement of a Wh-phrase to COMP. To reduce it to the same condition, the following was imposed on it.

(12) COMP - to - COMP Condition
once a phrase is in COMP, it can only move to a higher COMP (R & W 1986:63)

Based on this condition, once a Wh-movement has moved a category to the COMP position of the clause where the Wh-phrase has been extracted from, then, it moves it iteratively. To block overgenerations, the Strict Cycle Condition was introduced by Chomsky (1973).

Chomsky showed the A-over-A Principle and Ross's constraints were instances of Wh-movement which moves a Wh-phrase from its base position, and adjoins it to the COMP position without violating Subjacency. The scope of Subjacency is not limited to only Wh-movement, since
it restricts all types of movement to only one bounding node in a single application of the rule. The bounding nodes are also taken to be NP and S for English. Subjacency is believed to be Universal, but the categories which count as bounding nodes are subject to parametric variations.

In the foregoing discussion we have seen two types of movements and two movement rules in the transformational component. These are NP-and Wh-movements, and the rules are "Move NP" and "Move - Wh" respectively. The effect of Subjacency is not restricted to only the rule "Move-Wh", but extends to "Move NP" as well. The two rules, "Move NP" and "Move - Wh" are now considered to be instances of one optional and general movement rule called,

(13) "Move -\(\infty \)"
 Move any category \(\in \) anywhere \(\text{(R & W 1986:127)} \)

This rule is what the transformational component is all about now. However, since "Move -\(\infty \)" is a general rule, it does not specify when it can, cannot and must move. This is constrained by Subjacency, TSC and SSc. So, the expressive power of the transformational component in ST, is reduced to just "Move -\(\infty \)" in EST.

When a movement rule moves a Wh-or an NP, it extracts the category from its base position, and,
moves it to another position, and (2) leaves an empty node in the position of extraction. The empty node left behind by the moved category is filled by an abstract category called trace. The function of the trace is to satisfy the subcategorization properties and the selectional restrictions of lexical categories for which the moved category was a non-head. Furthermore, traces help to observe the SPH of Emonds.

A moved category forms a syntactic relation with its trace. The moved category must c-command its trace and form a chain. The notion of c-command is given in (14):

(14) \textit{C-commands}

\begin{quote}
A \textit{c-commands} \textit{B} if and only if the first branching node dominating \textit{A} also dominates \textit{B}, and \textit{A} does not itself dominate \textit{B}. \hfill (R \& W 1986:142)
\end{quote}

In other words, a moved category the trace(s) left behind form a single but discontinuous unit. Both the head-NP and the trace-NP form a \textit{CHAIN}, which is defined as (15)

(15) \textit{Chain} : A chain consists of an NP (called head of the chain) and the traces coindexed with that NP.

\hfill (R \& W 1986:245)
Since "Move \(\infty \)" is a general rule and has no SDs on which it operates, other modules had to be discovered in order to predict why, when and how it applies. Such modules include \(\theta \)-theory, Case Theory and Binding Theory. These are independent but interacting theories and are believed to be universal.

Theta \((\theta) \) Theory is introduced by Freidin (1978) as "Argument Uniqueness Condition" and was later developed by Chomsky supporting Exneds' SPH. In terms of \(\theta \)-Theory, all complement positions of heads are Argument (A-) positions. That means, any NP-position within the domain of a lexical head is an A-position and is known as the obligatory internal A-position of the head. In order to implement the SPH, the subcategorization properties and selectional restrictions of lexical heads must be satisfied when the heads enter into grammatical relations. This restriction on lexical categories is known as the Projection Principle (Chomsky 1981:29) and is stated in (16):

\[
\text{(16) The Projection Principle} \\
\text{Lexical requirements should be satisfied at D - S, S - S, and LF.}
\]

Since the Projection Principle restricts that all lexical requirements should be met at every syntactic level,
obligatory internal A-positions are directly projected from the lexicon.

In addition to its obligatory internal A-positions, a head can have NP-positions which are within its maximal projection. These are its optional internal A-positions.

Any A-position that is phonetically realized is required to have a semantic function (a thematic (θ-) role) which is assigned by the head (Chomsky 1986:93).

In order to constrain the θ-role assignment (θ-marking) there is the θ-Criterion stated in (17):

(17) θ-Criterion
Every chain must receive one and only one θ-role. (R & W 1986:245)

The θ-Criterion requires a unique association of A-positions and θ-roles. Thus, throughout the three levels of syntactic representations the Projection Principle and the θ-Criterion must be satisfied.

All θ-marking takes place at I-S-structure. Depending on the semantic properties of heads and grammatical relations, every A-position is θ-marked either by a lexical head or a phrasal head (Chomsky 1986:93). Every strictly subcategorized A-position is θ-marked by its lexical head; while every optional A-position is θ-marked compositionally by the sister constituents and the lexical head of this phrasal category. Accordingly, a lexical
head must θ-mark its A-position(s); and there must be (a) phonetically realized argument(s) to receive the θ-role(s).

In addition, for an optional A-position to appear phonetically, a lexical head must have an optional θ-role which it can compositionally θ-mark (this position) with the phrasal category, that is, the sister constituent of this position. Therefore, any A-position within the maximal projection of a head is a θ position.

On the other hand, lexical heads do not strictly subcategorize their external A-positions, that is, the /NP, S/ (Hoekstra 1984:33). This is derived from the Extended Projection Principle (EPP) which requires that clauses should have subjects (Chomsky 1986:116). Depending on the semantic property of a lexical head of a VP, the external A-position can be a θ-or a 6-position. If a verb has a semantic property of selecting an external argument; that is, has a θ-role for the external A-position, then, the VP obligatorily θ-marks this position (Chomsky 1981:40). If not, the external A-position remains a 6-position. In such cases the external A-position will either be filled by a semantically null element - a pleonastic pronoun, or be left empty at D-Structure. If it is filled by a pleonastic pronoun, this structure will be kept throughout and the position will not serve as a landing
site for a moved NP. In other words when the position is empty, it serves as a landing site for moved NPs. 6-theory, then, substantiates Emonds' SPH that any NP-movement is from a 6-to a 6-position, thus forbidding movement from a 6-to a 6-position. Since the only A-position which is potentially a 6-position is the external A-position, any NP-movement is from a non-subject or a subject position to a subject position. Consequently, subject-object raising and NP-postposing and NP-preposing as in the traditional passive derivation are all blocked by the Projection Principle and the 6-Criterion.

In the mapping of the D-Structure the external A-position might be 6-marked but not phonetically realized due to case. In order to satisfy the EPP, the Projection Principle and the 6-Criterion an abstract pronominal element called PRO is assumed to occupy this position. The difference between PRO and a trace, which is also an abstract category, is that PRO is a base generated empty category whereas a trace is an empty category which results form "Move - C" and hence a property of S-Structure. PRO's realization is derived from 6-theory and case theory; whereas a trace's realization is derived from 6-theory, case theory and "Move - C".

During NP-or Wh-movement, a moved category leaves a coindexed trace in its original position and lands in a 6-position without violating Subjacency, the Projection
Principle and the 6-Criterion. Hence, at the three syntactic levels, a 6-role is associated with one 6-position. The moved category inherits its 6-role only from its trace which is in its original position. That means, a moved category and its coindexed trace(s) act as a single syntactic unit for the 6-Criterion.

The other module mentioned earlier is Case Theory. The introduction of Case Theory into grammar has enabled linguistic theorizing (a) to relate NP-movement to case; and (b) to typologize NPs and predict their distributions. Furthermore, as the transformational rule, Move NP, does not require SDs in its application, Case Theory provides a principled account for it.

According to Case Theory every phonetically realized NP must have case. If there is an NP in a sentence without case, the sentence is filtered out as ill-formed by the case filter stated in (19):

(19) Any sentence containing an overt (i.e. phonetically non-null) NP is ill-formed if the NP has no case-marking (Radford 1981:323)

In order to escape this filter, NPs must have case either inherently or by assignment from other categories with which they form structural relations. In a structural case assignment, an NP must be bound to a head. This
relation is known as government and is defined in (20):

(20) Government: X governs Y if Y is contained in the maximal X-projection of X,
 \(X^{\text{max}}\) is the smallest maximal projection containing Y, and
 C - commands Y.
 (R & W 1986:231)

Case assigners are heads of phrases that contain NPs which need case. Such heads include the \(\mathcal{F}\) categories of Verbs and Prepositions, and also Tense / AGR in INFL (Hoekstra 1984:47).

According to this theory, all NPs that are phonetically non-null NPs, and hence must be in a case-marked position. On the other hand, NP-traces and PRO behave in the same way in that they are found in positions where case cannot be assigned. So, Case Theory groups all NPs into different subsets according to their being in case or caseless positions.

Case assignment takes place after "Move - \(\alpha\) " has taken place, that means at S-Structure and after the assignment of case the filter applies.

As we have seen so far, the theoretical framework of EST differs from ST in a number of ways.
The Lexicon contains

(1) all lexical categories with their idiosyncratic phonological, morphological, syntactic and semantic properties, and

(2) Lexical redundancy or word-formation rules

The categorial component, then, together with the lexicon generates D-Structure terminal nodes. Lexical insertion and selectional restriction rules relate the lexicon and the categorial component, and form a lexicalized D-Structure. Some positions may be left empty. After that "Move -∞" operates ensuring that every lexical requirement that is, the projection principle is satisfied.

Then, the D-Structure is mapped onto its S-Structure through the transformational module "Move - ∞" which is subject to Subjacency, TSC and SSC. Categories that are moved to another position leave coindexed traces behind in order to observe Emonds' SPH or Chomsky's (1981) Projection Principle. After all movement is completed NPs are assigned case. Then, the case filter operates.

The case - marked S-Structures which satisfy the case filter become the input to the semantic and phonological components.
S-Structures are the only sole resource to structural meaning. The semantic interpretive rules map S-Structures to their semantic representation (LF).

On the other hand, S-Structures which are case-marked will be available for surface filters. At this stage, surface filters delete elements that have met or not met the conditions throughout. Surface filters are well-formedness conditions. After this, filtered S-Structures are mapped to their surface representations through phonological rules, which are also interpretive.

1.5. LIMITATIONS OF THE STUDY

This study presents the structure of simple declarative clauses. The structure of ergative, middle and impersonal passive clauses is not treated. Hence, it is limited in its scope.
In discussing the basic word order of a language, we focus on the head-non-head (complement) relations of elements in syntactic categories such as VPs, NPs or Ss. As mentioned in (1.4) the theoretical framework followed in this paper is EST, which assumes that the basic word order of a language directly follows from principles of UG.

As stated earlier, the lexicon contains all lexical and grammatical items of a language. Lexical items are entered with their idiosyncratic phonological, morphological, syntactic and semantic properties. Here, we will leave aside the phonological and morphological properties and concentrate only on the syntactic and semantic properties.

The idiosyncratic syntactic and semantic properties of lexical categories given in the lexicon have the same lexical information. That is, if a lexical category obligatorily selects a complement, the complement is defined twice in terms of its syntactic and semantic functions. The complement is defined as direct object, indirect object — etc based on its syntactic function. This is the categorial selection (c-selection) of the lexical head. Again, the complement is defined in terms
of its semantic function which is assigned to it by the lexical head (Chomsky 1986:86). In this sense the complement is defined as patient, goal—etc. This satisfies the item's semantic selection (s-selection) property. The specification of the item in this manner is believed to be redundant, since s-selection implies c-selection. To avoid this redundancy Chomsky (1986:86) suggests that the specification of the idiosyncratic properties of lexical items should be limited to s-selection only. This approach is followed in this study.

The s-selection of every lexical item determines its lexical structure (LS) (Safir 1987:576). This structure is projected from the lexicon to map D-Structures. This suggests that the determining of the basic word order of a language begins from the lexicon. Adopting this view, we shall now move on to the basic word order of Zayssë. We shall consider the lexical structure of only verbs as a first step.

An intransitive verb does not s-select any category as its complement. Such verbs are entered in the lexicon in the manner shown in (1):

(1) a. ga? v, + [] 'roar'
 b. ŋ'os v, + [] 'vomit'
 c. mi:ç' v, + [] 'laugh'
As the frames show intransitive verbs do not s-select constituents. This is because such verbs do not have obligatory 6-roles (semantic roles) to assign to such constituents.

On the other hand, transitive verbs have different semantic properties as the specifications of the following verbs show:

(2) a. wod - : v, + \[N^2\] · 'kill'
b. guyd - : v, + \[N\] · 'hit/beat'
c. ūk' - : v, + \[N\] · 'slaughter'

Such verbs have the semantic property of s-selecting a constituent obligatorily, because they have obligatory 6-roles to assign to the positions of the constituents (complements).

The verbs in (2) are called two-place verbs (Lyons: 1968:350) because they have an s-selected complement and a subject. In contrast to these are three-place verbs which have an extra 6-role. Such verbs s-select two constituents as their specifications in (3) show:

(3) a. ing - : v, + \[P^N\] · 'give'
b. kaš - : v, + \[P^N\] · 'tell'
c. gus:- - : v, + \[P^N\] · 'put'

The two 6-roles of such verbs get associated with the
two complements shown in the frames.

Depending on such semantic properties, lexical items may or may not have internal arguments (in the sense of Williams 1981). Following Hoekstra's (1984:35) assumption that "---subcategorization is restricted to X' -domain---" in terms of the X-bar Convention, the LS of any lexical item that does not s-select any category is like the one in (4):

\[
\begin{array}{c}
X' \\
\downarrow \\
X
\end{array}
\]

In (4), the unbranching node dominating X is called the head-domain. The lexical head X, which has the category features of X' directly projects into X', the mother node.

On the other hand two-place and three-place verbs have the LS shown in (5a) and (5b) respectively.

\[
\begin{array}{c}
(5) a. \\
N'' \quad X' \\
\downarrow \\
X \\
\end{array} \\
\begin{array}{c}
(5) b. \\
P'' \quad N'' \quad X' \\
\downarrow \\
X
\end{array}
\]

In two-place verbs, the head-domain has two positions; the head and the non-head. On the other hand, the head-domain of three-place verbs contains three positions; one for the head and another two for the non-heads. The non-head positions are Argument positions (A-position)
and are filled by s-selected complements (Arguments).

So far we have seen how lexical items are specified in terms of semantic properties. A lexical item, with obligatory \(\theta \)-role(s) must assign its \(\theta \)-role(s) to its A-position(s) and the number of the obligatory \(\theta \)-roles that a lexical head has, should correspond to the number of its A-positions (Hoekstra 1984:35). If such matching of \(\theta \)-roles and A-positions is lacking, there would be a violation of the \(\theta \)-Criterion which requires that \(\theta \)-roles must be associated with arguments in a one to one manner.

In Chomsky (1986:157) D-Structure is defined as a pure representation of \(\theta \)-structure. The \(\theta \)-structure that is represented here contains the head of the VP, i.e. \((V)\), the obligatory \(\theta \)-role(s) that \(V \) assigns to its internal A-position(s), and the \(\theta \)-role that the \(V \) and its maximal projection, i.e. \((VP)\) compositionally assign to the external A-position. Furthermore, the head, that is, the \(V \) may contain optional \(\theta \)-role(s) that may be assigned to optional A-position(s) within its maximal projection.

Following this assumption, and adopting Williams' (1984:650) assumption that all languages have VPs, let us see how D-Structures are projected from the lexicon. Consider intransitive structures like (6):

\[
(6) \quad a. \quad \text{garma} - y \quad \text{ga?} - \text{at:} - \text{es} - \text{in} \\
\quad (a)\text{lion} - \text{nom} \quad \text{roar} - \text{foc} - 3\text{ms-pf} \\
\quad ' \text{The lion roared}. '
\]
b. e - kart° yato - y č'oš - at: - es - in
 the- black boy -nom vomit- foc - 3ms- pf
 'The black boy vomitted.'

c. e - at° i mi:Y' - at: - es - in
 the- man -nom laugh - foc - 3ms- pf
 'The man laughed.'

Since the verbs in such sentences do not s-select a complement, the structures have only one A-position outside the maximal projection of the lexical head. This position is that of / garma - y / '(a)lion - nom' in (6a), for example, which functions as subject (external argument) of the lexical head. In transitive structures like (7) below, we have a different situation.

(7) a. sit'ota - y e - garma wod° - at:
 S -nom the- lion kill - foc
 - es - in
 - 3ms- pf
 'Sit'ota killed the lion.'

b. e - la:t° i astamo guyd - ot:
 the- chief -nom A hit - foc
 - es - in
 - 3ms- pf
 'The chief hit Astamo.'

c. e - kayso - y doro šok' - at:
 the- thief -nom (a)sheep slaughter - foc
 - es - in
 - 3ms- pf
 'The thief slaughtered a sheep.'
In such structures, the verb has two A-positions; one for its internal, and another for its external arguments.

In contrast to the verbs in the above structures, verbs in the structures below have three A-positions.

(8) a. i - biṣa: - i sit'ota - s maṣ: a
 the- girl -nom S - to (a)knife
 ing - at: - is - in
 give - foc - 3f - pf
 'The girl gave a knife to Sit'ota.'

b. astamo ad:a - y e - šato - s i - ŋ'ilo
 A father -nom the- boy - to the- story
 kaṣ - at: - es - in
 tell - foc - 3ms - pf
 'Astamo's father told the story to the boy.'

c. es - i ogoro - ga e:ri badala
 he -nom (a)sack - into some maize
 gus: - at: - es - in
 put - foc - 3ms - pf
 'He put some maize into a sack.'

In such structures the three A-positions are that of the subject (external argument) and of the two objects (internal arguments).

In the structures (6) - (8), the s-selecion properties of the verbal heads are directly projected from the lexicon to the D-Structures. But in each case each adds one A-position, that is, the external A-position,
when the heads enter into grammatical relations, such as subject and object.

The VPs of the structures (6a), (7a) and (8b) have the internal structures shown in (9a), (9b) and (9c) respectively.

\[(9) \quad a. \quad \mathcal{V}'' \quad b. \quad \mathcal{V}'' \quad \mathcal{V}' \quad N'' \quad V \quad \text{ga?-roar} \quad e-\text{garma} \quad \text{wod-} \quad \text{the lion kill} \quad c. \quad \mathcal{V}'' \quad \mathcal{V}' \quad P'' \quad P' \quad N'' \quad \text{spec} \quad N' \quad N \quad \text{e-\text{sato-s} \quad i-\text{v'ilo kas-} \quad \text{the boy to the story tell}}\]

The above trees show the D-Structures of lexical heads within their maximal projections. Each is different from the other in its idiosyncratic semantic property,
which determines the number of its arguments.

In addition to their strictly s-selected categories, lexical heads may optionally s-select other categories. These are not within their LS, but appear in grammatical relations. When such additional optional categories appear, they are associated with the additional θ-positions in the θ-structure. The following are with optional categories.

(10) a. i - Y'ima biY:a - y \[P^m]art^Sa gal:a\]
the- old woman -nom (a)bed on
geh - at: - is - in
sleep - foc - 3f - pf
'The old woman slept in a bed.'

b. e - at^S - i \[P^m]masY:a - n:a\] i - fut:e
the- man -nom (a)knife - with the- flower
is' - ot: - es - in
cut - foc - 3ms - pf
'The man cut the flower with a knife.'

c. i - biY:a: - i \[P^m]i - gaya - ga\]
the- girl -nom the - market - in
astamo - s i - to:ra
A - to the - spear
ing - at: - is - in
give - foc - 3f - pf
'The girl gave the spear to Astamo in the market.'
In the above structures the PP arguments are not within the LS of the verbs and are hence optional. Their positions are, however, \(\theta \)-positions, since they are within the maximal projection of the verbs. The \(\theta \)-structure of the VPs in (10a-c) are shown in (11a-c) respectively.

(11) a.

\[
\begin{array}{c}
\text{V''} \\
\downarrow \\
\text{P''} \\
\downarrow \\
\text{P'} \\
\downarrow \\
\text{N''} \\
\downarrow \\
\text{N'} \\
\downarrow \\
N \\
\downarrow \\
\text{art'sa} \\
\text{(a)bed} \\
\end{array}
\quad \begin{array}{c}
\text{gal:a} \\
\text{on} \\
\end{array}
\quad \begin{array}{c}
\text{geh-} \\
\text{sleep} \\
\end{array}
\]

b.

\[
\begin{array}{c}
\text{V''} \\
\downarrow \\
\text{P''} \\
\downarrow \\
\text{P'} \\
\downarrow \\
\text{N''} \\
\downarrow \\
\text{N'} \\
\downarrow \\
\text{N} \\
\downarrow \\
\text{mas:a} \\
\text{(a)knife} \\
\end{array}
\quad \begin{array}{c}
\text{fud:e} \\
\text{the flower} \\
\end{array}
\quad \begin{array}{c}
\text{is'}- \\
\text{cut} \\
\end{array}
\]

\begin{array}{c}
\text{SPEC} \\
\downarrow \\
\text{N'} \\
\downarrow \\
\text{N} \\
\downarrow \\
\text{-n:a} \\
\text{with} \\
\end{array}
\quad \begin{array}{c}
\text{i-} \\
\text{fud:e} \\
\text{is'}- \\
\end{array}
\]
So far we have tried to see the LS of verbal heads as expressed in the lexicon and projected into the syntax. The linear ordering of the complements in relation to a head is "---determined by setting parameters concerning direction of Case assignment and θ-marking---" (Chomsky 1986:160) and by the adjacency principle of case assignment.

As mentioned previously, the D-Structure of a sentence is a pure representation of θ-structure, which is determined by the LS of the head of its VP. The basic order of the arguments of the head can be determined by the head parameter of X-bar theory and the adjacency principle. In light of this let us observe the following:

(12) a. sit'ota - y maš:a - n:a i - fud:e
 S -nom (a)knife - with the flower
 is' - ct: - es - in
cut - foc - 3ms - pf
'Sit'ota cut the flower with a knife.'
b. e - atS - i i - gaya - ga astamo - s
the- man -nom the- market - in A - to
i - maY:a ing - at: - es - in
the- knife give - foc - 3ms- pf
'The man gave the knife to Astamo in the market.'

According to Case theory every argument that has a phonetic content must have the feature case inherently or structurally. In the above two sentences the NPs get their case structurally; that means, the NP that requires the feature forms a government relation with a case assigner in order for the NP to get case. The NPs / ifud:e / 'the flower' and / imaY:a / 'the knife' get accusative case from their respective verbs / is'-/ 'cut' and / ing- / 'give'. This is derived from the case adjacency principle which requires a structural c-command and government relationship holding between the case assigner, the verb, and the case recipient, the complement.

On the other hand, the NPs within the PPs are assigned case by the postpositions which form the structural configuration shown in (13):

\[(13) \quad P'' \quad \mid \]
\[\quad \quad P' \quad \]
\[\quad \quad N'' \quad P \]

Hence, the arguments / maY:a / 'a knife'; / igaya / 'the
'market' and /astamo/ 'Astamo' are assigned objective case by the postpositions /-n:a/ 'with', /-ga/ 'in' and /-s/ 'to' respectively. The assignment is from right-to-left.

In addition, the external arguments /sit'ota/ 'Sit'ota' and /e atk/ 'the man' are assigned nominative case structurally by their respective inflection (INFL). Following Chomsky (1981:161) and adopting the CP configuration of clauses, the structural relation of the arguments and their case assigning heads in (12b) is shown in (14):
It can be concluded that the assignment of case by the [-N] categories and INFL in Zaysse is unidirectional, and from right-to-left.

In order to strengthen this argument, let us observe genitive NPs and see how case is assigned in them.

(15) a. astamo - y [N] [N] [N] bangaj [N] boro[HH]
A -nom barley bread
mut: - at: - (es) - in
eat - foc - 3ms - pf
'Astamo ate bread of barley.'

b. astamo - y [N] [N] [N] sakaj [N] ota[HH]
A -nom clay pot
wod - at: -(es) - in
kill - foc - 3ms - pf
'Astamo broke a clay pot.'

c. astamo - y [N] [N] [N] gos:aj [N] modoj[HH]
A -nom wheat modo
uš - at: -(es) - in
drink - foc - 3ms - pf
'Astamo drank modo of wheat.'

d. sit'ota - y [N] [N] [N] kanga[HH]
S - nom iron ring
dem - at: -(es) - in
get - foc - 3ms - pf
'Sit'ota got an iron ring.'

e. astamo - y [N][N][N] togaj [N] oloj[HH]
A -nom pack horse
šam - at: -(es) - in
buy - foc - 3ms - pf
'Astamo bought a pack horse.'
In these structures of genitive of source and purpose the complement NPs get their genitive cases inherently in the order given, that is, the complement NP followed by the head N. Hence, genitive case too follows the same direction.

From the structures observed so far, we can postulate that case assignment in Zayssé is unidirectional and is from right-to-left. This may further lead to the argument that 6-role assignment in this language is also unidirectional. Based on the direction of case and 6-role assignment, we can arrive at the conclusion that Zayssé is a uniformly head-final language. That means, Zayssé has an SOV basic word order, and as far as the head-complement position is determined, the position of the Quantifier and Determiner is derivable from X-bar convention.

2.2. WORD ORDER VARIATIONS

Before we begin our discussion on the various word order variations, it would be essential to see the nature and distribution of the focus marker (foc) because it has an effect on the word order.

When we discuss focus, we are concerned not with the semantic functions of constituents within a sentence but with the grammaticalization of their pragmatic functions. In order to deal with focus constituents in
a sentence, and the mechanism used to mark them, it may be necessary to define the term focus. Comrie (1981:56) defines focus as "---The essential piece of information that is carried by a sentence---." Dik, quoted in Baye (1988:2) defines it from a functional point of view as "---the pragmatic function which represents the relatively most important or salient information with respect to the pragmatic information of the speaker and the addressee---." Baye (1988:2) again describes it as "---the part which carries the information which the speaker believes to be new to his addressee---." These three definitions have two points in common: (a) focus is a pragmatic function rather than a grammatical one; that is, it shows the nature of the information constituents carry, and (b) constituents that carry new information or most important information are focused.

Marking a constituent as the focus of a sentence, then, is connected with the nature of information the constituent carries.

Languages use either phonological, morphological or syntactic means to show focus. English uses stress, clefting --- etc to show focus. Other languages use other devices.

When we come to Zayssé, we see that it uses a morpheme to show focus in a declarative clause as in the following.
In the above structures, the semantic function of the constituents does not alter; since the meaning of the clauses is the same. Nevertheless, in terms of their pragmatic functions, the constituents are different.
The constituents which have the morpheme /-at:e/ carry either new or salient information.

In order to check whether this assumption is correct or not, we use question and answer sequences, since these are "--- particularly useful in illustrating focus distinctions---" (Comrie 1981:57). For the sake of brevity we shall base our question and answer sequences on sentence (17a).

(18) a. O: garma wod - e6 who (a)lion kill - pf 'Who killed a lion?'

b. astamo - t:e
 A - foc 'Astamo.'

(19) a. astamo - y a: wod - in A - nom what kill - pf 'What did Astamo kill?'

b. garma - t:e
 (a)lion - foc 'A lion.'

(20) a. astamo - y ana garma wod - in A - nom where (a)lion kill - pf 'Where did Astamo kill a lion?'

b. i - mura - ga - t:e
 the - forest - in - foc 'In the forest.'

(21) a. astamo - y alma - n:a garma wod - in A - nom what - with (a)lion kill - pf 'With what did Astamo kill a lion?'
b. to:a - n:a - t:e
 (a)spear- with - foc
 'With a spear.'

(22) a. astamo - y ande garma wød - in
 A - nom when (a)lion kill - pf
 'When did Astamo kill a lion?'

b. zigine - t:e
 yesterday - foc
 'Yesterday.'

In the structures above, the constituents that answer
the Wh-questions have the morpheme /-at:e/. Since
questioned constituents are focused, the responses to
such questions are also focused and this is indicated
by the morpheme /-at:e/.

In contrast to declarative clauses, negative,
 imperative and interrogative clauses do not have the
focus marker /-at:e/. The following structures
illustrate this.

(23) a. e - atS - i astamo - s i - maY:a
 the- man -nom A - to the- knife
 ing - at: -(es) - in
 give - foc - 3ms - pf
 'The man gave the knife to Astamo.'

b. e - atS - i astamo - s i - maY:a
 the- man -nom A - to the- knife
 ing - ba? - e
 give - neg - pf
 'The man didn't give the knife to Astamo.'
The focus marker /-at:e/ is suffixed only to any maximal projection (XP) in a declarative clause. Since interrogative, negative and imperative clauses by nature have the property of focusing a constituent, suffixing /-at:e/ results in the ungrammatical structures (23c, d, f, g, i and j).
The presence of focus can also be proved by clefting; because the moved constituent is the focused constituent of the sentence. In view of this, the following structures show that /-at:e/ is a focus marker.

(24) a. astamo - t:e /s garma wod e s:i/ A foc (a)lion kill - pf - Rel
'It is Astamo who killed a lion.'

b. gap:ot - t:e /s astamo y (a)chameleon foc A nom
 dem a s:i look - cont - Rel
'It is a chameleon Astamo is looking at.'

c. to:ra - n:a - t:e mak' iY /s astamo y (a)spear with foc be - pf A nom
garma wod iYe s:i (a)lion kill - pf - Rel
'It was with a spear that Astamo had killed a lion.'

d. guta - t:e /s - $ato- y yew - ende-s:i/ tomorrow foc the boy nom come fut - Rel
'It is tomorrow that the boy will come.'

From the structures we have been so far, it is clear that /-at:e/ is a focus marker.

When we see the distribution of /-at:e/, we find it only in declarative clauses, as we have observed in structures (23a-j) above.

In a declarative clause /-at:e/ is suffixed only to the head of any XP within a VP, but not to an XP in
an embedded clause. The following structures exemplify this point.

(25) a. $\left[s_i - ma\hat{\nu}:a \ dem - e - s:i \right] \text{\textit{_sato - y}}$
the-knife find - pf - Rel boy -nom
\textit{_garma wod' - at: - (es) - in (a)lion kill - foc - 3ms - pf}
'The boy who found the knife killed a lion.'

*b. $\left[s_i - ma\hat{\nu}:a \ dem - at: - e - s:i \right]$
the-knife find - foc - pf - Rel
\textit{_sato - y garma wod' - in boy -nom (a)lion kill-pf}

*c. $\left[s_i - ma\hat{\nu}:a - t: - (es) \ dem - e - s:i \right]$
the-knife - foc - 3ms find - pf - Rel
\textit{_sato - y garma wod' - in boy -nom (a)lion kill - pf}

'd. $\left[s_i - ma\hat{\nu}:a \ dem - e - s:i \right] \text{\textit{_sato - t:e}}$
the-knife find - pf - Rel boy - foc
\textit{_garma wod' - e - s:i (a)lion kill - pf - Rel}
'It is the boy who found the knife that killed a lion.'

*e. $\left[s_i - ma\hat{\nu}:a \ dem - e - s:i \right] \text{\textit{_sato - y}}$
the-knife find - pf - Rel boy -nom
garma - t: - (es) wod' - in (a)lion - foc - 3ms kill - pf
'The boy who found the knife killed a lion.'

Let us take the following structures as further illustrations to see that /-at:e/ occurs only with an XP
that is part of the matrix but not the embedded clause.

(26) a. \[\text{ta - y } \text{sato - y } \text{ doro} \]
 I -nom the - boy - nom (a)sheep
 \[\text{yang - i ce - s } \text{ er - at:-(et)-in} \]
 buy - pf - cl know - foc - 1sg - pf
 'I knew that the boy had bought a sheep.'

b. \[\text{ta - y } \text{sato - y } \text{ doro - t:-(es)} \]
 I -nom the - boy - nom (a)sheep - foc - 3ms
 \[\text{yang - i ce - s } \text{ er - in} \]
 buy - pf - cl know - pf

c. \[\text{ta - y } \text{sato - y } \text{ doro \text{ Yam}} \]
 I -nom the - boy - nom (a)sheep - buy
 \[\text{-at:-(es) - i ce - s } \text{ er - in} \]
 -foc - 3ms - pf - cl know - pf

d. \[\text{ta - y } \text{sato - t:e } \text{ doro} \]
 I -nom the - boy - foc (a)sheep
 \[\text{yang - i ce - s } \text{ er - in} \]
 buy - pf - cl know - pf

The ungrammatical structures in (25) and (26) show that an XP that is within an embedded clause cannot take /-at:e/ and be focused, since any XP within an embedded clause constitutes part of the presupposition.

The focus marker /-at:e/ is obligatorily suffixed to only one XP within a clause. It cannot occur with two or more XPs. Let us observe the following structures.
(27) a. astamo - y to:ra - n:a - t: -(es)
 A -nom (a)spear - with - foc - 3ms
garma wod' - in
(a)lion kill - pf
 'Astamo killed a lion with a spear.'

*b. astamo - y to:ra - n:a - t: -(es)
 A -nom (a)spear - with - foc - 3ms
garma - t: -(es) wod' - in
(a)lion -foc - 3ms kill - pf

*c. astamo - y to:ra - n:a - t: -(es)
 A -nom (a)spear - with - foc - 3ms
garma wod' - at: -(es) - in
(a)lion kill - foc - 3ms - pf

*d. astamo - y to:ra - n:a garma - t:
 A -nom (a)spear - with (a)lion - foc
 -(es) wod' - at: - (es) - in
 - 3ms kill - foc - 3ms - pf

*e. astamo - y to:ra - n:a garma wod' - in
 A -nom (a)spear - with (a)lion kill - pf

That means, there is obligatorily one and only one XP that carries new or salient information in a clause in which /-at:e/ is suffixed to.

The focus marker is added to the head of any XP depending on the pragmatic function of the constituents aš’in (17). Let us see if it can occur with any element within an XP.
The ungrammatical structures show that /-at:e/ can occur only with an XP that branches from the projection line of V.

When the focus marker occurs with V, the whole VP is the focused XP. In such cases /-at:e/ is preceded by any affix that has an effect on the 6-structure and case assignment as in (29).
(29) a. astamo - y grama wod - at: -(es) - in
 A -nom (a)lion kill - foc - 3ms - pf
 'Astamo killed a lion.'

b. garma - y wod - ut: - ot: -(es) - in
 (a)lion -nom kill - pas - foc - 3ms - pf
 'A lion was killed.'

c. astamo - y e - ¥ato geh - us - at:
 A -nom the- boy sleep - cs - foc
 -(es) - in
 - 3ms - pf
 'Astamo made the boy sleep.'

d. astamo - y u - ¥at - ir - at: - (es)
 A -nom the- boy - pl - foc - 3ms
 guyd - in
 beat - pf
 'Astamo beat the boys.'

In these structures /-at:e/ is preceded by thematic suffixes and followed by agreement and tense suffixes. That is, the passive and causative suffixes precede it; while AGR and TENSE suffixes follow it.

In suffixing /-at:e/ to an NP the plural marker precedes it as in (29d). And when /-at:e/ occurs with a PP, it is preceded by P which is the head of the phrase. If it precedes P, it seems that P is blocked from governing its object and the structure is ungrammatical as in (28d) above.

INFL in Zaysse can be [+ AGR] as we shall see in chapter 3. If it is [+ AGR], the agreement suffix
obligatorily follows /-at:e/. This is shown in (30)

(30) a. i - biša: - i astamo - s i - maš:a
 the- girl -nom A - to the- knife
 ing - at: - (is) - in
 give - foc - 3f - pf
 'The girl gave the knife to Astamo.'

b. i - biša: - i astamo - s i - maš:a
 the- girl -nom A - to the- knife
 - t: - (is) ing - in
 - foc - 3f give - pf
 'The girl gave the knife to Astamo.'

*c. i - biša: - i astamo - s i - maš:a - t:e
 the- girl -nom A - to the- knife - foc
 ing - (is) - in
 give - 3f - pf

 d. i - biša: - i astamo - s - a-t:e (is)
 the- girl -nom A - to - foc - 3f
 i - maš:a ing - in
 the- knife give - pf
 'The girl gave the knife to Astamo.'

*e. i - biša: - i astamo - s - at:e
 the- girl -nom A - to - foc
 i - maš:a ing - is - in
 the- knife give - 3f - pf

These structures clearly show that the subject marking suffix must always follow /-at:e/. AGR is attracted to focus.
From the above discussion on focus in Zayssè, we observed that Zayssè has a focus morpheme /-at:e/ which must occur with an XP within a declarative clause.

Now, let us see the possible word order variations in Zayssè and observe the effect of the focus marker on word order variations.

Such variations can be grouped into two. The first group contains variations within a VP; and the second group consists of variations that result from dislocations.

In Zayssè XPs within a VP can change positions. The following structures show such changes.

(31) a. e - at° - i \[\text{\textit{V}}\text{\textit{P}}^\text{\textit{ni}}\text{ - gaya - ga}]
the- man -nom the- market - in
\[\text{\textit{V}}\text{\textit{P}}^\text{\textit{i}}\text{ - bi}\text{\textit{s}a: - us}] \[\text{\textit{N}}\text{\textit{k'}}\text{\textit{amise}]
the- girl - to (a)dress
ing - at: - (es) - in \]
give - foc - 3ms - pf

'The man gave a dress to the girl in the market.'

b. e - at° - i \[\text{\textit{V}}\text{\textit{P}}^\text{\textit{ni}}\text{ - gaya - ga}]
the- man -nom the- market - in
\[\text{\textit{N}}\text{\textit{k'}}\text{\textit{amise}] \[\text{\textit{P}}^\text{\textit{i}}\text{ - bi}\text{\textit{s}a: - us}]
(a)dress the- girl - to
ing - at: - (es) - in \]
give - foc - 3ms - pf

'The man gave a dress to the girl in the market.'
As these structures illustrate, the order of XPs within a VP is free. The motivation for the different ordering of XPs seems to be pragmatic. As Chomsky (1981:145) observes and the above word order variation within a VP shows,
"--- it is common in SOV languages for PP and other elements to intervene between V and its NP-complement---."

Even though the word order within a VP seems to be free, it is only XPs that can change positions freely. Part of an XP cannot remain in its base position when the head moves or it cannot move if the head does not move since this would violate the Unit Movement Constraint of Radford (1981:249) which states that no movement involves only part of a constituent unit. Structures below illustrate this.

(32) a. e – atS - i \textit{V}\textsubscript{P}n\textsubscript{e} – kartS ſato – s J
the-man-nom the-black boy to
\textit{N}\textsubscript{e:ri} badala J ing – at:–(es)–inJ
some maize give-foc 3ms-pf
'The man gave some maize to the black boy.'

* b. e – atS - i \textit{V}\textsubscript{P}i – kartS badala – s J
the-man-nom the-black maize to
\textit{N}e:ri ſatoJ ing – at:–(es)–inJ
little boy give-foc 3ms-pf

* c. e – atS - i \textit{V}\textsubscript{P}i – e:ri ſato– s J \textit{N}skartS
the-man-nom the-little boy to black
badala J ing – at:–(es)–inJ
maize give – foc 3ms – pf

* d. e – atS - i \textit{V}\textsubscript{P}i – e:ri badala – s J
the-man-nom the-some maize to
\textit{N}skartS ſatoJ ing – at:–(es)–inJ
(a)black boy give-foc 3ms-pf
In the above structures the determiner /e-/ 'the' and the postposition /-s/ 'to' are in their base positions. Changing the positions of heads and the complements of XPs in the VP results in the ungrammatical structure (32b-f).

The facts we have seen regarding word order variations suggest that Zaysse allows scrambling of XPs after all syntactic processes have taken place (Williams 1984:649).

Any XP within a clause can be dislocated. This too is not motivated by syntactic but by pragmatic factors. The following structures show this.

(33) a.
\[g\text{astamo-}y \, g\text{y} \, g\text{a} \, \text{ga}\]
\[\text{A -nom the-market -in}\]
\[g\text{y} \, g\text{a} \, \text{ga}\]
\[\text{the-girl -to the-knife}\]
\[\text{give-foc- 3ms - pf}\]

'Astamo gave the knife to the girl in the market.'
b. i - gaya -ga_i t_s astamo-y t_y\textsubscript{p} t_i\textsubscript{1}.
the-market-in A-nom
\textsubscript{v}\textsubscript{p} - bi\textsubscript{y}a:-us\textsubscript{1} \textsubscript{N} - ma\textsubscript{Y}:a
the-girl-to the-knife
give-to (es) in
'\textit{Astamo gave the knife to the girl in the market.}'

c. i - bi\textsubscript{y}a:-us\textsubscript{1} t_s astamo-y t_y\textsubscript{p} i - gaya -ga_i
the-girl-to A-nom the-market-in
\textsubscript{v}\textsubscript{p} t_i\textsubscript{1} \textsubscript{N} - ma\textsubscript{Y}:a
the-knife
give-to (es) in
'\textit{Astamo gave the knife to the girl in the market.}'

d. i - ma\textsubscript{Y}:a_i t_s astamo-y t_y\textsubscript{p} i - gaya -ga_i
the-knife A-nom the-market-in
\textsubscript{v}\textsubscript{p} i - bi\textsubscript{y}a:-us\textsubscript{1} \textsubscript{N} t_i\textsubscript{1}
the-girl-to
give-to (es) in
'\textit{Astamo gave the knife to the girl in the market.}'

e. ing - at:-(es) - in\textsubscript{i} t_s astamo-y
give-to focal-3ms pf A-nom
\textsubscript{v}\textsubscript{p} i - gaya -ga_i \textsubscript{v}\textsubscript{p} i - bi\textsubscript{y}a:-us\textsubscript{1}
the-market-in the-girl-to
\textsubscript{N} i - ma\textsubscript{Y}:a \textsubscript{V} t_i\textsubscript{1}
the-knife
As (33e) shows the verb alone cannot be dislocated, thus, proving that the XPs of a head, but not the head, can move.

In addition to left dislocation, Zayssé allows right dislocations as in structures of after thought topics. The following structures show such dislocations.

\[(34)\]

a. \[
\begin{align*}
\text{\text{A}} & \text{-nom} \\
\text{the-market} & \text{- in} \\
\text{\text{V}} & \text{-i -biša: -us} \\
\text{the-girl} & \text{- to} \\
\text{\text{V}} & \text{ing - at: - (es) - in} \\
\text{give} & \text{- foc - 3ms - pf}
\end{align*}
\]

'\text{Astamö gave the knife to the girl in the market.}'

b. \[
\begin{align*}
\text{\text{A}} & \text{-nom} \\
\text{the-market} & \text{- in} \\
\text{\text{V}} & \text{-i -biša: -us} \\
\text{the-girl} & \text{- to} \\
\text{\text{V}} & \text{ing - at: - (es) - in} \\
\text{the-knife} & \text{give - foc - 3ms - pf}
\end{align*}
\]

'\text{Astamö gave the knife to the girl in the market.}'

c. \[
\begin{align*}
\text{\text{A}} & \text{-nom} \\
\text{the-girl} & \text{- to} \\
\text{\text{V}} & \text{-i -maš:a} \\
\text{the-knife} & \text{give - foc - 3ms - pf}
\end{align*}
\]

'\text{Astamö gave the knife to the girl in the market.}'
d. \(\{_{S}a_{stamo-} y \{V''P''i - gaya -ga\} \{V',P'_{t_i}\} \)

A-nom the-market-in

\(\{N''i - m\hat{a}:a\} \{V'ing - at:-(es)-in//\} \)

the-knife give-foc 3ms-pf

\(i - bi\hat{a}: - us_{i} \)

the-girl - to

'Astamo gave the knife to the girl in the market.'

e. \(\{_{S}a_{stamo-} y \{V''P''i - gaya -ga\} \)

A-nom the-market-in

\(\{V',P'_{i} - bi\hat{a}: - us\} \{N'' _{t_i}\} \)

the-girl - to

\(\{V'ing - at:-(es)-in//\} i - m\hat{a}:a_{i} \)

give-foc 3ms-pf the-knife

'Astamo gave the knife to the girl in the market.'

In these structures again XPs are dislocated; and there is a pause between the clause and the dislocated constituent. In such cases INFL must be \(\{+AGR\} \) to right dislocate the subject NP, otherwise the feature \(\{+AGR\} \) is optional.

A constituent with the focus marker can be left dislocated as in (33b-d). But it cannot be right dislocated as in (35e-g).
(35) a. Astamo - y \(\text{i - gaya - ga} \)
A - nom
the-market - in
\(\text{v'}, \text{p'} \text{i - bisha: - us} \)
the - girl - to
\(\text{v} \text{ ing - at: -(es) - in} \)
give - foc - 3ms - pf
'Astamo gave the knife to the girl in the market.'

b. e - gaya - ga - t: -(es) \(\text{i - astamo - y} \)
the-market - in - foc - 3ms - nom
\(\text{v'}, \text{p'} \text{i - bisha: - us} \)
the - girl - to
\(\text{v} \text{ ing - in} \)
give - pf
'Astamo gave the knife to the girl in the market.'

c. i - bisha: - us - at: -(es) \(\text{i - astamo - y} \)
the - girl - to - foc - 3ms - nom
\(\text{v} \text{''p''i - gaya - ga} \)
the-market - in
\(\text{n''i - masha:a} \)
the - knife - give - pf
'Astamo gave the knife to the girl in the market.'

d. i - masha:a - t: -(es) \(\text{i - astamo - y} \)
the - knife - foc - 3ms - nom
\(\text{v} \text{''p''i - gaya - ga} \)
the-market - in
\(\text{v'}, \text{p'} \text{i - bisha:} \)
the - girl - us
\(\text{v' ing - in} \)
give - pf
'Astamo gave the knife to the girl in the market.'
Thus, the focus marker /-at:e/ has an effect on the word order variation, since right dislocation of an XP with this morpheme results in ungrammatical structures.

From the discussion in this chapter we can deduce that (a) XPs can freely change positions for pragmatic reasons; (b) the various word orders resulting from such changes are derived from the basic SOV order; (c) XPs can undergo dislocations. However, if they contain the focus marker /-at:e/ they cannot be right dislocated.
That means, the focus marker has an effect on the word order changes, for instance SVO, SOV IO --- etc cannot be possible variations.
In the preceding chapter we have seen that Zayssè is a head-final language and that there is variation in the basic word order. In this chapter we shall consider different simple clauses and observe their structures. But before we go into that, we need to consider the nature of the inflection node.

3.1. THE INFLECTION NODE

In general, the inflection (INFL) node may have the features of agreement (AGR) and tense (TENSE). Each feature has the value (+) or (−). INFL is believed to be the head of S; though it is not a lexical head (Chomsky 1981:160–161). As a head it governs the subject position and assigns nominative case to it. Thus, in order to determine the possible features of INFL, we shall consider various structures.

In Zayssè, AGR contains the person, number and gender features of subjects and these are realized as suffixes in the verb.

 'The lion roared.'
The above structures show that INFL has the feature [+AGR]. AGR is 3ms in (1a), 3f in (1b), 3pl in (1c), and 1sg in (1d). All the structures are in the perfective tense which is morphologically shown as /-in/, hence INFL is also [+TENSE].

Since AGR is overt, subject NPs can be null as in (2).

(2) a. ga? - at: - es - in
 roar - foc - 3ms - pf
 (Lt. 'He roared.')
 'It roared,'

 b. astamo - s i - ma yı: a ing - at: - is - in
 A - to the - knife give - foc - 3f - pf
 'She gave the knife to Astamo.'
c. e - kayso gudy - ot: - us - in the- thief beat - foc - 3pl - pf 'They beat the thief.'

d. i - wat^se u$ - ot: - et - in the- water drink - foc - 1sg - pf 'I drank the water.'

This suggests that Zaysse is a pro-drop language.

INFL can also [-AGR, +TENSE]. Consider the following structures.

b. i - bi$:o - y astamo - s i - ma$:a the- woman -nom A - to the- knife ing - at:e - in give - foc - pf 'The woman gave the knife to Astamo.'

c. u - $at - ir - i e - kayso gudy-ot:e-in the- boy - pl -nom the- thief beat-foc -pf 'The boys beat the thief.'

d. ta - y i - wat^se u$ - ot:e - in I -nom the- water drink - foc - pf 'I drank the water.'

In these structures the subject NPs are phonetically realized, but the verb does not show the subject marker morpheme, that is AGR suffixed to it. This suggests
that INFL can be \(\# \text{AGR}, + \text{TENSE} \) in such clauses from which follows the prediction that the subject NP of such clauses cannot be null. This is borne out by the following ungrammatical structures.

(4) *a. ga? - at:e - in
 roar - foc - pf

*b. astamo - s i - ma\(\bar{V} \):a ing - at:e - in
 A - to the - knife give - foc - pf

*c. e - kayso guyd - ot:e - in
 the - thief beat - foc - pf

*d. e - wat\(\bar{e} \) u\(\bar{V} \) - ot:e - in
 the - water drink - foc - pf

These structures clearly show that the subject NP cannot be phonetically null if INFL is \(\# \text{AGR}, + \text{TENSE} \). With these features, there is no AGR that licences the subject NP to be dropped.

In general, then, NPs in subject position are case-marked by INFL if it has the features \(\# \text{AGR}, + \text{TENSE} \). In structures like (1) INFL has the features \(\# \text{AGR}, + \text{TENSE} \), and case marking in these structures is compositional. On the other hand, in structures like (2) INFL has the features \(\# \text{AGR}, + \text{TENSE} \), and as a result case is assigned only by the feature \(+ \text{TENSE} \) since the feature \(\text{AGR} \) is not available.
The third choice for INFL is to be \(+AGR, -TENSE\). The following ungrammatical structures illustrate that these features do not enable INFL to case-mark the subject NP in simple clauses.

\[
\text{(5) } \begin{align*}
a. & \quad \text{e - garma - y } \text{ga? - at: - es} \\
 & \quad \text{the- lion -nom roar - foc - 3ms} \\
b. & \quad \text{i - biV:o - y } \text{astamo - s i - maV:a} \\
 & \quad \text{the- woman -nom A - to the- knife} \\
 & \quad \text{ing - at: - is} \\
 & \quad \text{give - foc - 3f} \\
c. & \quad \text{u - Yat - ir - i e - kayso guyd-ot:-us} \\
 & \quad \text{the- boy - pl -nom the-thief beat-foc-3pl} \\
d. & \quad \text{ta - y i - watS e uV - ot: - et} \\
 & \quad \text{I -nom the- water drink- foc - 1sg}
\end{align*}
\]

The subject NPs in these structures are phonetically realized and the subject morphemes are suffixed and hence INFL is \(+AGR\). Nevertheless, the structures are tenseless; because INFL has the feature \(+AGR, -TENSE\). Though every lexical requirement is satisfied, the structures are ungrammatical. The structures would be grammatical if INFL had the feature \(+TENSE\) as in (1). From this it can be assumed that it is the feature \(+TENSE\) that is a decisive feature in casemarking in simple clauses rather than the feature \(+AGR\), and the function of \(+AGR\) is simply to
identify and licence the subject NP when it is null.

Finally, the fourth possible feature of INFL is \(\neg \text{AGR}, \neg \text{TENSE} \). Since there is no feature that can case-mark the subject NP, structures in (6) are ungrammatical.

(6) *a. e - garma ga? - at:e
 the- lion roar - foc

*b. i - bī:o astamo - s i - maī:a
 the- woman A - to the- knife
 ing - at:e
 give - foc

*c. u - ūat - ir e - kayso guyd - ot:e
 the- boy - pl the- thief beat - foc

*d. ta i - wat's uū - ot:e
 I the- water drink - foc

The subject NPs are caseless. As a result, they are filtered out by the case filter as ungrammatical.

In chapter two it is pointed out that, an XP within a simple declarative clause obligatorily has the focus marker /-at:e/. In addition, we observed that /-at:e/ is preceded by any thematic affix and followed by agreement affixes. This suggests that the position of focus is INFL as Koopman (1984) puts it. The precedence relation of AGR, TENSE and FOC in Zayssé, then, will be (7).
From the above discussion it can be concluded that, in Zaysse, INFL assigns nominative case if it has the feature [+AGR, +TENSE] or [-AGR, +TENSE]. This further leads us to assume that it is only the feature [+TENSE] not [+AGR] which is crucial for the assignment of nominative case.

3.2. THE STRUCTURE OF DECLARATIVE CLAUSES

As mentioned earlier, every lexical category has a LS. In generating the D-Structure, the LS is projected from the lexicon to the syntax. Hence, in discussing the structure of clauses, observing the lexical requirements of the verb is important. Based on this premise, verbs are divided into transitives and intransitives. In the same manner clauses can be transitives or intransitives.

3.2.1. THE STRUCTURE OF INTRANSITIVE CLAUSES

Intransitive verbs, in general, do not case-mark internal arguments (Chomsky 1986:74). This generalization is derived from their semantic properties. Since we have seen the structure of clauses with pure intransitive
verbs in chapter two, we will consider only the structure of copulative clauses here.

In our discussion of the word order variations, we have taken /-/at:e/ to be a focus marker. Having that in mind, let us see the following copulative structures.

(8) a. astamo - y bidura - t:e
 A -nom fat - foc
 'Astamo is fat.'

 b. e - atS - i kartS - ut:e
 the man -nom black - foc
 'The man is black.'

(9) a. i - kana - y kayso - t:e
 the dog -nom (a)thief - foc
 'The dog(f) is a thief.'

 b. so e:ri ¥ato - y ta - ¥ato - t:e
 that little boy -nom my - boy - foc
 'That little boy is my son.'

In these structures, the subject position is filled by NPs; the VP contains APs (8), and NPs (9). (8a) and (9a) have the S-Structures (10a and b) respectively.

(10) a. \[I_i[N_i]astamo - y \] \[V_i]bidura - t:e \]\
 A - nom fat - foc

 b. \[I_i[N_i]i - kana - y \] \[V_i]kayso - t:e \]\
 the dog - nom (a)thief - foc
The two D-Structures show that there is a VP. Since we have taken /-at:e/ as a focus marker, it appears that copulative clauses seem to have no copulative verbs. Does this mean that there is no copulative verb in Zayssê? Or does that mean that /-at:e/ is also a copulative verb? There are three possible answers to the first question.

Based on the theoretical framework adopted, S has two daughter constituents that branch from it as S \(\rightarrow\) NP VP, leaving aside the C" for the sake of brevity. The expansion of these two daughter constituents is governed by the Endocentricity Constraint which is stated in Radford (1988:545) as:

\[(11)\] All Constituent Structure Rules are of the form \(X^n \rightarrow \ldots X^m \ldots (n \geq m)\)

According to this, then, structures (10a-b) will have the tree diagrams in (12a-b) respectively.

\[(12)\] a.

prove the equatons in (12a-b) respectively.
The two tree diagrams show that there is a VP which presupposes the existence of V in the position of (?). If we take /-at:e/, without restricting its function as foc, and follow the Endocentricity Constraint which is one of the claims of the X-bar Convention (Hoekstra 1984:24), then we take /-at:e/ as having a copular function in such structures. However, this has its own setback; because we have taken the position of /-at:e/ to be INFL. In doing so, it will mean that /-at:e/ has two positions, i.e., a head position within V" and I".

The second alternative is to assume that there is no copulative verb in Zayse. If this assumption is followed, the Endocentricity Constraint and the 6-Criterion would be taken as having parametric variations. That is, to assume that there is no copulative verb is to claim that there is no head V which projects to V". In addition, this will lead to a further argument that 6-roles are assigned without a head, and that the NPs in copulative clauses have inherent 6-roles. This will still mean that NPs in such clauses get oblique or genitive cases inherently. Nevertheless, as we shall see below the NPs get nominative case structurally.

The third alternative is to assume that there is a head, V, at D-Structure, but has been deleted at some stage of the derivation at PF. To have a clear picture of this assumption, let us see the following structures.
(13) a. astamo- y bidura - t: -(es) mak' - in
 A - nom fat - foc- 3ms become-pf
 'Astamo became fat.'

b. astamo- y bidura - t: -(es) mak' - i
 A - nom fat - foc- 3ms be - pf
 'Astamo was fat.'

c. es i bidura - t: -(es) mak' - ende
 he - nom far - foc- 3ms be - fut
 'He will be / become fat.'

(14) a. astamo- y astemare - t: -(es) mak' - in
 A - nom (a) teacher - foc- 3ms become-pf
 'Astamo became a teacher.'

b. astamo- y astemare - t: -(es) mak' - i
 A - nom (a) teacher - foc- 3ms be - pf
 'Astamo was a teacher.'

c. astamo- y astemare - t: -(es) mak' - ende
 A - nom (a) teacher - foc- 3ms be - fut
 'Astamo will be / become a teacher.'

From these structures we observe that there is a copulative verb /mak'/-'be, become'. If this is so, then, we take /mak'/ as a copulative verb in equating structures, and assume that it is base generated and deleted at PF after all syntactic processes have taken place when TENSE is present. This assumption satisfies the Endocentricity Constraint and the θ-Criterion. In addition, it overcomes the setbacks of the two assumptions mentioned above. Consequently, our second question is
answered in the negative, i.e., since there is a copulative verb /mak'-/ 'be, become', /-at:e/ cannot serve as a copulative verb in addition to its pragmatic function.

The structure of a copulative clause where /mak'-/ 'be, become' s-selects A" or N" as its complement as in (13a) and (14a) for instance will be (15a-b) respectively.

(15) a.

```
\[
\begin{array}{c}
N'' \\
\downarrow \\
N' \\
\downarrow \\
N \\
| \\
A \\
| \\
A' \\
| \\
A \\
\end{array} 
\begin{array}{c}
I'' \\
\downarrow \\
I' \\
\downarrow \\
I \\
\downarrow \\
A" \\
\downarrow \\
V" \\
\downarrow \\
V' \\
\downarrow \\
V \\
\end{array} 
\begin{array}{c}
astamo \\
bidura \\
mak'-' \\
\end{array} 
[+AGR] 
[+TENSE]
\]
```

b.

```
\[
\begin{array}{c}
N'' \\
\downarrow \\
N' \\
\downarrow \\
N \\
\downarrow \\
N" \\
\downarrow \\
N' \\
\downarrow \\
N \\
\end{array} 
\begin{array}{c}
I'' \\
\downarrow \\
I' \\
\downarrow \\
I \\
\downarrow \\
V" \\
\downarrow \\
V' \\
\downarrow \\
V \\
\end{array} 
\begin{array}{c}
astamo \\
astemare \\
mak'-' \\
\end{array} 
[+AGR] 
[+TENSE]
\]
```

(a)teacher
Based on the third assumption we take /mak'-/ 'be, become' as a copulative verb which s-selects N or N" as its complement. That means, there is a possibility of having two A-positions in a copulative clause when /mak'-/ 'be, become' s-selects N" as its complement.

In this situation there seems to be a contradiction in assuming that a copulative verb is an intransitive verb and claiming that it s-selects N" as its complement. This is, however, a superficial contradiction.

A complement in a copulative clause expresses either the entity or state of the subject. Hence, a copulative clause equates the NP in the subject position with the NP in the VP or the NP in the VP expresses the state of the subject. As a result the NP complement which the copulative verb s-selects gets its 6-role from its head. The NP in the subject position is 6-marked by the VP, since the verb has the nature of compositionally with its VP, assigning a 6-role to its subject position. That means, there are 6-positions in a copulative construction where the s-selected category is N".

Nevertheless, like any other intransitive verb /mak'-/ 'be, become' is devoid of assigning case to its complement position. That is, the complement position is not a case position. Accordingly, the complement need not have case. The external
A-position, however, is assigned nominative case structurally by INFL.

When the feature [+TENSE] is in the present, the copulative verb is deleted after 0-role and case assignment have taken place. That means, at PF there is a rule like (16) in Zayssè which deletes the head of the VP.

(16) Delete the head of VP in copulative clauses if TENSE is in the present

Therefore, the rule deletes the copulative verb at PF after all syntactic processes have taken place. Due to this the surface realization of a copulative clause appears to have no copulative verb.

3.2.2. THE STRUCTURE OF TRANSITIVE CLAUSES

Previously, we have seen that transitive verbs are those which have obligatory and optional 0-roles to assign to their obligatory and optional s-selected complements. In this subsection we shall see the structure of clauses with such verbs. For ease of exposition, we shall divide clauses into three subtypes on the basis of their s-selection and syntactic properties. In light of this, structures of passive and causative clauses shall be dealt with, since we
have already seen the structure of active clauses in chapter two.

3.2.2.1. THE STRUCTURE OF PASSIVE CLAUSES

In Zayssè passivization is both morphological and syntactic. Morphologically, it is a word formation process. A passive form is derived by the morpheme /-ut:-/. The following are active and passive pairs which show their different morphological shape.

(17) a. e - polise - y e - kayso ayk - ot:
the- policeman - nom the-thief arrest - foc
- (es) - in
- 3ms - pf
'The policeman arrested the thief.'

b. e - kayso - y ayk - ut:- ot:- (es) - in
the-thief-nom arrest-pas-foc - 3ms-pf
'The thief was arrested.'

(18) a. e - lats - i e - ats - ut: e sul: - in
the- chief -nom the-man - foc hang - pf
'The chief hanged the man.'

b. e - ats - i sul:- ut:- ot:- (es) - in
the- man-nom hang-pas-foc - 3ms-pf
'The man was hanged.'
In these structures we observe that /-ut:/ is the passive morpheme.

According to Chomsky (1961:124) a passive verb has two properties which its active counterpart lacks:
(a) its VP does not 6-mark the external A-position, and
(b) the verb does not case-mark its internal A-position, since passive morphology is believed to absorb case.

Does this apply to Zaysse? In order to answer this question, we have to see the LS of a passive verb and the syntactic structure of passive clauses.
The LS of a passive verb is identical to its active counterpart. Let us compare the following.

(21) a. sul: — : v, + $[^{N}]$ — \rightarrow 'hang'
 b. sul: - ut:- : v, $\neq ^{N}$ — \rightarrow 'be hanged'

(22) a. kaš — : v, + $[^{P"} N"]$ — \rightarrow 'tell'
 b. kaš - ut: - : v, + $[^{P"} N"]$ — \rightarrow 'be told'

From these frames we observe that the LS of a passive verb is the same as its active form.

The structure of passive clauses show that passivization is syntactic in Zaysse. Let us consider the following structures.

(23) a. i -maš:a- y kayst-ut:-ot:-(is)-in
 the-knife-nom steal-pas-foc- 3f -pf
 'The knife was stolen.'

 b. e - doro- y šok' -ut:-ot:-(es)-in
 the-sheep-nom slaughter -pas-foc- 3ms-pf
 'The sheep was slaughtered.'

 c. i - bora- y miy-ut:-ot:-(is)-in
 the-bread-nom eat-pas-foc- 3f -pf
 'The bread was eaten.'

 d. u -šat-ir- i guyd-ut:-ot:-(us)-in
 the-boy-pl-nom beat-pas-foc- 3pl-pf
 'The boys were beaten.'
The NPs in the above structures are in the subject positions. The agreement facts and the nominative case morpheme show that they are surface subjects, although they were in complement /object positions in the D-structure representation of the clauses. The D-Structure representation of (23a) for instance will be (24)

(24)

Since, as stated above, a passive verb cannot θ-mark its external A-position, this position is empty at D-Structure. In addition, due to the fact that passive morphology absorbs case, the NP in object position is caseless. In order to escape the case filter, the object NP obligatorily moves to the external A-position which is empty and gets nominative case. The S-Structure of (24) is (25) below.
Though passivization in Zaysse involves Move -Cosisin English, its structure is not a copular one. It is similar to Amharic in this feature.

In this subsection we have seen the derivation of passive clauses. Now, we shall see the structure of causatives.

3.2.2.3. THE STRUCTURE OF CAUSATIVE CLAUSES

In Zaysse there are two types of causatives. The first type uses /mah-/'make, cause' which s-selects N" and C" as its complements. Such causatives are not treated in this study, since they are not simple clauses.

The second type is morphological and is productive. The suffix is /-us/ 'cause, make' and is suffixed to verbs, both transitive and intransitive. Let us see the following paradigm.

(26) a. hadiy -'sneeze' hadiy - us 'cause to sneeze'
b. geh -'sleep' geh - us 'cause to sleep'
c. haš -'melt' haš - us 'cause to melt'

(27) a. uš -'drink' uš - us 'cause to drink'
b. sul:-'hang' sul: - us 'cause to hang'
c. wod -'kill' wod - us 'cause to kill'
When compared to the non-causative verbs, causativized verbs have more s-selected categories. This suggests that the causative morpheme /-us/ increases the s-selection potential of verbs. Compare the following.

(29)
(a) geh - : v, + [] 'sleep'
(b) geh - us- : v, + [N] 'cause to sleep'

(30)
(a) uš - : v, + [N] 'drink'
(b) uš - us- : v, + [N][N] 'cause to drink'

(31)
(a) ing - : v, + [P][N] 'give'
(b) ing - us- : v, + [N][P][N] 'cause to give'

As the frames (29) - (31) show verbs in (b) have additionally s-selected A-positions than verbs in (a). Since the process is a morphological one the verbs in (b) acquire a new semantic property of s-selecting a category through causativization. As Baye (1986:129) puts it "--- the number of complements that a verb requires progressively increases as it changes from intransitive to transitive and then to causative---". Based on this premise, then, the LS of causativized verbs in (29b), (30b) and (31b) will be (32a-c) respectively.
The following clauses show the structure of causative clauses.

(33)

- **a.**
 a - at - s - i e - ūató geh - us - at: - (es)
 the - man - nom the - boy sleep - cs - foc - 3ms - pf
 'The man made the boy sleep.'

- **b.**
 astamo - y ta - na modo - t: - (es) uς
 A - nom I - Acc modo - foc - 3ms drink
 - us - in
 - cs - pf
 'Astamo made me drink Modo.'

- **c.**
 i - bi - ṭo - y e - ūató - t: - (is)
 the - woman - nom the - boy - foc - 3f
 garma
 wod - us - in
 (a) lion kill - cs - pf
 'The woman made the boy kill a lion.'

- **d.**
 u - ṭo - ir - i sit'ota - t: - (us)
 the - boy - pl - nom S - foc - 3pl
 astamo - s i - maš: a ing - us - in
 A - to the - knife give - cs - pf
 'The boys made sit'ota give the knife to Astamo.'
When we see the D-Structure of (33d), for instance, will be (34) below.

(34) \[\begin{array}{c}
I^V & N^u & V^s & P^s & N^a \\
\text{the-boy-pl-nom} & \text{give-cs} & \text{infuss} & \text{to} & \text{the-knife} \\
\end{array} \]

In the above D-Structure, we observe that the causativized verb has three internal A-positions that it must \#mark. In addition, since it has a property of compositionally assigning a \#role, the external A-position gets agent \#role.

In regard to case assignment, the NP in the external A-position, i.e., /u-\#at - ir/ 'the boys' gets its nominative case from INFL. The other three NPs get their cases from P and V. That means, the NP /astamo-/ 'Astamo' gets its case from P. Through causativization, the verb has acquired a new property. Accordingly, it assigns objective case to the two NPs, /sit'ota/ 'sit'ota' and /i-\#a\#a/ 'the knife.'
In this chapter we have observed that (a) Zaysse is optionally a subject-pro-drop language, (b) /mak'-/ 'be, become' is an equative copulative verb which is deleted when [+TENSE] is in the present, (c) passivization is morphological and syntactic, and (d) causativization is a productive word-formation rule which adds new semantic properties to both intransitive and transitive verbs.
CONCLUSION

Zayssé, which is one of the Omotic languages, is not studied well. The only works that present a detailed study on its phonology and noun morphology are that of Mulugeta Seyoum and Hirut Wolde Mariam. Other works are comparative in nature and hence Zayssé data are used only for comparative purposes. As to the knowledge of the researcher, there is no detailed study presented on its syntactic aspect. Therefore, the present study has relevance in supplying syntactic information for those who are interested in the language in particular and in Omotic languages in general. However, the study is limited in its scope, since it presents only the structure of simple declarative clauses.

As it is necessary to have a guideline, this study has adopted EST as its theoretical framework which is presented in chapter one.

In chapter two, the basic word order of the language is determined. In doing so, it is shown that case and 6-role assignment in this language is uniformly unidirectional, that is, from right-to-left. As a result, the language is taken to be a head-final one. In addition, it is argued that Zayssé has pragmatically motivated word order changes that occur within a VP and within a clause. In the discussion it is presented that Zayssé has a base generated focus marker /-at:e/ which occurs with an XP. The focus marker blocks right
dislocations and affects word order changes, since an
XP that contains /$-a$t:e/ cannot be right dislocated.

The third chapter presents the structure of simple
clauses. Firstly, the features of INFL in simple clauses
is analyzed. From this it is found out that (a) Zayas is optionally a subject pro-drop language, and (b)
$\sqrt{+\text{TENSE}}$ is a crucial feature of INFL for nominative
case assignment.

The rest of this chapter presents the structure of
simple clauses. The analysis of copulative clauses
indicates that an equative clause has a copulative verb
underlyingly, which is deleted at some stage in the
derivation if the feature $\sqrt{+\text{TENSE}}$ is in the present.

The structure of passive clauses show that
passivization in this language is morphological as well
as syntactic. Morphologically, it is a result of the
word derivation rule which passivizes active verbs in
suffixing /$-u$t:/. Syntactically it involves Move $\rightarrow \infty$, since passive morphology absorbs case and the verb does
not compositionally with its VP θ-mark its A-position.

The discussion on the structure of causative
clauses makes it clear that causativization is a productive
word formation rule which adds the s-selection property
of both transitive and intransitive verbs. In addition,
it is shown that the V with its VP can θ-mark its
external A-position.
NOTES

1 In his phonetic and phonemic analysis, Mulugeta presents only one alveolar implosive, /d/. However, my data for this study show a bilabial implosive /ɓ/ occurring in words like /ɓɛɓo/ 'crocodile' and /ubil:ɛ/'egg'.

2 Following Chomsky (1986:160), I have adopted X'' instead of X''', as the maximal projection of a lexical category X.

3 Modo is a local drink.

4 The realization of the morpheme /-atːe/ is phonologically determined. It has /-atː/, /-tː/, /-utː/, /-utː/, /-otː/, /-otː/ as its allomorphs.

5 An underlined constituent is a focused constituent. However, when the whole VP is focused it is not underlined for clarity sake.

6 The perfect tense marker has /-in/ and /-e/ as its allomorphs. /-e/ occurs in interrogative (when the subject NP is questioned), relative, and negative clauses. On the other hand, /-in/ occurs in declarative and interrogative (when the questioned NP is within VP) clauses.

7 Wh-question clauses.
8 /mak' — /'be, become' like any other verb can be followed by the focus marker /-at:e/ and AGR suffixes. The following are instances which illustrate this.

a. astamo - y bidura mak' - at: -(es) - in
 A -nom fat become- foc - 3ms - pf
 'Astamo became fat.'

b. astamo - y bidura mak' - at: -(es) - iV
 A -nom fat be - foc - 3ms - pf
 'Astamo was fat.'
BIBLIOGRAPHY

I, the undersigned, declare that this thesis is my own work and that all sources of material used for this thesis have been duly acknowledged.

Name: Teshome Yimer

Signature: [Signature]

Place: Institute of Language Studies

Date of Submission: June 5, 1989