ADDIS ABABA UNIVERSITY
COLLEGE OF HEALTH SCIENCES
SCHOOL OF ALLIED HEALTH SCIENCES
DEPARTMENT OF MEDICAL LABORATORY SCIENCES

BACTERIAL PROFILE AND DRUG RESISTANCE PATTERN OF PATHOGENS ISOLATED FROM WOUND INFECTION AT ARMED FORCE REFERRAL AND TEACHING HOSPITAL, ADDIS ABABA, ETHIOPIA

BY: SOSINA AYALEW (BSc.)
ADVISOR: GEBRU MULUGETA (MSc.)

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES, ADDIS ABABA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS IN CLINICAL LABORATORY SCIENCES (DIAGNOSTIC AND PUBLIC HEALTH MICROBIOLOGY SPECIALTY)

June, 2014
Addis Ababa, Ethiopia
Bacterial profile and drug resistance pattern of pathogens isolated from wound infection at Armed Force Referral and Teaching Hospital, Addis Ababa, Ethiopia.

By
Sosina Ayalew (BSc.)

Approved by the Examining Board

Chairman, Dep. Graduate Committee

Advisor

Examiner
Acknowledgment

First of all I would like to thank the almighty God who gave me the courage and power to finish this paper. My Sincere thanks and appreciations are forwarded to my advisor Mr. Gebru Mulugeta for his support and professional advice for the successful completion of this research thesis. Also am great full for Department of Medical Laboratory Science for giving me an opportunity to conduct this research.

I would like to express my heartfelt gratitude to Armed Force Referral and Teaching Hospital for allowing me to do my project in the hospital and for their full support

My special thanks also go to all nurse staffs who supported me by identifying the target patient with careful clinical examination and sample collection.

My very great gratitude also goes to all laboratory professional of the hospital for their unreserved support throughout the project.
<table>
<thead>
<tr>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>III</td>
</tr>
<tr>
<td>Table of content</td>
<td>IV</td>
</tr>
<tr>
<td>List of abbreviation</td>
<td>VI</td>
</tr>
<tr>
<td>List of Tables</td>
<td>VII</td>
</tr>
<tr>
<td>Summery</td>
<td>VIII</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Statement of the problem</td>
<td>3</td>
</tr>
<tr>
<td>3. Significance of the study</td>
<td>5</td>
</tr>
<tr>
<td>4. Literature review</td>
<td>6</td>
</tr>
<tr>
<td>5. Objectives</td>
<td>10</td>
</tr>
<tr>
<td>5.1. General objectives</td>
<td>10</td>
</tr>
<tr>
<td>5.2. Specific objectives</td>
<td>10</td>
</tr>
<tr>
<td>6. Materials and Methods</td>
<td>11</td>
</tr>
<tr>
<td>6.1 Study area</td>
<td>11</td>
</tr>
<tr>
<td>6.2. Study design and study period</td>
<td>11</td>
</tr>
<tr>
<td>6.3. Population</td>
<td>11</td>
</tr>
<tr>
<td>6.3.1 Source Population</td>
<td>11</td>
</tr>
<tr>
<td>6.3.2. Study population</td>
<td>11</td>
</tr>
<tr>
<td>6.4. Variables of the Study</td>
<td>11</td>
</tr>
<tr>
<td>6.4.1. Independent variables:</td>
<td>11</td>
</tr>
<tr>
<td>6.4.2. Dependant variables:</td>
<td>11</td>
</tr>
<tr>
<td>6.5. Inclusion and exclusion criteria</td>
<td>12</td>
</tr>
<tr>
<td>6.6. Sample size determination and Sampling</td>
<td>12</td>
</tr>
<tr>
<td>6.6.1. Sample size determination</td>
<td>12</td>
</tr>
<tr>
<td>6.6.2. Sampling procedures</td>
<td>13</td>
</tr>
<tr>
<td>6.7. Data collection procedures</td>
<td>13</td>
</tr>
<tr>
<td>6.7.1. Specimen collection and transportation</td>
<td>13</td>
</tr>
<tr>
<td>6.7.2. Specimen analysis</td>
<td>13</td>
</tr>
<tr>
<td>6.8. Data management and Quality control</td>
<td>15</td>
</tr>
<tr>
<td>6.9. Data Processing and Analysis</td>
<td>17</td>
</tr>
</tbody>
</table>
6.10. Ethical consideration ... 17
7. Result .. 18
8. Discussion ... 25
9. Limitation of the study ... 29
10. Conclusion and recommendation ... 30
11. Reference ... 32
 Annex 1: Procedure for specimen collection and processing .. 36
 Annex 2: English version of participant information sheet and consent 40
 Annex 3: Amharic Version of the participant information sheet and Consent 43
 Annex 4: Laboratory data collection form .. 45
 Annex 5: Declaration .. 46
List of Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARFTH</td>
<td>Armed Force Referral and Teaching Hospital</td>
</tr>
<tr>
<td>BAP</td>
<td>Blood Agar Plates</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standards Institute</td>
</tr>
<tr>
<td>EHNRI</td>
<td>Ethiopian Health and Nutrition Research Institute</td>
</tr>
<tr>
<td>EMLA</td>
<td>Ethiopian Medical Laboratory Association</td>
</tr>
<tr>
<td>KIA</td>
<td>Kligler iron agar</td>
</tr>
<tr>
<td>MDR</td>
<td>Multi-Drug Resistant</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin Resistant S. aureus</td>
</tr>
<tr>
<td>NIs</td>
<td>Nosocomial Infections</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>SPP</td>
<td>species</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>SSI</td>
<td>Surgical Site Infection</td>
</tr>
</tbody>
</table>
List of Tables

Title of the table Page No.
Table 7.1: Age and sex distribution of patents with wound infections at AFRTH from December 2013 to May 2014………………………………………..18

Table 7.2: Type and frequency of pathogens isolated from wound infections at AFRTH from December 2013 to May 2014………………………………………..19

Table 7.3: Type and frequency of pathogens in mixed wound infection at AFRTH from December 2013 to May 2014………………………………………..20

Table 7.4: Antimicrobial drugs resistance pattern of gram positive bacteria identified from wound infection at AFRTH from December 2013 to 2014………………………………………..21

Table 7.5: Antimicrobial drugs resistance pattern of gram negative bacteria identified from wound infection at AFRTH from December 2013 to May 2014………………………………………..22

Table 7.6: Multidrug resistance gram positive bacteria identified from wound infection at AFRTH from December 2013 to May 2014………………………………………..23

Table 7.7: Multidrug resistance gram negative bacteria identified from wound infection at AFRTH from December 2013 to May 2014………………………………………..24
Summery

Introduction: - Wound infections are associated with increased morbidity and mortality. Etiologic agents of wound infections vary with geographical locations. Pathogens that infect wounds can be part of normal flora or acquired from the hospital environment.

Objectives: The aim of this study was to investigate the profile of pathogens cultured from infected wound and determine their antimicrobial resistance pattern to commonly prescribed antibiotics.

Methods: prospective cross sectional study was conducted at ARFTH from December 2013 to May 2014. Swabs from different types of wounds were processed to investigate etiologic agents using standard microbiological technique. Antimicrobial susceptibility tests were done using disc diffusion technique as per the standard modified Kirby-Bauer method.

Result
Out of 300 wound swab samples analyzed, 205(68.3%) were culture positive. 33 (16.1%) of the culture had double infections. and total 238 bacteria were isolated from 205 cases.. *Staphylococcus aureus* was the most frequently isolated pathogen which accounted for 91 (38.2%) of isolates followed by *Pseudomonas aeroginesa* 53 (22.3%). The sensitivity rates of norfloxacin, gentamicin and ceftriaxone were 82.8%, 78.9%, and 76.9% respectively. The overall MDR (resistant to three or more antibiotics) rate of gram positive bacteria were 73.6% and 67.6% of the gram negative bacterial isolates were identified as multiple drug resistants.

Conclusion
S. aureus and *psuedomonas aeroginesa* were the predominant causes of wound infections. norfloxacin Gentamicin and ceftraxone were the most effective drugs. Periodic surveillance of the species of bacteria involved in wound infection and determination of their antimicrobial resistance is recommended for empirical treatment.

Keyword wound infection, bacterial profile, drug resistance pattern
1. Introduction

Wound is a breach in the skin and the exposure of subcutaneous tissue following loss of skin integrity. The exposed subcutaneous tissues provides a favorable substratum for a wide variety of microorganisms to contaminate and colonize, and if the involved tissue is devitalized and the host immune response is compromised, the conditions become optimal for microbial growth. This is because the host immune response plays a critical role in determining whether wound infection will arise. Wounds can be classified as accidental, pathological or post-operative. Whatever the nature of the wound, infection is the attachment of microorganisms to host cells and they proliferate, colonize and become better placed to cause damage to the host tissues.

Wounds can also broadly categorized as having either an acute or a chronic etiology. Acute wounds are caused by external damage to intact skin and include surgical wounds, bites, burns, minor cuts and abrasions, and more severe traumatic wounds such as lacerations and those caused by crush or gunshot injuries. In marked contrast, chronic wounds are most frequently caused by endogenous mechanisms associated with a predisposing condition that ultimately compromises the integrity of dermal and epidermal tissue.

All wounds are contaminated by both pathogens and body commensals. But The progression of a wound to an infected state is likely to involve a multitude of microbial or host factors. These may be the microbial load, and the combined virulence expressed by the types of microorganisms involved, patient risk factors like the general health and immune status of the host, diabetes, cigarette smoking, obesity, and coincident remote site infections or colonization and operation-related risk factors including prolonged hospital stay before surgery, duration of the operation, tissue trauma, poor hemostasis, and foreign material in the wound, with these last greatly increasing the risk of serious infection despite a relatively small bacterial inoculums.

Wound can be infected by a variety of microorganisms ranging from bacteria to fungus and parasites. Both acute and chronic wounds are susceptible to contamination and colonization by a wide variety of aerobic and anaerobic microorganisms. Isolates that have been incriminated in cases of wound infections include: *Staphylococcus aureus, Staphylococcus epidermidis*, *Streptococcus faecalis, Streptococcus pyogenes*, *Proteus mirabilis, Pseudomonas aeruginosa*,...
Klebsiella spp., Escherichia coli, Acinetobacter, and Enterobacter. Candida albicans and C. tropicalis have also been implicated as etiological agents.3,9

The majority of wounds are characterized by a polymicrobial aerobic-anaerobic microflora; therefore, the careful use of broad spectrum antimicrobial agents is likely to be the most successful treatment in the management of infected wound. However, various antibiotics are frequently and sometimes inappropriately prescribed or administered in wound treatments, which often leads to the selection of antibiotic-resistant bacteria strains.10 Antimicrobial resistance among pathogens of wound infections is on the increase.7 Antimicrobial drug resistance can be acquired as a result of mutation or acquisition of resistance genes via horizontal gene transfer, or can be an innate feature of an organism that is encoded chromosomally.11 Antimicrobial drugs overuse, over dosing, drugs prescription with improper susceptibility test, self-medication and long duration of hospitalization was suggested to augment the problem of multi-drug resistant (MDR) in developing nations.12
2. Statement of the problem

Since wound colonization is most frequently polymicrobial involving numerous microorganisms that are potentially pathogenic, any wound is at some risk of becoming infected. In the event of infection, a wound fails to heal, the patient suffers increased trauma, treatment costs rise, and general wound management practices become more resource demanding. Infection continues to be a major complication of wounds with significant increase morbidity and potential mortality. Wound infection is one of the most challenging aspects of wound management and a major contributor to healthcare costs globally. Wound infections may occur following accidental trauma and injections, but post-operative wound infections in hospital are most common.

Wound infections are the most expensive complications following surgery and moreover, it is thought to be second most common type of nosocomial infections. Nosocomial infections (NIs) are the infections acquired during hospital stay and are widespread. They are important contributors to morbidity and mortality. These infections concern 2 million cases annually worldwide i.e., 5-15 per cent of hospitalized patients and up to 10 per cent of patients acquire more than one of these infections.

The rate of surgical site infection (SSI) varies greatly worldwide and from hospital to hospital. In European hospitals, the overall rates of SSI range between 3% and 4% of patients undergoing surgery. Depending on the nature of surgery in question, the incidence of SSI ranges between <1% to >10%. Epidemiological Study of Surgical Wound Infections conducted in India reported that the annual incidence of SSI to be 30.2 patients per 1000 patients. It has been estimated that that 500,000 SSIs occur annually in the United States and account for approximately one quarter of the estimated 2 million NI in the United States. In Africa the rate of SSIs varied from 2.5% to 30.9% following various types of surgical procedures. Studies have shown that the average hospital stays doubled and that the cost of hospitalization was correspondingly increased when postoperative surgical wound infection developed. A study from Ethiopia reported that the mean postoperative stay and mortality were significantly higher in patients with surgical site infection compared with in uninfected patients.
One to two percent of the population in the developed countries will experience a chronic wound in their lifetime.21 In the United States, chronic wounds affect around 6.5 million patients. It is claimed that an excess of US$25 billion is spent annually on treatment of chronic wounds and it is expected that the number of chronic wounds will increase worldwide due to the increase of lifestyle diseases, such as diabetes, obesity, and cardiovascular diseases.16

Disability and loss of wages related to chronic wounds represents a heavy socioeconomic burden.22 For many patients, wounds are a significant and preventable barrier to the successful recovery or management of a wide range of medical conditions. Wounds cause pain, suffering, sepsis, infection, nausea, fatigue, depression, psychological disturbances, loss of function, loss of mobility, and personal financial cost.23

The rapid emergence of antimicrobial resistance among bacteria is a public health crisis. Wound infections with antimicrobial-resistant bacteria increase patient morbidity and mortality and greatly increase the cost of medical care.24 The control of wound infections has become more challenging due to widespread bacterial resistance to antibiotics and to a greater incidence of infections caused by methicillin-resistant \textit{S. aureus} (MRSA) and polymicrobial flora.7

There is now a well-recognized increase in MRSA colonization and infection in chronic wounds. The increase appears to be comparable to the worldwide increase in MRSA in acute wounds. The MRSA presents two problems, the first relates to the chronic wound being a source of other MRSA NI and the second relates to the impact of MRSA on the chronic wound itself.25

In most developing countries like Ethiopia, it is a common practice that antibiotics can be purchased without prescription. This leads to misuse of antibiotics by the public thus contributing to the emergence and spread of antimicrobial resistance.26 The current spread of MDR bacteria pathogens has added a new dimension to the problem of wound infections. A regular bacteriological review of infected wounds is therefore a necessity if affected patients must receive quality health care, particularly when blind treatment is a necessity, as in underdeveloped and developing nations.3
3. Significance of the study

Bacteriological studies have shown that a wound infection is universal and that the types of bacteria vary with geographical locations. The prevalence of different bacteria in infected wounds varies and the knowledge of prevalence in an institution cannot be extrapolated to others. Apart from inter-institutional variation, trans-institutional variation also exists. However, studies assessing the etiological agents of wound infections in Ethiopia are very scarce. Knowledge of the causative agents of wound infection and the extent of drug resistance of these isolates against different antimicrobial classes in a specific geographic region will therefore be useful in order to provide locally applicable data and to guide empirical therapy. Accordingly, the study finding is important in setups where immediate culture and sensitivity tests are difficult, sound epidemiological knowledge of bacterial pathogens helps in rationale selection of antibiotics for empiric treatment options. Thus, morbidity and mortality associated with wound infections by bacteria provide a strong argument for our intention to identify possible bacterial pathogens from patients hereby implementing strict rules to control their spread.
4. Literature review

A study was carried out to determine antimicrobial Susceptibility Patterns of the Bacterial Isolates in Post-Operative Wound Infections in Nepal. Out of 120 pus swabs processed for culture *Staphylococcus aureus* 36 (37.5%) was the predominant gram positive isolate and *Escherichia coli* 24 (25%) was the major gram negative isolate. All *S. aureus* isolates were sensitive to aminoglycosides and vancomycin. Out of 36 *S. aureus*, 15 (41.66%) isolates were methicillin resistant *S. aureus* (MRSA). *Staphylococcus epidermidis* showed high resistance (50% - 100%) to all antibiotics but were sensitive to vancomycin. All gram negative isolates showed high resistance against cephalexin (75% - 100%) and ceftriaxone (25% - 100%). Overall multi-drug resistant isolates were 66.7%.

Another survey was conducted in Italy to assess Epidemiology and Microbiology of Surgical Wound Infections. This study included 676 surgery patients with signs and symptoms indicative of wound infections. Bacterial pathogens were isolated from 614 individuals. Among the common pathogens were *Staphylococcus aureus* (191 patients, 28.2%), *Pseudomonas aeruginosa* (170 patients, 25.2%), *Escherichia coli* (53 patients, 7.8%), *Staphylococcus epidermidis* (48 patients, 7.1%), and *Enterococcus faecalis* (38 patients, 5.6%).

A prospective study was carried out in Nigeria to determine Microbiology of Wound Infections and its Associated Risk Factors. The overall prevalence of wound infections was 64.8%. The prevalence of wound infections was not significantly affected by gender but was significantly affected by age. The prevalence of wound infections was minimum among age group of <5 years old (20.0%) and maximum among the age group of 36-40 years old (77.5%). *Staphylococcus aureus* was the most prevalent etiologic agent (21.5%). β-lactams, fluoroquinolones and gentamicin were the most effective antibacterial agents.

Similar study was done in Cameron to determine the bacterial profile of surgical site infection. Out of 110 (9.2%) patients who developed SSI, the isolated bacteria were Enterobacteriaceae (41.2%), *Staphylococcus aureus* (15.3%), *Pseudomonas spp.* (14.1%), *Enterococcus spp.* (12.9%), coagulate-negative staphylococci (CoNS, 5.9%), *Streptococcus spp* (1.8%), and others.
These bacteria presented a global-sensitivity rate of less than 30% to the commonly prescribed antibiotics.29

The study conducted in Uganda on drug sensitivity patterns of bacterial isolates from septic post-operative wounds. Pathogenic bacteria were recovered from 58.5% of the specimens. The isolates were: \textit{S.aureus} (45.1%), \textit{Coliforms} (16.9%), \textit{Proteus mirabilis} (11.3%), \textit{P.aeruginosa} (9.9%), \textit{Klebsiella pneumoniae} (7.0%) and \textit{Enterobacter spp} (2.82%). Most of the organisms were sensitive to gentamicin, ciprofloxacin and ceftazidime. There was resistance to ampicillin, amoxycillin and chloramphenicol. \textit{Staphylococcus aureus} was generally sensitive to gentamicin (87.5%), ciprofloxacin (68.7%) and methicillin (75%), but resistant to erythromycin (56.2%) and ampicillin (97%). Most of the gram-negative bacteria isolated were sensitive to Ciprofloxacin, Gentamicin and Ceftazidime but resistance to Ampicillin, Amoxycillin and Chloramphenicol. Methicillin resistant \textit{Staphylococcus aureus} (MRSA) strains formed 25% of this species. \textit{Pseudomonas aeruginosa} was sensitive to gentamicin (87.5%) and ceftazidime (85.7%) but showed resistance to ciprofloxacin (57.2%). Some organisms e.g. \textit{S.aureus}, \textit{Pseudomonas aeruginosa} and \textit{Proteus mirabilis} exhibited multi-drug resistance to the antibiotics tested.30

A Cross-sectional, prospective study conducted by Tigist et al indicated that out of 114 burn wound pus sample, bacterial infection was observed in 95 (83.3%) of which, 66 (69.5%) had \textit{S. aureus} infection. Overall prevalence of \textit{S. aureus} isolation was 57.8%. Most of them were sensitive to vancomycin, clindamycin, kanamycin and erythromycin, but highly resistant to penicillin G. All isolates were found to be multi drug resistant, and one isolate was resistant to all the tested drugs.31

According to a study aimed at assessing bacteriology and antibiogram of pathogens from wound infections at Dessie, North East Ethiopia, Out of 599 wound swab samples analyzed, 422 (70.5%) were culture positive. Seventy eight (18.5%) of the culture had double infections. \textit{Staphylococcus aureus} was the most frequently isolated pathogen which accounted for 208 (41.6%) of isolates followed by \textit{Pseudomonas} spp. 92 (18.4%), \textit{E. coli} 82 (16.4%), \textit{Proteus} spp. 55 (11.0%), \textit{Enterobacter} spp. 21 (4.2%), and \textit{Citrobacter} spp. 21 (4.2%), \textit{Klebsiella} spp. 12 (2.4%) and \textit{Coagulate negative staphylococcus} (1.8%). Amoxicillin had the highest resistance
rate 78.9%, followed by tetracycline 76.1% and erythromycin (63.9%). The sensitivity rates of norfloxacin, ciprofloxacin and gentamicin were 95.1%, 91.8% and 85%, respectively. The overall multiple antimicrobial resistances rate was 65.2% and only 13% of the isolates were sensitive to all antimicrobial agents tested. The most frequently isolated bacteria were sensitive to ciprofloxacin, gentamicin, cloxacillin and norfloxacin.

Cross-sectional prospective study was conducted to determine the bacteriology of open fracture wounds at Black Lion Hospital, Addis Ababa Ethiopia. A total of 162 bacterial pathogens were isolated from the 200 open fracture wounds sampled. *S. aureus* was the dominant isolate (14.8%) followed by *Acinetobacter* spp. (11.4%). Of the culture-positive wounds, 51.2% showed monomicrobial growth (single bacterial type) and 48.8% showed polymicrobial growth. The gram-positive and -negative bacteria accounted for 34.0 and 66.0%, respectively (p < 0.05). All gram-positive bacterial isolates showed low level of resistance (<60%) to all antibiotics tested except for ampicillin and penicillin to which they showed intermediate level of resistance (60 - 80%). Most gram-positive isolates, 29/55 (52.7%) showed multiple drug resistance (resistance to three or more drugs). All gram negative bacterial isolates showed low level of resistance (<60%) to all antibiotics tested except for ampicillin and amoxicillin (60 - 80%, intermediate level resistance). Fifty-one percent of the gram negative bacterial isolates were identified as multiple drug resistants (MDR).

A Hospital based cross-sectional study was conducted on 322 wound samples at Jimma University Specialized Hospital, Ethiopia. The overall MDR among gram positive and gram negative bacterial isolates were (77%) and (59.3%) respectively. About, 86.2% *S.aureus* and 28.6% of Coagulase negative Staphylococci became MDR. Nearly 30.1% of *S.aureus* was resistant to six classes of antimicrobials. The average MDR rate of *Proteus*, *Klebsiella*, and *Providencia species* was 74.8%, 69.6% and 75% in that order. Nearly, 30.8% of *Proteus sp*, 32.6% of *Klebsiella sp* and 61% of *Citrobacter sp* were resistance to 4 classes each. Surprisingly, the average MDR rate for *Citrobacter sp* was 100%. About (76.7%) of *S.aureus* was oxacillin/methicillin resistant while (16.4%) were vancomycin resistant. *Proteus species* was the predominant isolates (27.9%) followed by *P. aeruginosa* and *S. aureus* (19.3%) and (19%) respectively.
A retrospective study was conducted in Gondar on patterns and multiple drug resistance of bacteria pathogens isolates from wounds infection. Bacterial pathogens were isolated from 79 patients showing an isolation rate of 52%. S. aureus was the predominant species 65% followed by E. coli (10%), Klebsiella pneumonia 9%, Proteus species 4% and Streptococci species 4%. Amoge gram positive bacteria S. aureus shows high level of drug resistance against pencilline 59%, tetracycline 57%, ampicillin 55% and co-trimoxazole 35%. E.coli was found to be resistant to ampicillin in 87%, tetracycline also in 87% and co-trimoxazole 63%. The overall multidrug resistance pattern were found to be 78.5%.
5. Objectives

5.1. General objectives

- To determine the prevalence, bacterial profile and drug resistance pattern of wound infection at Armed Force Referral and Teaching Hospital.

5.2. Specific objectives

- To determine the prevalence of bacterial wound infection at Armed Force Referral and Teaching Hospital
- To describe the bacterial pathogens responsible for the wound infection
- To determine the antimicrobial resistance pattern of commonly isolated wound microbes
6. Materials and Methods

6.1 Study area

The study was conducted at Armed Force Referral and Teaching Hospital which is located in Ledeta sub city, Addis Ababa, Ethiopia. It organized under Health Main Directorate, Ministry of Defense. It provides medical service to members of the Ethiopian defense force and their family ARTH has 15 wards with 600 beds, there are 378 health care professionals with different levels and filed of training. Based on the 2011/2012 annual report the hospital provides service for 100,005 outpatients and 4229 inpatient as well as 962 deliveries and 295,549 laboratory investigations. Other than patient diagnose, ARTH also engage in different activities like health teaching and research.

6.2. Study design and study period

A hospital based cross-sectional study was conducted from December 2012 to May 2013 at Armed Force Referral Teaching Hospital.

6.3. Population

6.3.1 Source Population
All patients who visited Armed Force Referral and Teaching Hospital during the study period.

6.3.2. Study population
All patients with wound who visited Armed Force Referral Teaching Hospital.

6.4. Variables of the Study

6.4.1. Independent variables:
- Age
- Sex

6.4.2. Dependant variables:
- Bacterial isolates
- Drug resistance pattern
6.5. Inclusion and exclusion criteria

Inclusion criteria
- Patients with wound infection
- Patients agreed to participate and give informed consent

Exclusion criteria
- Patients who do not develop wound infection based on clinical examination during the study period was excluded from the study.

6.6. Sample size determination and Sampling

6.6.1. Sample size determination

The sample size was calculated based on single sample size estimation. The value of p taken as 70.5% (0.705) from the previous study conducted on Bacteriology and antibiogram of pathogens from wound infections at Dessie, North East Ethiopia.\(^{26}\) Considering 95% confidence interval, 5% margin of error and 70.5 proportion, the sample size was calculated using the following standard formula.

The sample size \(n = z (\alpha/2)^2 p (1-p)/d^2\)

Where
- \(n\) = Sample size
- \(\alpha\) = level of significance
- \(z\) = at 95% confidence interval Z value \((\alpha = 0.05) => Z_{\alpha/2} = 1.96\)
- \(p\) = Proportion of occurrence of the event to be studied 9% (0.09)
- \(d\) = Margin of error at (5%) (0.05)

\(n = (1.96)^2 0.705(1-0.705)/(0.05)^2\)
\(n = 319\)

A minimum sample size for this study was 319. But it was possible to attain only 300 samples within a given time frame.
6.6.2. Sampling procedures
Consecutive sampling technique was employed to include study participants who met the inclusion criteria.

6.7. Data collection procedures
Predesigned and structured questionnaire was developed and used for collection of data on socio-demographic characteristics (age and sex) of the patient.

6.7.1. Specimen collection and transportation
Wound beds were prepared before specimen collection by using Levine’s technique where the wound surface was cleansed of surface exudates and contaminants with a moistened sterile gauze and sterile normal saline solution. Dressed wounds were cleansed with non bacteriostatic sterile normal saline after removing the dressing. This technique is believed to be the best technique for swabbing open wounds and more reflective of tissue bioburden than swabs of exudate or swabs by other techniques. Cleansing the wound prior to obtaining swab specimens was done in an effort to remove immediate surface contaminating organisms (bacteria). The culture was more likely to represent the microbiology in the deep wound compartment. As part of Levine’s technique, the end of a sterile cotton-tipped applicator was rotated over 1 cm² area for 5 second with sufficient pressure to express fluid and bacteria to surface from within the wound tissue. Double wound swabs were taken from each wound at a point in time to reduce the chance of occurrence of false-negative cultures. During the study period a total of 300 different types of wound samples was collected. Following collection, wound specimens were transported to microbiology laboratory within 30 minutes by placing the swabs in to the sterile test tubes having 0.5 ml of sterile normal saline solution. (annex 1)

6.7.2. Specimen analysis
Culture and gram staining
All wound specimens were inoculated on blood agar (for gram-positive bacteria), and MacConkey agar (for gram-negative bacteria) (Oxoid, Ltd., England). The plates were incubated in aerobic and microaerophilic atmosphere at 37°C for 24 - 48 h. Candle jar was used for microaerophilic atmosphere. Positive cultures were identified by their characteristic appearance
on their respective media, gram staining reaction and confirmed by the pattern of biochemical reactions using the standard method.36

Biochemical test

Biochemical tests were performed on colonies from primary cultures for final identification of the isolates. Gram-negative rods were identified by performing a series of biochemical tests. (Oxoid, LTD). Namely, carbohydrate utilization tests, indole production, urease test, manitol citrate utilization, lysine iron agar, oxidase test, Kligler iron agar (KIA), H_2S production, and motility test. Gram-positive cocci were identified based on their gram reaction, coagulase and catalase test result.36 (annex1)

Antibiotic susceptibility test:

Antimicrobial susceptibility testing was performed for all isolates by using Modified Kirby Bauer disk diffusion method.37 From a pure culture, 3 - 5 selected colonies of bacteria were taken and transferred to a tube containing 5 ml nutrient broth and mixed gently until a homogenous suspension was formed. Turbidity of the broth culture was equilibrated to match 0.5 McFarland standards. A sterile cotton swab was used and the excess suspension was removed by gentle pressing and rotation of the swab against the inside wall surface of the tube. The swab was then used to distribute the bacteria evenly over the entire surface of Mueller-Hinton agar and blood agar (Oxoid, Hampshire, England). Mueller-Hinton agar was used for all gram negative and positive bacteria, except for *Streptococci spp*. The sensitivity test of *Streptococci* was performed on Mueller-Hinton agar with 5% sheep’s blood.

The drugs tested were in the following concentrations: amoxicillin (AML) (25 µg), ampicillin (AMP) (10 µg), penicillin G (P), oxacillin (ox) (1µg), ceftriaxone (CRO), cefoxidine (FOX)(30 µg), cefotaxim(CTX)(30 µg) chloramphenicol (C) (30 µg), clindamycin (DA) (2 µ g), cefoxitin (OB) (2 µg), erythromycin (E) (15 µg), gentamicin (CN) (10 µ g), , norfloxacin (NOR) (10 µ g), (10 units), tetracycline (TE) (30 µ g), and trimethoprim-sulphamethoxazole (SXT) (25 µ g).

Only the conventional antibiotics regularly available for frequent use in the study area were considered for this study and all the disks used for the test were from (Oxoid Ltd. England). All
Gram positive bacteria were tested against amoxicillin, penicillin G, clindamycin, ampicillin, ceftriaxone, cefotaxim, chloramphenicol, cloxacillin, erythromycin, gentamicin, oxacillin norfloxacin, tetracycline, trimethoprim-sulphamethoxazole. All gram-negative bacteria were tested against amoxicillin, ampicillin, ceftriaxone, Cefotaxim, chloramphenicol, gentamicin, norfloxacin, tetracycline, and trimethoprim-sulphamethoxazole. Diameters of the zone of inhibition around the disc were measured using a ruler in millimeters, and bacterial strains were classified into three groups: as sensitive, intermediate, and resistant according to the standardized table supplied by the CLSI.

Work flow

```
Cleaning the wound, Sampling, labeling

transport to the laboratory and Culture on MacConkey and BAP

growth

Gram staining

Biochemical test

Antibiotic susceptibility test
```

6.8. Data management and Quality control

Data quality was ensured through use of standardized data collection materials, proper training before the start of data collection and intensive supervision during data collection by the principal investigator. For laboratory analysis Pre-analytical, analytical and post-analytical stages of quality assurance that is incorporated in Standard operating procedures (SOPs) of the microbiology laboratory of ARTH was strictly followed. In addition, well-trained and experienced laboratory professionals were participate in the laboratory analysis procedure.
Pre-analytical phase

Pus swabs were aseptically obtained using sterile cotton from wound sites before the wound is cleaned by antiseptic solution. Following collection from patients, specimens was transported by placing swab in a sterile test tube to the microbiology laboratory within 30 minutes. When specimens reach the laboratory, it was checked to ensure that the correct specimen had been sent and the name on the specimen is the same as that on data collection form. To avoid sample contamination leak proof sample container was used.

Analytical phase

All materials, equipment and Procedures were adequately controlled. All stains and reagents were clearly labeled, dated, and stored correctly. The preparation, fixation, staining and reporting of smears as detailed in the SOPs of the microbiology laboratory of ARFTH was strictly followed. At regular intervals and whenever a new batch of gram stain is prepared, control smears of appropriate organisms were stained to ensure correct staining reactions.

For each item of equipment there was clear operating and cleaning instructions, and service sheets. The operating temperature of a refrigerator, incubator, and water-bath was monitored and documented. Culture media was tested for Performance and sterility. To standardize the inoculums density of bacterial suspension for the susceptibility test, a 0.5 McFarland standard was used and standard reference strain *S. aureus* (ATCC-25923), *E. coli* (ATCC-25922) and *P. aeruginosa* (ATCC-27853) was used as Control bacteria strains. All the strains were obtained from Ethiopian Health and Nutrition Research Institute (EHNRI).

Post-analytical phase

The results were recorded with the patients’ identification number. The terminology and format used in reporting was standardized. All reports were concise and clearly presented. Before leaving the microbiology laboratory, all reports were double checked for correctness.
6.9. Data Processing and Analysis

Data entry and analysis was done using SPSS statistical software version 20. The descriptive statistics was calculated & logistic regression analysis was used to see the relation between dependent variable and independent variables. The level of significance was set at 0.05 in order to consider a p-value < 0.05 as indicator of a statistically significant difference with 95% confidence interval.

6.10. Ethical consideration

This research project was approved by “Departmental Ethics and Research committee” of the Department of Medical Laboratory Sciences, Collage Health Science, School of Allied Health Science of Addis Ababa University. Permission was obtained from the ARTH administrator. Subjects were recruited after they become informed about the objectives and use of the study and after they give informed consent. There was minimal risk associated with the process of sampling; it is the same as taking specimen for culture and sensitivity in the routine laboratory. For all confirmed wound infections the responsible clinician of the subjects was informed. All the information contained within the study was kept confidential.
7. Result

Demography
A total 300 patients with wound infection were included in this study, out of which, 268(89.3%) were male and 32(10.7%) were female, resulting in an overall male to female ratio of 1:8.4. The age of the patients ranged from 10 year to 68 years, with mean age of 30 [SD=11.5] years. The mean age of male and female patients was [(30.(SD=11.2) and 33.8 (SD=13.2)] years, respectively. The infection rate was higher in male (87.3%) than female (12.7%) but the difference was not statistically significant (P=0.103). The infection rate was relatively high (49.3%) in the age group of 21-30 years old followed by 31-40 years of age group (20.0%). The age and sex distribution of patients involved in this study is presented in Table (Table1)

Table 7.1: Age and sex distribution of patents with wound infections at AFRTH from December 2013 to May 2014

<table>
<thead>
<tr>
<th>Demographic characteristics</th>
<th>No. (%) of culture positive</th>
<th>No. (%) of culture negative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>179(87.3)</td>
<td>89 (93.7)</td>
<td>0.103</td>
</tr>
<tr>
<td>Female</td>
<td>26(12.7)</td>
<td>6 (6.3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>205(100)</td>
<td>95(100)</td>
<td></td>
</tr>
<tr>
<td>Age groups (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>17 (8.3)</td>
<td>18(18.9)</td>
<td>0.408</td>
</tr>
<tr>
<td>21-30</td>
<td>101(49.3)</td>
<td>54(56.8)</td>
<td>0.123</td>
</tr>
<tr>
<td>31-40</td>
<td>41(20)</td>
<td>12(12.6)</td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>30 (14.6)</td>
<td>9 (9.5)</td>
<td>0.309</td>
</tr>
<tr>
<td>>51</td>
<td>16(7.8)</td>
<td>2(2.1)</td>
<td>0.094</td>
</tr>
<tr>
<td>Total</td>
<td>205(100)</td>
<td>95(100)</td>
<td></td>
</tr>
</tbody>
</table>
Etiology of wounds

Out of 300 samples, 205 (68.3%) samples were culture positive while 95 (31.7%) of wound swab cultures showed no growth. Out of 205 positive samples 33 (16.1%) had double infection and total 238 bacteria were isolated from 205 cases. 102 (42.9%) were Gram positive while the rest 136 (57.1%) were Gram negative. *Staphylococcus aureus* 91 (38.2%) was the most frequently isolated Gram positive bacteria where as *Pseudomonas aeroginesa* 53 (22.3%) was the most frequently isolated Gram negative bacteria. *Streptococcus spps* was the least prevalent etiologic agent. The proportion of each bacterial isolate to the total number of isolates is presented in Table 2.

Table 7.2: Type and frequency of pathogens isolated from wound infections at AFRTH from December 2013 to May2014.

<table>
<thead>
<tr>
<th>Bacteria Isolated</th>
<th>Number</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>91</td>
<td>38.2</td>
</tr>
<tr>
<td>Pseudomonas aeroginesa</td>
<td>53</td>
<td>22.3</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>24</td>
<td>10.1</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>21</td>
<td>8.8</td>
</tr>
<tr>
<td>E.coli</td>
<td>19</td>
<td>8.0</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>9</td>
<td>3.8</td>
</tr>
<tr>
<td>CoNS</td>
<td>10</td>
<td>4.2</td>
</tr>
<tr>
<td>Citrobacter</td>
<td>8</td>
<td>3.4</td>
</tr>
<tr>
<td>Providencia spp.</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>238</td>
<td>100</td>
</tr>
</tbody>
</table>

Key CoNS= Coagulase negative staphylococci

All double infections in our study involved Gram positive and Gram negative bacteria with *S. aureus* and *Pseudomonas aeroginesa* show the most common association in 15 (45.5%) cases. Infections with *S. aureus* and *E. coli*, *S. aureus* and *Proteus spp*, *Klebsiella spp.* and CoNS,S.
and Enterobacter spp. with rates of 6(18.2%), 6(18.2%) ,5(15.2%) and 1(3%) respectively were among the double infections isolated in this study.

Table 7.3. Type and frequency of pathogens isolated from wound infections at AFRTH from December 2013 to May 2014.

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus and Pseudomonas spp.</td>
<td>15</td>
<td>45.5</td>
</tr>
<tr>
<td>S. aureus and E.coli</td>
<td>6</td>
<td>18.2</td>
</tr>
<tr>
<td>S. aureus and Proteus spp.</td>
<td>6</td>
<td>18.2</td>
</tr>
<tr>
<td>Klebsiella spp. and CoNS</td>
<td>5</td>
<td>15.2</td>
</tr>
<tr>
<td>S. aureus and Enterobacter spp.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>100</td>
</tr>
</tbody>
</table>

Key: CoNS = Coagulase negative staphylococci

Antimicrobial resistance pattern

The resistance patterns of bacteria isolated from wound infection are presented in Table 7.4 & 7.5. Among Gram positive bacteria, high level of resistance was observed against Penicillin G (86.3%), and ampicillin (67.6%). Likewise The least effective antibiotic for Gram Negative were Ampiciline(87.5%) and amocilline (83.8%)

Analysis of species specific resistance rates indicated that most of S. aureus was mostly resistant to Penicillin G (91.2%), Ampicillin (73.6) and tetracycline (67%). On the other hand, S. aureus was susceptible to, Ceftriaxone, norflaxocin, and Cefotaxim with resistance of only 7.7%, 7.7%, and 9.9% , respectively. Similarly, 50% of CoNS was resistance to penicillin G. Fortunately, Streptococcus spp. was 100% sensitive to many of the antimicrobial drugs tested. (Table 7.4)
Table 7.4 Antimicrobial drugs resistance pattern of gram positive bacteria identified from wound infection at AFRTH from December 2013 to May 2014

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>CTX</th>
<th>CR</th>
<th>CN</th>
<th>NOR</th>
<th>TE</th>
<th>C</th>
<th>OX</th>
<th>APL</th>
<th>AML</th>
<th>OB</th>
<th>P</th>
<th>E</th>
<th>SXT</th>
<th>CD</th>
<th>Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus N = 91</td>
<td>9</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>61</td>
<td>24</td>
<td>55</td>
<td>67</td>
<td>50</td>
<td>42</td>
<td>83</td>
<td>29</td>
<td>18</td>
<td>38</td>
<td>39.5</td>
</tr>
<tr>
<td>CoNS N* = 10</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15.7</td>
</tr>
<tr>
<td>Streptococcus spp. N = 1</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Key: OX = Oxacillin, OB = Cloxacillin, E = Erythromycin, CD = Clindamycin, P = Penicillin G, APL = Ampicillin, CRO = Ceftriaxone, NOR = Norfloxacin, CTX = Cefotaxim, CN = Gentamycin, C = Chloramphenicol, TE: Tetracycline; SXT: Trimethoprim-sulphamethoxazole, AML: Amoxicillin, CoNS = Coagulase negative staphylococci

Pseudomonas aeroginesa showed the highest resistance to Amoxillin (83%), Ampcillin(84.9%) and Chloramphenicol (62.5%) while norfoxacin and Gentamaycine were the most effective antibiotics with resistance rates of 5.7% and 11.3%. respectively. Out of 24 isolates of *Proteus*
spp, (95.8%), (87.5%), and (62.5%) were resistant to Ampicillin, Amoxicillin, and tetracycline respectively. Klebsiella SPP. demonstrated high level of resistance to Amoxillin (90.5%) and ampicillin 85.7% Furthermore, E.coli showed 78.9% resistance to Ampcillin and 84.2% resistance to amoxillin. whereas E.coli were sensitive to Gentamycine, ceftraxone and norfoxacinil with 5.3% resistance rates for each them.

Table 7.5 Antimicrobial drugs resistance pattern of gram negative bacteria identified from wound infection at AFRTH from December 2013 to May 2014

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Drugs</th>
<th>No (%) resistance to</th>
<th>APL</th>
<th>CRO</th>
<th>CN</th>
<th>NOR</th>
<th>TE</th>
<th>C</th>
<th>AMP</th>
<th>AML</th>
<th>SXT</th>
<th>Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeroginesa (N=53)</td>
<td>CTX 12 (22.6)</td>
<td>CRO 7 (13.2)</td>
<td>CN 6 (11.3)</td>
<td>NOR 3 (5.7)</td>
<td>TE 30 (56.6)</td>
<td>C 33 (62.5)</td>
<td>AMP 45 (84.9)</td>
<td>AML 44 (83)</td>
<td>SXT 27 (50.9)</td>
<td>Average 43.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus spp. (N=24)</td>
<td>CTX 1 (4.3)</td>
<td>CRO 1 (4.2)</td>
<td>CN 6 (25)</td>
<td>NOR 2 (8.5)</td>
<td>TE 15 (62.5)</td>
<td>C 12 (50)</td>
<td>AMP 23 (95.8)</td>
<td>AML 21 (87.5)</td>
<td>SXT 8 (33.3)</td>
<td>Average 41.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella spp. (N=21)</td>
<td>CTX 6 (28.6)</td>
<td>CRO 6 (28.6)</td>
<td>CN 6 (28.6)</td>
<td>NOR 2 (9.5)</td>
<td>TE 12 (57.1)</td>
<td>C 7 (33.3)</td>
<td>AMP 18 (85.7)</td>
<td>AML 19 (90.5)</td>
<td>SXT 5 (23.8)</td>
<td>Average 42.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E coli (N=19)</td>
<td>CTX 2 (10.5)</td>
<td>CRO 1 (5.3)</td>
<td>CN 1 (5.3)</td>
<td>NOR 1 (5.3)</td>
<td>TE 10 (52.6)</td>
<td>C 4 (21.1)</td>
<td>AMP 15 (78.9)</td>
<td>AML 16 (84.2)</td>
<td>SXT 5 (26.3)</td>
<td>Average 32.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacter spp. (N=9)</td>
<td>CTX 2 (22.2)</td>
<td>CRO 2 (22.2)</td>
<td>CN 1 (11.1)</td>
<td>NOR -</td>
<td>TE 4 (44.4)</td>
<td>C 3 (33.3)</td>
<td>AMP 8 (88.9)</td>
<td>AML 6 (66.7)</td>
<td>SXT 2 (22.2)</td>
<td>Average 34.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrobacter (N=8)</td>
<td>CTX 2 (25)</td>
<td>CRO 2 (25)</td>
<td>CN 2 (25)</td>
<td>NOR -</td>
<td>TE 4 (50)</td>
<td>C 6 (75)</td>
<td>AMP 8 (100)</td>
<td>AML 6 (75)</td>
<td>SXT 1 (12.5)</td>
<td>Average 34.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providencia spp. (N=2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Average 16.7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: APL = Ampicillin, CRO = Ceftriaxone, NOR = Norfloxacin, CTX = Cefotaxim, CN = Gentamycin, C = Chloramphenicol, TE: Tetracycline; SXT: Trimethoprim-sulphamethoxazole, AML: Amoxicillin,
Multi drug resistance of the isolates

Table 7.6; show multi drug resistant of the gram positive bacteria. The overall rate of MDR (resistant to three or more antibiotics) among gram positive isolates was 73.6%. out of the total of 91 S.aureus isolate tested 72(79.2%) were resistant to three or more antibiotics while only 3.3% of the isolate showed no resistance to all the antibiotics tested. 3(30%) of CoNS were resistance to three or more antibiotics.

Table 7.6: Multidrug resistance of gram positive bacteria identified from wound infection at AFRTH from December 2013 to May 2014

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>R_0</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>R_6-12</th>
<th>Total</th>
<th>MDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.aureus</td>
<td>3(3.3)</td>
<td>5(5.5)</td>
<td>11(12.1)</td>
<td>5(5.5)</td>
<td>8(8.8)</td>
<td>16(17.6)</td>
<td>43(47.3)</td>
<td>91</td>
<td>72(79.2)</td>
</tr>
<tr>
<td>CoNS</td>
<td>-</td>
<td>1(10)</td>
<td>6(60)</td>
<td>2(20)</td>
<td>1(10)</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>3(30)</td>
</tr>
<tr>
<td>S.pyogenes</td>
<td>1(100)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4(3.9)</td>
<td>6(5.9)</td>
<td>17(16.7)</td>
<td>7(6.9)</td>
<td>9(8.8)</td>
<td>16(15.7)</td>
<td>43(42.2)</td>
<td>102</td>
<td>75(73.6)</td>
</tr>
</tbody>
</table>

Key CoNS = Coagulase negative staphylococci; R_0 = no resistance to antibiotic, R_1 = resistance to 1 antibiotic, R_2 = resistance to 2 antibiotics R_3 = resistance to 3 antibiotics, R_4 = resistance to 4 antibiotics, R_5 = resistance to 5 antibiotic, R_6-12 = resistance to 6-12 antibiotics

The overall MDR (resistant to three or more antibiotics) rate of gram negative bacteria was 67.6%. Relatively higher rate of MDR was seen among Citrobacter, Proteus Pseudomonas and Klebsiella accounting 87.5%, 75%, 67.9% and 66.6% respectively.
Table 7.7: Multidrug resistance of gram negative bacteria identified from wound infection at AFRTH from December 2013 to May 2014

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>R₀</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>R₆-₉</th>
<th>Total</th>
<th>MDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeroginesa</td>
<td>2(3.8)</td>
<td>1(1.9)</td>
<td>14(26.4)</td>
<td>6(11.3)</td>
<td>8(15.1)</td>
<td>10(18.9)</td>
<td>12(22.6)</td>
<td>53</td>
<td>36(67.9)</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>-</td>
<td>-</td>
<td>6(25)</td>
<td>5(20.8)</td>
<td>4(16.7)</td>
<td>6(25)</td>
<td>3(12.5)</td>
<td>24</td>
<td>18(75)</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>-</td>
<td>1(4.8)</td>
<td>6(28.6)</td>
<td>1(4.8)</td>
<td>5(23.8)</td>
<td>4(19)</td>
<td>4(19)</td>
<td>21</td>
<td>14(66.6)</td>
</tr>
<tr>
<td>E.coli</td>
<td>-</td>
<td>1(5.3)</td>
<td>7(36.8)</td>
<td>7(36.8)</td>
<td>1(5.3)</td>
<td>3(15.8)</td>
<td>-</td>
<td>19</td>
<td>11(57.9)</td>
</tr>
<tr>
<td>Entrobacter Spp.</td>
<td>-</td>
<td>1(11.1)</td>
<td>3(33.3)</td>
<td>-</td>
<td>4(44.4)</td>
<td>1(11.1)</td>
<td>-</td>
<td>9</td>
<td>5(55.5)</td>
</tr>
<tr>
<td>Citrobacter</td>
<td>-</td>
<td>-</td>
<td>1(12.5)</td>
<td>2(25)</td>
<td>4(50)</td>
<td>-</td>
<td>1(12.5)</td>
<td>8</td>
<td>7(87.5)</td>
</tr>
<tr>
<td>Providencia spp.</td>
<td>-</td>
<td>-</td>
<td>1(50)</td>
<td>1(50)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1(50)</td>
</tr>
<tr>
<td>Total</td>
<td>2(1.5)</td>
<td>4(2.9)</td>
<td>38(27.9)</td>
<td>22(16.2)</td>
<td>26(19.1)</td>
<td>24(17.6)</td>
<td>20(14.7)</td>
<td>136</td>
<td>92(67.6)</td>
</tr>
</tbody>
</table>

Key: R₀ = no resistance to antibiotic, R₁ = resistance to 1 antibiotics, R₂ = resistance to 2 antibiotics, R₃ = resistance to 3 antibiotics, R₄ = resistance to 4 antibiotics, R₅ = resistance to 5 antibiotics, R₆-₉ = resistance to 6-9 antibiotics.
8. Discussion

A prevalence of 68.3% wound infections was observed in this study. This was higher than that previously reported in Gondar with a prevalence of 52% \(^{33}\), Nigeria 64.8% \(^{9}\) and Indian 47%. \(^{39}\) However, the prevalence observed in this study is lower than that previously observed in Jimma (96.3%)\(^{12}\), Dessie (70.5%) \(^{26}\), Nigeria (90%)\(^{40}\) and Italy (90.8%)\(^{28}\) Different factors related to wound bed preparation; sample collection, sample transportation and culturing technique might have an effect in the reduction of the bacterial isolation rate.

Staphylococcus aureus and *Pseudomonas aeroginaea* were the first and second most prevalent bacterial agents isolated in this study. This observation was in agreement with several previous studies conducted at different places.\(^{26,9,31}\) However, Girma et al reported Proteus species as the most prevalent agent for wound infections. Variation in the distribution of microbial agents even between different geographical locations and regions within the same country may be responsible for this diversity. \(^{9}\) The possible reason for the high frequency of *Staphylococcus aureus* and *Pseudomonas aeroginaea* is that these bacteria commonly found in the hospital environment\(^{12}\) which might increase wound infection rate and cross contamination among admitted patients. In addition these bacteria are normal flora in healthy person (especially *S. aureus* on skin) when they get breaks on skins and soft tissue they can easily disseminate as it was explained by Khana et al.\(^{41}\)

The prevalence of mixed infections (16.1%) observed in this study was lower than the 18.5%,\(^{26}\) 22.9%\(^{12}\) and 33.2%\(^{9}\) reported in previous studies. Difference in identification methods are known to influence the relative prevalence of bacteria which makes comparison of results difficult.

S. aureus showed an average resistance rate of 39.5% to most of the antimicrobial drugs tested which is lower than the previous studies done locally by Mulu et al \(^{42}\) and Girma et al\(^{12}\) where average resistance of 52%, and 54.1% were obtained for the commonly used antibiotics. About 60% of *S. aureus* was oxacillin/methicillin resistant (MRSA), which is lower than (76.7%) resistant reported by Grima et al\(^{12}\) and 77.3% resistant by Tigist et al.\(^{31}\) And yet 60% was higher than the finding of Amare et al., in Ethiopia\(^{27}\), JR Anguzu in Uganda\(^{30}\) and A.
Giacometti in Italy where 34.6%, 25% and 54.4% MRSA were reported respectively. In addition S. aureus showed least resistance to gentamicin (14.3%), cefotaxim (9.9%), ceftriaxone, (7.7%) and norfloxacin (7.7%). Comparable finding where obtained from other study. Similarly majority of CoNS isolate were sensitive for norfloxacin, gentamicin, erythromycin, clindamycin, which is in line with the previous studies reported from the same country.

Pseudomonas aeroginesa showed an average resistance rate of 43.4% This finding agrees with previous studies done elsewhere in Ethiopia, which report average resistance rate (39.9%) In this study pseudomonas showed high resistant to ampicillin (84.9)% and amoxicillin (83%) where as other studies report 100% resistant for both drugs. Lower rate of resistance to ceftriaxone, (13.2%) gentamicin (11.3%) and Norfloxacin (5.7%) were documented in this study. This result is consistent with the data obtained by yishak et al. and Girma et al. But 100% resistance for ceftriaxone where reported by other study which is much higher than the current study.

In this study, Proteus spp. conferred high resistant to ampicilin(95.8%) amoxicillin(87.5%) and teracyclin (65.5%), with average resistance rate of 41.2% for all tested drug which agrees with similar level of resistance reported in other studies. Proteus spp show low label of resistance to cefotaxim (4.3%) ceftriaxone (4.2%) and norfloxacin (8.5%). Comparable finding were reported by Girma et al.

The present study documented that *Klebisela spp.* show lower rate of resistant to norfloxacin (9.5%) which is higher than 0% resistant reported by Yishak et al. where as both studies report similar resistance rate of *Klebisela spps* for trimethoprim-sulphamethoxazole. The average resistance rate for *Klebisela spps* in this study was 42.8% which agree with average resistance of 47.3% reported by other study.

The average resistance rate of *E. coli* in this study was 32.2%. Comparable result was reported by other study. The resistance of *E coli* for cefotaxim and ceftriaxone was 10.5% and 5.3% respectively which was much lower than 66.7% of resistance for both drugs and 55.6% of
resistance for ceftriaxone reported by previous studies. Ceftriaxone, gentamycin and norfloxacin found to be more effective drugs for Ecoli with only 5.3% resistance for each of them. Comparable finding were reported by Yisak et al. with 11.8% resistance for ceftriaxone and gentamycin and 5.9% resistance for norfloxacin.

Enterobacter spps. showed low resistance to most of antimicrobial tested with 0% resistance to norfloxacin which is the exact agreement with the resistance level recorded in a study performed by Yisak. the average resistance of Enterobacter spp in this study was 34.6% and high resistance was recorded for ampiciline (88.9%) and amoxicillin (66.7%) but which is lower than 100% resistance to amoxicillin reported by other studies.

In this study Citrobacter maximum resistance was conferred to ampicilin(100%), chloraphinichol(75%) and amoxicillin(75%) which is comparable to the result reported Girma et al. in contrast other study report 66.7% resistance for ampicilin and 16.7% resistance for both chloraphinichol and amoxicillin.

Most of Gram negative bacterial isolates showed low level of resistance to all antibiotics tested except for ampicillin and amoxicillin. This might be due to these antibiotics are the most commonly used antibiotics and resistant pattern were reported from many studies.

In this study, the overall MDR (resistance to three or more drugs) rate of gram positive isolates was 73.8% which agree with 77% MDR reported by Girma et al. But which is higher than 52.7% MDR rate reported by Yisak et al. and lower than 100% MDR reported by Mulu et al. 79.2% S.aureus and 30% of CoNS were resistant to three or more antibiotics. In similar study 86.2% and 28.6% MDR rate were documented for these two groups of bacteria respectively.

MDR (resistance to three or more drugs) rate of gram negative bacteria in this study was 68.5%. This finding was slightly higher than 59.3% and 51.4% of MDR rate reported by Girma et al. and Yisak et al. but which is much lower than 95.5% resistance reported by Mulu et al. higher rate of MDR was seen among Citrobacter, Proteus, Pseudomonas and Klebsiella accounting.
87.5%, 75%, 67.9%, and 66.6% respectively which agree with previous study conducted in Jimma.12 where 100% MDR for Citrobacter, 74.8% MDR for \textit{Proteus}, and 69.6% MDR for \textit{Klebsiella spp.} were reported.
9. Limitation of the study

- It was not possible to include anaerobic bacteria due to poor laboratory facilities constraints.
10. Conclusion and recommendation

Conclusion

The prevalence of wound infection in this study was 68.3%. Out of 205 positive samples 33 (16.1%) had double infection and total 238 bacteria were isolated from 205 cases. 42.9% were Gram positive while the rest 57.1% were Gram negative. *Staphylococcus aureus* was the most frequently isolated Gram positive bacteria where as *Pseudomonas aeroginesa* was the most frequently isolated Gram negative bacteria. All double infections in our study involved Gram positive and Gram negative bacteria with *S. aureus* and *Pseudomonas* show the most common association in 45.5% cases.

Gentamicin ,norfloxacin and ceftraxone were the most effective drugs against the tested gram-positive and - negative bacteria, where as penicillin G and ampicillin were the least effective antibiotics against gram positive bacteria isolates similarly amoxicillin and ampicillin were the least effective antibiotics against gram negative bacteria isolates.

The overall MDR (resistant to three or more antibiotics) rate of gram positive and gram negative bacteria isolates were 73.6% and 67.6% respectively.79.2% of *S.aureus* were resistant to three or more antibiotics. Among gram negative bacteria relatively higher rate of MDR was seen in Citrobacter, *Proteus, Pseudomonas* and *Klebsiella species*.

Knowledge of the microbial flora of wound and the resistance pattern are important tools in the management of wound and are also useful in formulating rational antibiotic policy.
Recommendation

- In future, the prevalence and drug susceptibility pattern of wound infections should be done by including anaerobic bacteria, fungus and other micro-organism those can be important causes of infections.

- Empirical treatment to wound infections may provoke drug resistance; therefore treatment should be based on the result of culture and sensitivity.

- In the absence of laboratory test, It is recommended that norfloxacin gentamicin and ceftraxone can be used in preference to other commonly used antibiotics in the area.

- There is need for hospital to encourage periodic review of the microbial flora wound and the antibiotic sensitivity pattern.
11. Reference

Annex 1: Procedure for specimen collection and processing

I. Laboratory procedure for collection, transportation and culturing of wound swab

1. Cleansing the wound with normal saline prior to obtaining swab specimens
2. Rotate sterile cotton-tipped applicator 1 cm square area for 5 seconds with sufficient pressure to express fluid and bacteria to surface
3. Placing the swabs in sterile test tubes having 0.5 ml of sterile normal saline solution
4. Label the sample as soon as possible with the patient code number
5. Transport the specimen to the laboratory at room temperature within 30 minutes of collection
6. Inoculate into BAP and MacConkey agar aseptically
7. Incubate the inoculated blood agar plate at 35–37°C in a carbon dioxide atmosphere (candle jar) and the MacConkey agar plate aerobically.
8. Examine and report the culture; if the culture have growth, look for colony characteristics perform gram reaction and biochemical test and determine drug susceptibility pattern to the isolated organism

II. Laboratory procedure for Gram staining technique

1. Labeling the slides clearly with patient code number.
2. Making of smears by spread evenly covering an area about 15-20mm diameter on a slide.
3. Drying of smears after making smears, the slide should be left in a safe place to air-dry, protected from flies and dust.
4. Fix the dried smear by using heat or chemicals (methanol).
5. Cover the fixed smear with crystal violet stain for 30-60 seconds.
6. Rapidly wash off the stain with clean water. If the tap water is not clean, use filtered water or clean boiled rainwater.
7. Tip off all the water, and cover the smear with lugol’s iodine for 30-60 seconds.
8. Wash off the iodine with clean water.
9. Decolorize rapidly (few seconds) with acetone alcohol. Wash immediately with clean water.
10. Cover the smear with neutral red or safranine stain for 2 minutes.
11. Wash off the stain with clean water.
12. Wipe the back of the slide clean, and place in a draining rack for the smear to air-dry.
13. Examine the smear microscopically, first with the 40 X objective to check the staining and to see the distribution of materials and then with the oil-immersion objective to look for bacteria and cells.

Result
- Gram positive bacteria ------------------- dark purple
- Gram-negative bacteria ------------------- pale to dark red

III. Laboratory procedure for Biochemical testing

Biochemical tests for gram positive bacteria: Gram-positive cocci was identified based on their gram reaction, catalase and coagulase tests results.

Catalase test
Catalase test to differentiate staphylococci which produce the enzyme catalase from streptococci which are non catalase producing.

Principle
Catalase acts as a catalyst in the breakdown of hydrogen peroxide to oxygen and water. An organism is tested for catalase production by bringing it into contact with hydrogen peroxide. Bubbles of oxygen are released if the organism is a catalase producer.

Procedure
1. pour 2-3 ml of 3% hydrogen peroxide to a test tube
2. using a sterile wooden stick take the test organism and immerse into the hydrogen peroxide solution
3. look for immediate bubbling
4. interpretation:
 Active bubbling Positive catalase test
 No bubbles Negative catalase test

Controls
Positive coagulase control: Staphylococcus aureus
Negative coagulase control: Escherichia coli

Coagulase test
This test is used to identify S. aureus which produces the enzyme coagulase

Principle
Coagulase causes plasma to clot by converting fibrinogen to fibrin.

Procedure

1. place a drop of physiological saline on two separate slides
2. emulsify the test organism in each of the drop to make thick suspension
3. Add one drop of plasma to one of the suspensions and mix gently. Look for clumping of the organism within 10 seconds
4. Clumping within 10 secs *S. aureus*

No clumping within 10 secs No bound coagulase

Controls

Positive coagulase control: *Staphylococcus aureus*

Negative coagulase control: *Escherichia coli*

If slide test is negative proceed to Tube test method

Tube test method (detects free coagulase)

Procedure

1. Take three small test tubes and label:
 - **T** _Test organism (18–24 h broth culture)*
 - **Pos** _Positive control (18–24 h *S. aureus* broth culture)*
 - **Neg** _Negative control (sterile broth)*
2. Pipette 0.2 ml of plasma into each tube.
3. Add 0.8 ml of the test broth culture to tube T.
 - Add 0.8 ml of the *S. aureus* culture to the tube labeled ‘Pos’.
 - Add 0.8 ml of sterile broth to the tube labeled Neg’.
4. After mixing gently, incubate the three tubes at 35–37 °C. Examine for clotting after 1 hour

If no clotting has occurred, examine after 3 hours. If the test is still negative, leave the tube at room temperature overnight and examine again

Results

Clotting of tube contents or *S. aureus*

fibrin clot in tube

No clotting or fibrin clot Negative test
Biochemical test for gram negative bacteria: Identification of gram negative bacteria was based on their test result with a series of biochemical tests.

Procedure

1. Prepare a suspension of the test organism with nutrient broth. 3-4 colony of test organism in 5 ml nutrient broth.
2. A loop full of the bacterial suspension is inoculated into indole, citrate agar, KIA, lysine decarboxylase agar, manitol, urea agar and motility medium.
3. Incubate at 35-37°C for 18-24 hours
4. Look for color change (turbidity for motility) of the medium
5. Identify the test organism by considering the result of the biochemical tests

IV. Laboratory procedure for Antimicrobial sensitivity testing

Procedure

1. Using a sterile wire loop, touch 3–5 well-isolated colonies of similar appearance to the test organism and emulsify in 3–4 ml of nutrient broth
2. Match the turbidity of the suspension against the turbidity standard
3. With a sterile swab take sample from the suspension (squeeze the swab against the side of the test tube to remove the excess fluid).
4. Spread the inoculum evenly over the Muller-Hinton agar plate with the swab
5. Using a sterile forceps or needle, place the antimicrobial disc on the inoculated plate
6. Within 30 minutes of applying the discs, invert incubate the plate aerobically at 35-37°C for 18-24 hours
7. Read the tests after checking that the bacterial growth of the test and control organism is neither too heavy nor too light
8. Using a ruler on the underside of the plate measure the diameter of each zone of inhibition in mm. The endpoint of inhibition is where growth starts.
9. Using the Interpretative Chart, interpret the zones sizes of each antimicrobial, reporting the organism as ‘Resistant’, ‘Intermediate’ and ‘Susceptible’
Annex 2: English version of participant information sheet and consent

I. Participant information sheet
Department of Medical Laboratory Science, Collage of Allied Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia

Title of the Research Project: Bacterial profile and drug resistance pattern of pathogen isolated from wound infection at ARTH, Addis Ababa, Ethiopia

First of all we would like to thank you in advance for your cooperation and consent in participation in this study. Please read or listen when it is read for you about the general information of the study. If you have any question regarding the study please ask freely.

Background information
Background: Wound infection causes great distress in terms of associated mortality and morbidity, increased length of hospital stay, profound discomfort and significant increased in healthcare cost. Therefore the knowledge of the causative agents of wound infection will be helpful in the control of wound infection and selection of empiric antimicrobial therapy as an infection control measure.

Aim of the study
The purpose of this study is to determine bacterial profile and drug resistance pattern of pathogen isolated from wound at ARTH, Addis Ababa, Ethiopia

Benefits for participants
Study participants will not have any financial incentives or other inducement from participating on this study. However, based on the diagnosis result you will be treated accordingly. Most importantly, the result of the study will be beneficial to design effective prevention and control measure for wound infection. Hence, you are indirectly benefiting other patients and the society in this respect.

Risks and complication
There are no anticipated risks to your participation. From your wound site swab will be taken once. During collection of pus you may feel some discomfort but this does not produce serious pain.
Confidentiality

There is no sensitive issue that you will be asked related with your social desirability but any information that is obtained in connection with this study and that can be identified with you will remain confidential. Participants will not be prohibited to stop or withdraw at any time from the study. Interested participants can retrieve their own lab result using their code number. The information collected about you will be coded using numbers. No personal information was disclosed to third party or will not appear in any report from this study.

Assurance of Principal Investigator

I put my signature below to confirm you that I take over the responsibility for the scientific ethical and technical conduct of the research project and for provision of progress reports for all stakeholders of the research project.

Sosina Ayalew (PI)
Signature: __________________ Date: __________________

Note: If you have any questions about this study, you should feel free to ask now or anytime throughout the study by contacting:

PI Address: Sosina Ayalew : Department of Medical Laboratory Sciences, Collage of Allied Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
E-mail: absosina2011@gmail.com Tel.- 0912166324
II. Informed consent

I have been informed about the objective of the study entitled “Bacterial profile, antimicrobial susceptibility pattern and associated risk factor of wound infection at ARTH Addis Ababa, Ethiopia.” I am also informed that all information contained within the questionnaire is to be kept confidential. Moreover, I have been well informed of my right to refuse information, decline to cooperate and drop out of the study if I want and none of my actions will have any bearing at all on my overall health care.

Therefore, with full understanding of the situations I agree to give the entire necessary information and wound swab for laboratory analysis. I have had the opportunity to ask questions about the project and received clarification to my satisfaction in a language I understand. I was also told that results for the wound analysis was given to the health facility and that I may ask the information if I want.

I ___________________________________ hereby give my consent for giving of the requested information and specimen for this study.

Participant code:___________________ Signature: _________________

Date: _________________________
Annex 3: Amharic Version of the participant information sheet and Consent

I. የተሳታፊዎች ይግባኝ
አዲስ አበባ የአнятርሁ የእንደርካ ከፈለጋቸው መረጃ በአዲስ አበባ የሆነ የስለትና የውስጥ ይግባኝ
አርስት፡-
በቁስል የሚገኙ የባክቴሪያ አይነቶች፣ የፀረ ዯብወ የመድሃኒት የመቋቋም ከህብረተሰቡን የሚልሆነ የገንዘብ ከአንድም የሚልሆነ የገንዘብ ከበለጉ የሆነ የስለትና የውስጥ ይግባኝ
ስለጥናት መረጃ፡-
የቁስል ከመም የሆነ የስለትና የመድሃኒት የመቋቋም ከአቅማቸውን የልኝ የሚጨምር የአያባባሽ የነገሮችን ያልችላል፡፡ ያለምሳሌ የህክምና የእኝን ይጨምራል፣ የሆስፒታል የ_CSR_
የመታከም ከጊዜን የራዝማል ከቦሎም የሚችሉ ይስለተና የቁስልን ከመም ከአልል ከማወቅ ከማጥናት የነው፡፡ የጥናቱ የተሳታፊዎች የላይ ዯለው የጉዳትና የተዛማጅ ይግባር ይበሸህ የሆነ የሚችል ይጉዳት ከአይኖርም ይለስ የሆነ የጥናት የሚያገለግል ይናሙና ከቁስሎ የላይ የሚወሰድ የሆስፒታል ከመጠነኛ የስሜት ከሰተቀር ከጤናዎ የላይ ይስለሚጠቅም ያለተዘዋዋሪ መንገድ ከሌላ ከህመምተኛ ከንዲሁም ከብረት የመጥቀም ከእድል የገኛሉ፡፡ የጥናቱ የተሳታፊዎች የላይ ዯለው የጉዳትና የተዛማጅ ይግባር ይበሸህ የሆነ የሚችል ይጉዳት ከአይኖርም ይለስ የሆነ የጥናት የሚያገለግል ይናሙና ከቁስሎ የላይ የሚወሰድ የሆስፒታል ከመጠነኛ የስሜት ከሰተቀር ከጤናዎ የላይ ይስለሚጠቅም ያለተዘዋዋሪ መንገድ ከሌላ ከህመምተኛ ከንዲሁም ከብረት የመጥቀም ከእድል የገኛлуːː
የጥናቱን የሚካሄደው ወው በማረጋገጥ ያለዉ የሚመለከቱ ባን(120,133),(909,865) እንደ በቀጥለውን ወይም የሚቀጥለውን አድራሻዬን መጠቀም ያችላሉ፡፡

ኢሜል absasina20011@gmail.com ከልወ 0912 16 63 24

II. የፈቃደኝነት ያለበት

ለአካባቢ የቀረቡት እርዳታ ላይ ያልተካከለ የመስክር እንወቅ ያስገኝ የባክተሪያ አይነቶችና የፀረ ኢንወቅ ያስደርስ የመቋቋም እቅማቸው እንዲሁም የቁስል ከመም ያያባብሱ ወይም በሚል ይርእስ ከአይ የሚችል የሚለት የማለት በተመለከተ የሚደረገው ወጥናት ይ.Persistent ያለመሳት የመሆኑ፤ የጥናቱ አላማና የቅም የተገልፆልኛል፡፡ ይህ የሚመጣውን ይህ ይህ የቁስል የሚጠቀበት አካላት መግለጫ ያሚስጠት የቡርማዬ የአረጋግጣለሁ፡፡

የወክስ ይህ የሚለው በመካሄድ የሚገኝ የባክተሪያ አይነቶች ይህ የፀረ ኢንወቅ ያስደርስ የመቋቋም እቅማቸው እንዲሁም የቁስል ከመም ያያባብሱ ወይም በሚል ይርእስ ከአይ የሚችል የሚለት የማለት በተመለከተ የሚደረገው ወጥናት ይ.Persistent ያለመሳት የመሆኑ፤ የጥናቱ አላማና የቅም የተገልፆልኛል፡፡ ይህ የሚመጣውን ይህ ይህ የቁስል የሚጠቀበት አካላት መግለጫ ያሚስጠት የቡርማዬ የአረጋግጣለሁ፡፡

የወክስ ይህ የሚለው በመካሄድ የሚገኝ የባክተሪያ አይነቶች ይህ የፀረ ኢንወቅ ያስደርስ የመቋቋም እቅማቸው እንዲሁም የቁስል ከመም ያያባብሱ ወይም በሚል ይርእስ ከአይ የሚችል የሚለት የማለት በተመለከተ የሚደረገው ወጥናት ይ.Persistent ያለመሳት የመሆኑ፤ የጥናቱ አላማና የቅም የተገልፆልኛል፡፡ ይህ የሚመጣውን ይህ ይህ የቁስል የሚጠቀበት አካላት መግለጫ ያሚስጠት የቡርማዬ የአረጋግጣለሁ፡፡

የወክስ ይህ የሚለው በመካሄድ የሚገኝ የባክተሪያ አይነቶች ይህ የፀረ ኢንወቅ ያስደርስ የመቋቋም እቅማቸው እንዲሁም የቁስል ከመም ያያባብሱ ወይም በሚል ይርእስ ከአይ የሚችል የሚለት የማለት በተመለከተ የሚደረገው ወጥናት ይ.Persistent ያለመሳት የመሆኑ፤ የጥናቱ አላማና የቅም የተገልፆልኛል፡፡ ይህ የሚመጣውን ይህ ይህ የቁስል የሚጠቀበት አካላት መግለጫ ያሚስጠት የቡርማዬ የአረጋግጣለሁ፡፡

የወክስ ይህ የሚለው በመካሄድ የሚገኝ የባክተሪያ አይነቶች ይህ የፀረ ኢንወቅ ያስደርስ የመቋቋም እቅማቸው እንዲሁም የቁስል ከመም ያያባብሱ ወይም በሚል ይርእስ ከአይ የሚችል የሚለት የማለት በተመለከተ የሚደረገው ወጥናት ይ.Persistent ያለመሳት የመሆኑ፤ የጥናቱ አላማና የቅም የተገልፆልኛል፡፡ ይህ የሚመጣውን ይህ ይህ የቁስል የሚጠቀበት አካላት መግለጫ ያሚስጠት የቡርማዬ የአረጋገጫ ይልሱ::
Annex 4: Laboratory data collection form

I. Patient identification
Ward -----------
Age (years) ______
Gender Male .. Female…….

II. Laboratory Data
1. Date of specimen collection__________________
3. Media used _____________________________
4. Gram stains result _______________________
5. Biochemical test _________________________
6. Organism isolated _________________________
7. Drug susceptibility pattern
 7.1 Sensitive to ___________________________
 7.2 Intermediate to _______________________
 7.3 Resistance to _________________________

III. Comments___

Name of principal investigator __
Signature ______________ Date __________
Annex 5: Declaration

I, the undersigned, declare that this is my original work and has not been presented for a degree in this or any other university and all sources of materials used for this thesis have been acknowledged.

Name: Sosina Ayalew

Signature __________________

Place ______________________

Date of submission __________

This thesis has been submitted with my approval as University advisor:

Name Gebru Mulugeta (MSc)

Signature __________________

Place ______________________

Date of submission __________