INTEGRATING CLOSED DOMAIN AMHARIC INTO MULTI-LINGUAL TRANSLATION GRAMMATICAL FRAMEWORK

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTERS OF SCIENCE IN INFORMATION SCIENCE

BY

NEBYOU WOUBSHET WOREDE

JUNE, 2014

ADDIS ABABA
ACKNOWLEDGEMENT

First and foremost, I would like to thank my Lord the almighty God and his Mother St Mary for leading me the way from the beginning to the end. My huge thanks goes out to my adviser Dr. Solomon Teferra for his invaluable support that makes it this all possible. His gentle way of teaching in the class room was the source of my inspiration to work my thesis on NLP.

I also would like to thank my best friend Leggesse Nega for providing me the books that helped me to expand my knowledge on NLP.
ABSTRACT

One alternative approach to multi-lingual translation systems is Grammar-based approach in Grammatical Framework (GF). GF is a grammar formalism which is based on constructive type theory (2). GF mainly targets quality rather than coverage, when applied to build closed domain languages multi-lingual translation applications, it works well and with better quality. The absence of Amharic language from the 72 languages in Google-Translate™, the world number one widely used translation system is one indicator to reveal a broad research has to be made on Amharic NLP. In this study, we have made simple and a bit complex closed domain Amharic multi-lingual translation experiment using a rule based approach in GF. The methodology applied in the experiment involves designing English and Amharic foods grammars, generating active voice sentences as a data source and evaluating the translation accuracy based on sample data from the data source. Our experiment on food domain had passed two levels of experimentation involving simple and a bit complex design, the first covered only sentences of simple active voice singular present tense forms, while in the second level we have introduced paradigms and case handling functions onto the food grammar that expanded the foods grammar translation system capacity to grow by threefold. The advanced experiment involved designing an Amharic and English closed domain foods grammar that generates a set of 32,460 unique plural and singular active voice sentences for each language. Performing a manual translation accuracy test on a randomly chosen 3,000 records accounting 10% of the entire data source, our system achieved a 81% accuracy. The result of our experiment demonstrated the possibility of developing an effective small scale closed domain Amharic multi-lingual translation. However, our research have also discovered developing a robust Amharic multi-lingual translation application in GF requires the full Amharic resource grammar library and its API, thus we recommended further research to be made on improving and completing the partially implemented Amharic resource grammar(1) that currently exists in GF.
ACRONYMS

<table>
<thead>
<tr>
<th>AL</th>
<th>Applied Linguistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application Program Interface</td>
</tr>
<tr>
<td>BNF</td>
<td>Backus-Naur Format</td>
</tr>
<tr>
<td>CL</td>
<td>Computational Linguistics</td>
</tr>
<tr>
<td>GF</td>
<td>Grammatical Framework</td>
</tr>
<tr>
<td>GNU</td>
<td>General Public License</td>
</tr>
<tr>
<td>KeY</td>
<td>The KeY Project</td>
</tr>
<tr>
<td>LGNU</td>
<td>Lesser General Public License</td>
</tr>
<tr>
<td>MOLTO</td>
<td>Multi Lingual Translation Open Source Project</td>
</tr>
<tr>
<td>NLP</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>SLM</td>
<td>Statistical Language Model</td>
</tr>
<tr>
<td>SOV</td>
<td>Subject-Object-Verb</td>
</tr>
<tr>
<td>TALK</td>
<td>Multilingual and Multimodal Spoken Dialogue Systems</td>
</tr>
<tr>
<td>WebALT</td>
<td>Web Advanced Learning Technologies (www.webalt.net)</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

ACKNOWLEDGMENT ... II

ABSTRACT .. III

ACRONYM ... IV

TABLE OF CONTENTS ... V

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

1 CHAPTER ONE ... 1

Introduction ... 1

1.1 Background ... 1

1.2 Statement of the Problem ... 3

1.3 Research Questions: ... 4

1.4 Objective of the Study .. 5

1.4.1 General Objective ... 5

1.4.2 Specific Objectives ... 5

1.5 Methodology of the Study .. 5

1.5.1 Literature Review ... 5

1.5.2 Experimentation .. 5

1.5.3 Evaluation and Analysis ... 6

1.5.4 Tools Used .. 6

1.6 Scope and Limitation of the Study ... 6

1.7 Significance of the Study .. 7

1.8 Organization of the Research Report ... 7

2 CHAPTER TWO ... 8

Grammatical Framework .. 8

2.1 Grammatical Framework .. 8

2.2 Abstract and Concrete Syntax ... 12
2.3 Application Grammar and Resource Grammar .. 12
2.4 Resource Grammar Library ... 13
3 CHAPTER THREE ... 14
 Related Works ... 14
 3.1 Amharic Grammar ... 14
 3.2 Amharic Orthography .. 18
 3.3 Amharic Verbal Morphology ... 19
 3.4 Amharic Morphology of Nouns .. 21
 3.5 Morphology of the Adjectives ... 22
 3.6 The Amharic Grammar Usability Test ... 23
 3.7 Amharic Sentence Translation Test ... 23
 3.8 Testing the Amharic Morphology ... 25
 3.8.1 Verbal Morphology .. 26
 3.8.2 Amharic Noun .. 27
 3.8.3 Amharic Adjectives .. 28
 3.9 Setbacks of the Amharic Resource Grammar .. 28
4 CHAPTER FOUR .. 30
 GF Inspired Translation Projects .. 30
 4.1 Molto Project ... 30
 4.2 Building Amharic Phrasebook in Molto Project .. 32
5 CHAPTER FIVE ... 33
 Experimentation ... 33
 5.1 Domain Specific Grammar Selection ... 33
 5.2 The GF System Preparation .. 33
 5.3 Food Grammar ... 34
 5.4 Abstract and Concrete Food Grammar for Amharic and English 35
 5.5 Translating Experiment on Food Grammar in GF 40
 5.6 Foods Grammar ... 45
 5.7 Analysis of the Multi-lingual Food and Foods Grammar Experiment 49
 5.7.1 Food Grammar Data Preparation .. 49
 5.7.2 Food Grammar Experiment Analysis ... 50
 5.7.3 Foods Grammar Data Preparation .. 50

VI
5.7.4 Foods Grammar Experiment

6 CHAPTER SIX

Conclusion and Recommendation

6.1 Conclusion

6.2 Recommendation

REFERENCES

APPENDICES

DECLARATION
LIST OF TABLES

Table 5.1: Grammaticaly incorrect sentences generated by GF for food grammar accounting 10% of the total set of sentences ... Page 43

Table 5.2: Meaningful sentences and their translations generated by GF for food grammars ... Page 43

Table 5.3: The first 20 sentences generated by GF for food grammar Page 45

Table 5.4: Food and Foods grammar data analysis... Page 45
LIST OF FIGURES

Fig 2.1 : The difference between Abstract and Concrete syntaxPage 12
Fig 3.1 : A tree structure representing “The boy loves this beautiful girl“Page 17
Fig 4.1 : Molto Phrasebook “nice to meet you” greeting translated into 25 languages. ...Page 31
Fig 4.2 : JavaScript-Based numeral translator running on iPhonePage 32
Fig 5.1 : A GF system command line interface ..Page 34
Fig 5.2 : English GF-readable BNF food grammar ..Page 35
Fig 5.3 : Food Abstract syntax ...Page 37
Fig 5.4 : English concrete syntax, FoodEng.gf ..Page 38
Fig 5.6 : Amharic concrete syntax FoodAmh.gf ..Page 39
Fig 5.7: Amharic concrete syntax, FoodAmh.gf with transliterationPage 39
Fig 5.8 : Foods abstract syntax (Foods.gf) upgraded from Food abstract syntax..... Page 46
Fig 5.9: English and Amharic foods concrete syntax ..Page 48
CHAPTER ONE

Introduction

1.1 Background

Language is one of the human capacity, a vital component for acquiring and using complex systems of communication. For a population of 6,800,596,862 an estimated 7,106 living languages exits in the world (1). As humans progress in knowledge through time, the accumulated knowledge of humans mostly recorded using these natural languages. To access, understand and make use of these bulk of accumulated knowledge is a challenge of the present time. In dealing with these challenges only the idea of giving computers the ability to understand and process natural language can come to the intervention.

The main fields of discipline directly involved in language engineering are NLP and Computational Linguistics (CL) where Applied Linguistic (AL) also plays a significant role (2). Natural Language Processing (NLP) is a major filed of computer science, artificial intelligence, and linguistics. NLP linguistics deals with generating and interpreting natural language. Even though computer technologies are still around the corner to produce a system that can deliver accurate, instantaneous translation, or responses. A human-like language processing capability has not yet been achieved. However, the full realization of NLP potential are projected to deliver smart applications that would be able to understand and process natural language to translate languages accurately in real time(3). In NLP there are two types of machine translation approaches a rule based and statistical (4). Both having their own advantages and disadvantages

Language engineering can be defined both in terms of processing languages and in producing languages (5). linguists and computer scientists involved in NLP brought an idea of language engineering that render a computation based representation of human languages formalization of linguistic knowledge into some form of grammatical rules (grammar formalism) (6). Grammatical Framework (GF) is one such grammar formalism which is based on constructive
type theory to express the semantics of natural languages for multilingual grammar applications (7). This framework (GF) has a language library known as the “GF Resource Grammar Library” which is constituted of resource grammars implemented using the GF programming language (8) for various languages. A complete set of morphological paradigms and syntax fragments composed of a common representation, called abstract syntax and concrete syntaxes packed together in the resource grammar (8).

The GF resource grammar project provides resource grammars for thirty five languages. The Amharic version being the eighth has been included in the Grammatical Framework website 1’ implemented by Markos Kassa in 2010. However, the Amharic resource grammar developed by Markos Kassa requires further development to make it a complete Amharic resource grammar. The Amharic resource grammar lacks modules such as Dict module with large-scale morphological lexicon and Irreg module with irregular verbs (6). To make use of the resource grammar in real applications it needs an application program interface (API).

The application grammarians make use of the resource grammars through application programming interfaces (API’s) included as abstract syntaxes in the GF library. Therefore, the overall aim of such a library based design is to make it possible for linguistically untrained application programmers to write linguistically correct application grammars encoding the semantics of special domain (8).

Using GF resource grammar numerous applications are available which includes the verification tool KeY(9), the dialogue system research project TALK and the educational project WebALT(10) are major ones. The GF inspired EU project, MOLTO is another ambitious initiative that develops a set of tools for translating texts between multiple languages in real time with high quality. Moreover, the availability of such a library as open-source software under the GNU LGPL helps the aspirations being made to bring less recognized and under resourced languages, such as Amharic, to the world of computation (6).

Amharic (አማርኛ amarəñña) a Semitic language is an official language of Ethiopia, spoken by the vast majority of the ethnic population as a second language 2’, while it
has been a mother tongue for the አማራ (አማራ) ethnic group constituting one fourth (1/4) of the entire population. It is also the second Semitic language spoken in the world, next to Arabic.

Amharic script is driven from the early script of South Arabia. The script has no capital letters. The changes in the order of the Geez letters from “አበገ...” to “ሀለሐመ...” and the practice of writing from left to right (unlike Arabic and Hebrew and other Semitic scripts) where believed to be introduced by the clergies that came to Ethiopia accompanying the first Patriarch of Ethiopia from Egypt in the 4th century.

Amharic letters consists 33 basic characters, shown in the alphabet on the right in which the vowel “a” is implied. Each of this letters has seven forms indicating different vowels thus ኪ ኦ ኧ ከ ኩ ኪ ኲ ኳ ኴ ኵ ኶ ኷ ኸ ኹ. In addition, there are 45 characters representing certain consonants followed by the sound “w”, thus ካModifiers

At present, despite the ongoing efforts made by the private software industry, the progress on implementing Amharic language specific features such as spell checker, grammar and translation in the form of software and web-services are almost not available. As of writing this paper we observed the free online translator Google-Translate™ included 72 languages, which Amharic is not in the list. Thus, we can conclude that much research work is still awaiting to be done for Amharic Language in the area of computational resources and their usage for parsing and generation in applications. Hence, learning this gap, the purpose of this research is to study the possibility of developing multi-lingual Amharic translation applications using the rule based approach in Grammatical Framework for specific language domains such as greetings, foods, sports and an Amharic phrasebooks.

1.2 Statement of the Problem

Since Language Engineering attracted linguistics and computer specialists involved in NLP, there has been a considerable achievement in producing a computation based representation of human language through formalization of linguistic knowledge into some form of grammatical rule called grammar formalism. Grammatical Framework (GF) is one such open source grammar formalism which is based on constructive type theory to express the semantics of
natural languages for multilingual grammar applications (7). Compared to the statistical machine translation approach that requires large size quality corpora to a successful development of machine translation systems, GF provides application grammarians the ability to write linguistically correct application grammars by encoding the semantics of special domain. So far for over thirty languages the Resource Grammar implementation has been done and included in the GF resource grammar library. Amharic being the eighth in the list is also partially implemented by (6). However, while for most of the languages that have a complete resource grammar library (RGL) and API, different multi-lingual translation applications has been developed for different platforms, such projects include the open source Multi Lingual Translation (MOLTO Project), to be released as open-source libraries which can be plugged in to standard translation tools and web pages and thereby fit into standard workflows. Amharic language having the partially implemented resource grammar library in GF still needs a researchers attention to make use of the opportunity GF provides to the development of Amharic multi-lingual translation systems. This research is initiated to work on a research on Amharic NLP that contributes to the development of Amharic language translation systems in a rule based GF system. Therefore, the purpose of this research is to study the possibility of the development of multi-lingual closed domain Amharic translation applications in Grammatical Framework for specific language domains such as greetings, foods, sports in the absence of a full fledged complete Amharic resource grammar and its API.

1.3 Research Questions:

The study attempts to answer the following questions:

- Is it possible to design closed domain Amharic grammar in GF?

- Is it possible to conduct an experiment on a closed domain Amharic multi-lingual translation system in GF?

- Is it cost and time effective to develop Amharic closed domain translation systems using the rule based GF?
1.4 **Objective of the Study**

1.4.1 **General Objective**

The general objective of this research is to investigate the possibility of developing a closed domain multi-lingual translation for Amharic language in GF.

1.4.2 **Specific Objectives**

The specific objectives of this study are:

- Adapt and design an abstract syntax for food domain.
- Design food domain concrete syntax for Amharic and English languages.
- Perform an experiment on multi-lingual simple food sentence translation between English, Amharic and Italian based on the food grammar.
- Adapt and design an abstract syntax for foods domain.
- Design foods domain concrete syntax for Amharic and English languages.
- Perform an experiment on multi-lingual foods sentence translation between English, Amharic and Italian based on the foods grammar.
- Analyze the translation results in terms of performance.

1.5 **Methodology of the Study**

To achieve the general and specific objectives of this thesis work, the following methods and tools have been used.

1.5.1 **Literature Review**

For better understanding of NLP approaches and GF system, researches and background theories related to NLP and GF have been revised through literature review. An extensive review, test and analysis on a previous work on Amharic NLP that partially implemented Amharic Resource grammar in GF have been performed.

1.5.2 **Experimentation**

The experimentation process passed through the following steps,

- Design Amharic and English food and foods grammar in GF.
• Generate food and foods comment data in GF using the Amharic and English food and foods grammar and export the data it to a text file preserving the Amharic Unicode characters.

• Prepare a portion of the food and foods comments from the data source for a manual translation accuracy test. This involves sorting and removing duplicated data from a randomly selected foods comments to get a 10% sample data.

• Perform a manual English to Amharic food and foods comments translation accuracy test using the 10% randomly selected data.

1.5.3 Evaluation and Analysis

Evaluation and Analysis of the Amharic food and foods multi-lingual translation system performed in terms of performance of the system.

1.5.4 Tools Used

The multi-lingual closed domain translation experiment conducted in this study used the latest GF 3.5 system tool compiled to work on windows environment. For data manipulation, arrangement and document preparation Notepad text editor, MS Excel and MS Word applications have been used.

1.6 Scope and Limitation of the Study

This study is delimited to investigate through experiment the possibility of developing a closed domain multi-lingual translation for Amharic language in GF based on foods domain. The translation system experiment is limited only to work on sentence level translation and the sentences are of only present active voice forms that involves four pronouns “These, Those, That” and “This”. The manual verification of translation accuracy didn’t involve linguists. If we hadn’t been encountered with time and cost constraints our research could have gone further to experiment on passive voice forms of statements involving articles and more pronouns like “A, The” and “I, We, They, He, She”. Checking the possibility of integrating Amharic close domain multi-lingual translation applications with open source projects such as MOLTO phrasebook project were also in our thoughts.
1.7 **Significance of the Study**

Concerning Amharic language translation system researches and development, this study will have a major significance of promoting a rule based approach Amharic NLP research and development as an alternative to the much less progressed Amharic NLP researches that have been conducted based on statistical approaches. Our Amharic closed domain multi-lingual translation experimental research process and results will also encourage application grammarian to attempt to develop useful closed domain Amharic multi-lingual translation systems in GF, such multi-lingual application could be a tourist phrasebook which could be used by tourist coming to visit Ethiopia from different parts of the world speaking different languages.

1.8 **Organization of the Research Report**

The next chapter reviews the general important aspects of grammatical framework (GF), the third chapter review and analyses a previous research that partially implemented an Amharic Resource Grammar in GF. The fourth chapter covers the varies GF inspired multi-lingual translation project developments and application areas using GF platforms. Chapter five presents the main part of the research which involves the design, generating and evaluation experimentation of Amharic foods grammar in GF. The final chapter states the research conclusion and recommendations.
2.1 Grammatical Framework

Grammatical Framework (GF) is a grammar formalism and a notation for writing grammars based on Martin-Löf type theory (12). It is in general a programming language for multilingual grammar applications. It is a special-purpose language for grammars, a functional programming language, like Haskell and Lisp, a development platform for natural language grammars, like LKB and XLE, a categorical grammar formalism, like ACG and CCG, a logical framework, like Agda and Coq, and a platform for machine translation, like Moses and Apertium (13). GF can be used for building translation systems, multilingual web gadgets, natural-language interfaces, dialogue systems, natural language resources (13). In this chapter we present an introduction to GF; a more detail information can be refereed from (7).

The key feature of GF is the representation of a grammar as a pair consisting of an abstract syntax acting as a semantic Interlingua which represents the structure or meaning of values in the language and a concrete syntax which describes the appearance of the abstract syntax. It is this important distinction between abstract syntax and concrete syntax that enabled translation between languages for which a concrete syntax is defined. One or more concrete syntax can exist corresponding to target languages. In addition to this, GF is a functional programming language equipped with a runtime system featuring parsing and verbalization capabilities (14). “GF programs are called grammars, a grammar is a declarative program that defines parsing, generation, and translation” (15). GF is a functional programming language with types and modules (15).

To better explain GF grammars, we consider a very small grammar that describes simple “hello world” grammar, which we adapted from (16), implemented in GF system. A GF system is an
open-source free software, can be downloaded via the GF Home page¹ grammaticalframework.org.

A GF program, in general, is a **multilingual grammar**. Its main parts are

- an **abstract syntax**
- one or more **concrete syntaxes**

The abstract syntax defines what **meanings** can be expressed in the grammar

- **Greetings**, where we greet a **Recipient**, which can be **World** or **Mum** or **Friends**

A typical GF code for the abstract syntax looks like the following:

```plaintext
-- a "Hello World" grammar
abstract Hello = {
    flags startcat = Greeting ;
    cat Greeting ; Recipient ;
    fun
        Hello : Recipient -> Greeting ;
        World, Mum, Friends : Recipient ;
}
```

The code has the following parts:

- a **comment** section starting with “--
- a **module header** indicating that it is an abstract syntax module named **Hello**
- a **module body** in braces, consisting of
 - a **startcat flag declaration** stating that Greeting is the default start category for parsing and generation
 - **category declarations** introducing two categories, i.e. types of meanings
 - **function declarations** introducing three meaning-building functions

The English concrete syntax (mapping from meanings to strings) for the above abstract syntax looks:
concrete HelloEng of Hello = {
 lincat Greeting, Recipient = {s : Str} ;
 lin
 Hello recip = {s = "hello" ++ recip.s} ;
 World = {s = "world"} ;
 Mum = {s = "mum"} ;
 Friends = {s = "friends"} ;
}

The major parts of the above concrete syntax for English language are:

- a module header indicating that it is a concrete syntax of the abstract syntax Hello, itself named HelloEng
- a module body in curly brackets, consisting of
 - linearization type definitions stating that Greeting and Recipient are records with a string s
 - linearization definitions telling what records are assigned to each of the meanings defined in the abstract syntax

Amharic, Finnish and an Italian concrete syntaxes:

-- Amharic concrete syntax

concrete HelloAmh of Hello = {
 flag code= utf8; -- for representation of Unicode characters set.
 lincat Greeting, Recipient = {s : Str} ;
 lin
 Hello recip = {s = "ሠላም" ++ recip.s} ;
 World = {s = "ለሁሉም"} ;
 Mum = {s = "እምዬ"} ;
 Friends = {s = "ባልንጀሮቼ"} ;
}

-- Finish concrete syntax

congrete HelloFin of Hello = {
 lincat Greeting, Recipient = {s : Str} ;
 lin
 Hello recip = {s = "terve" ++ recip.s} ;
 World = {s = "maailma"} ;
 Mum = {s = "äiti"} ;
 Friends = {s = "ystävät"} ;
}
-- Italian concrete syntax

concrete HelloIta of Hello = {
 linCAT Greeting, Recipient = {s : Str} ;
 lin
 Hello recip = {s = "ciao" ++ recip.s} ;
 World = {s = "mondo"} ;
 Mum = {s = "mamma"} ;
 Friends = {s = "amici"} ;
}

Using a GF system in order to compile the grammar in GF, we create four files, one for each module, named ModuleName.gf:

Hello.gf HelloEng.gf HelloAmh.gf HelloFin.gf HelloIta.gf

In the GF system, using the command “import” the grammars are compiled into an internal representation.

> import HelloEng.gf
 - compiling Hello.gf... wrote file Hello.gfo 8 msec
 - compiling HelloEng.gdf... wrote file HelloEng.gfo 12 msec

To do a translation between two languages, first we import the concrete syntax of the two languages, in the above example to do a translation from English language to Italian, we use import and linearize commands in the GF system as shown below.

Translation: pipe linearization to parsing:

> import HelloEng.gf
> import HelloIta.gf
> parse -lang=HelloEng "hello mum" | linearize -lang=HelloIta
ciao mamma

The above command in the GF system outputs the translation of “hello mum“ of English phrase in Italian equivalent “ciao mamma”

Translation for all the languages the concrete syntax defined can be achieved by typing the following command into the GF system.

Multilingual generation:
2.2 Abstract and Concrete Syntax

The main distinction between the abstract syntax and concrete syntax is that the abstract syntax can be written without taking certain language-specific details such as inflection and word order into consideration. Abstracting away smaller details gives an advantage of making the grammars easy to create and maintain as well as to read and understand them (17).

Fig 2.1: The difference between Abstract and Concrete syntax

The grammar writers, therefore, only focus on building the structure of the common features to easily analyze and synthesize in a program. The abstract syntax might also be shared between grammars for different languages. Languages that originate from the same roots have more advantage to share a lot in common in the abstract syntax. A set of concrete syntaxes, on the other hand, maps the abstract syntax to different languages through coding linearization rules that handles the details of language-specific decisions for the abstract terms. It is possible to define several different concrete syntax mappings for one particular abstract syntax. Usually a number of concrete syntaxes are designed for a single language depending on the application domain.

2.3 Application Grammar and Resource Grammar

Resource Grammars consist of syntactic constructs, morphology and general purpose vocabulary of a language which are general grammars to some languages, where the writer of the resource grammar has a working knowledge in the grammar of the target language (18). The possibility of separate compilation of grammar compositions, opens up for writing resource grammars (19). The distinction between Application Grammar and Resource Grammar is described best as “an application grammar has an abstract syntax expressing the semantics of an application domain. A
resource grammar has an abstract syntax expressing linguistic structures. The concrete syntax of an application grammar can be defined as a mapping to the abstract syntax of the resource grammar: it tells what structures are used for expressing semantic object, instead of telling what strings are used.” (8)

2.4 Resource Grammar Library

The GF Resource Grammar Library (RGL) freely available and is distributed under the GNU General Public License (GPL). It is a set of natural language grammars built upon a common abstract syntax, that is a common tree structure implemented in GF (16). RGL, designed to be usable by domain experts without linguistic training (16), avoids re-implementing the basic machinery of the target language by domain-specific application grammarians. The application grammarians accesses the abstract syntax in the resource grammar through RGL API. The API allows the grammarians to implement grammars for the languages included in the API. The API also provides tools to extend the resource grammars, using these tools it is possible for grammarians to add more new words to the lexicon (15). The possibility of transferring the experience gained in building one resource grammar in GF to some other resources of similar language has been a big factor for the fast growing interest to build resource grammar library for more languages. RGL have been developed for a number of languages as of august 2013 it has reached 27 languages (14). A range of applications has been developed using RGL such as dialogue systems, tourist phrasebooks, museum object descriptions, pharmaceutical patents and also extended for large-coverage translation with some languages (16).
CHAPTER THREE

Related Works

Despite the existence of a number of researches that dealt with language engineering for over a decade in GF, we only came across one research publication conducted for Amharic under the title “IMPLEMENTING AN OPEN SOURCE AMHARIC RESOURCE GRAMMAR IN GF” by Marko’s Kassa in 2010 at the university of Gothenburg. The research performed by Markos can be considered as the first attempt ever made in elevating Amharic language into the GF language engineering research avenue. The research partially achieved to implement Amharic Resource Grammar in GF.

A Resource Grammar in language engineering is the basic component needed for implementing application grammars such as domain based multi-lingual translation applications in GF which can be integrated in MOLTO open source multi lingual translation tools. The primary objective of this thesis is to study the possibility of the development of multi-lingual Amharic translation applications in Grammatical Framework for specific language domains such as greetings, foods, sports, Museum art descriptions and an Amharic phrasebooks. Thus this chapter is dedicated to review the research (6) as to assess and understand how the main product of the research, the Amharic Resource Grammar, can be used to implement domain based Amharic multi-lingual translation applications.

3.1 Amharic Grammar

Prior to proceeding to show how the Amharic Language features are implemented in GF formalism, Marko’s (6) research went on to discuss the main features of the Amharic language by adapting the major concepts of the Amharic Grammar based on the book written in Amharic (22).

The research extended to give a thumbnail summary of the morphology of Amharic words. The variable features of Nouns in Amharic and their inherent behavior towards gender. an Amharic noun is either masculine or feminine. These declensions are usually achieved through affixation. Suffixal affixations are predominant while there are also a good number of prefixing. an example of affixation of Amharic noun phrase “the houses” (definite, plural noun phrase used as a direct
object) from the sentence “I sold the houses.” and show the Amharic counter part as follows.

the houses - Acc - አቤቶቹን - bet-occ-u-n

Here the suffixes (“-occ”, “-u” and “-n”) are added to the head noun “bet”, which means house, to mark declensions for number (Pl), definiteness (Def) and case (Acc) to get the required form – the houses - betoccun (እቤቶቹን).

With the exception in second person ‘you’ which may take different agreements when referring to ‘plural’, 'respected (politeness)', 'singular-female' or 'singular-male' the pronouns in Amharic can be put into three persons as in English.

You (Masc. Sg.) : እንተ - antä
You (Fem. Sg.) : እንቺ - anči
You (Pl.) : እንንተ - anantä
You (Politeness) : እርስዎ - ērswō

To modify sentences Adjectives in Amharic come before nouns. In a sentence (አንተ ሃትም ጥወን ም ጸን / antä bäTam gobäz tamari näh) “you are a very clever student” there are two adjectives “ትም ሃት / täm/bäTam” - very and “ወን ጥወ / gobäz” – clever. “ትም ሃት / täm/bäTam” - very modifies “ወን ጥወ / gobäz” - clever, and “ወን ጥወ / gobäz” modifies the noun “ክፋት/ tamari” - student.

In Amharic verbs are the most complex category of words, they are created generally from consonantal radicals which are inflected by a process of merging with vocalic components based on various patterns. Also there are multi-radical and bi-radical Amharic verbs, the majority of Amharic root words have three radicals.

The numerals in Amharic can assume a cardinal or ordinal form. The ordinals are all the times achieved by adding the prefix እን / āńňa on the Cardinals.

Cardinal Ordinal

መልክት / twou-ልት + እን / āńňa እልክት-አንኝ/ second
The prepositions appear as simple prepositions that stand alone or as separate entities coming both at pre and post positions.

To – you እ-ልም- lä antä (pre)

On - you እ-ል‰-antro - antä lay (post)
With – you እ-ል‰-ጎ- ke antä gar (both pre and post)

Amharic clauses order generally follows Subject-Object-Verb(SOV). Verbs agree with their subjects in number gender and person and objects precede verbs within the verb phrase. The definite article in Amharic is a morphologically bound element which needs a special treatment studying Amharic grammar. enable the user of the library to obtain Amharic concrete sentences like the above just from descriptions made in the abstract syntax.

The research has provided an example of Amharic statement “ልጅ. ይህ ቆንጆ እヶገድን ምወዳል።” being translated to English using the system implemented in GF. the example demonstrated how the GF library user can obtain the Amharic concrete sentence.

l∂ju y∂h∂c qonjo l∂jagäräd∂n y∂wäddal

“The boy loves this beautiful girl”

The parsing tree representation of the above sentence is given in the fig.2.
Fig 3.1: A tree structure representing “The boy loves this beautiful girl”

When examining the rules in the abstract syntax taking the left branch tree that takes a
determiner and noun to give a noun phrase has the following type signature.

fun

DetCN: Det -> CN -> NP; (3.1)

Where

DetCN: --the name of the syntax rule

Det: --the types for the determiner and

CN: --the noun component.

For the case of the above Amharic sentence መንጆ ውርደ እያከድ /ləju ይህ ውርده። /ləju yəhēc qonjo
ləjāgärädən yəwāddal “as the definite marker in Amharic is a morphologically bound element,
in the above type signature Det is -lə /-u and the CN is ləj /ləj -boy. But these separate entities
ləj and -u are combined to form ləju /ləj - the boy. In Amharic the gender of the determiner is
derived from the noun. In this case in the example ləjāgäräd /-girl is a feminine noun and
this is the reason why ወ/ yǭh- this is selected instead of ወ/ yǭh – (masculine counterpart for this). In the same fashion the number and definiteness features of the noun come from the determiner while case remains usually nominative.

The research implementation further covered the linguistic features such as the morphology, syntax and lexicon. It has also introduced the transliteration technique adopted to handle the need for Unicode infrastructure by Amharic orthography.

3.2 Amharic Orthography

Amharic alphabets composed of thirty three consonants and seven vowels, it is written from left to right. The consonant vowel (CV) combination forms the seven order.

\[
\begin{align*}
\text{ basın} & \quad \text{ba} & \quad \text{be} & \quad \text{bo} \\
\text{따따} & \quad \text{ta} & \quad \text{te} & \quad \text{to}
\end{align*}
\]

Vowels stand alone and form unique symbol.

\[
\begin{align*}
\text{አ እ እ ኣ እ ኦ ኧ} \\
\text{ይ ከ ከ እ እ ኦ ኧ}
\end{align*}
\]

The implementation of Amharic orthography where demonstrated in the research, an example of a noun declension for a number shows how an orthographically sound word can be formed, adding –occ / -ество at the end of the noun ኪት will form

\[
\text{ bú + -ество = búчество} \quad \text{which the combination of ካ and እ results in ካ to form the right written word}
\]

bet + -occ = betocc

House Houses
These conversion where achieved by using the regular expression methods in GF, the methods for Amharic are modified to follow the pattern that changes the six order to the seventh order in the case of noun declension for a number or pluralization of a noun.

```haskell
-- replaceLastLet6_7 is a function

oper replaceLastLet6_7 : Str -> Str = word ->

let y = last word in

case y of { "ሃ" => "ሃች" ; "ሌ" => "ልች" ; "ሔ" => "ሕች" ; "ሜ" => "ምች" ; "ሤ" => "ሥች" ; ... "ት" => "ቶች" ; ... _ => word+"ዎች" } ;

3.3 Amharic Verbal Morphology

In dealing with Verbal Morphology, the research has implemented Amharic verbal morphology using templates (vowel and affix patterns) to modify the root consonant at different positions, doubling the middle consonants, inserting vowels between consonants, adding consonantal affixes, etc. The verbal morphology applied considering those radical roots - between two and four. the majority of Amharic verbs are triradicals and marked for person, number, and gender. For example, when the root sbť is applied to a pattern C1aC2aC3a, where C1,C2 and C3 stand for the consonantal radicals forms the perfect stem ወበረ/ säbärä (he broke) is formed, while applying another pattern meC1C2aC3 on the same root word sbr, it forms an Amharic infinitive መስበር/ mäsbär (to break).

The Tense /Aspect/ Mood (TAM) is signaled mainly by the prefixes and suffixes that indicate the subject of the verb but is also reflected in the stem template. For example non-geminated each of the main TAM”s when considered for the third person singular masculine (Per3 Sg Masc), active (Act) voice. The root of the verb is sbr – to break.

- Perfective: ኃስበር säbärä / he broke
- Imperfective: ያስበር እላ ሕሠብራል y∂-säbr-al / he breaks /he will break
- Jussive: ያስበር እላ ሕሠብሮ y∂-sbör / let him break
- Imperative: ያስበር sbär / break!
- Gerundive: ኃስብሮ säbr-o/ having broken
Using the voice signal taking tä as a prefix on the stem säbärä (to break) Passive: ንምስ ወለ ወለ እ ወለ ኑም (he is broken) can be formed, in another case taking 'ä' in between the second and third roots (bear in mind that sbr is the root form). ከምስ ወለ ወለ ኑም (he will be broken) is formed.

The research has defined three types of verb types: types A, B and C. where the 2nd radical is always geminated regardless of the types. The verb derivations are adapted from Leslau (1969). In implementing the verbal morphology a triradical verb-inflecting-operation is defined as mkV3gdl for regular verb paradigms for each form and agreement features:

\[
\text{mkV3gdl : Str -> Verb = \{v \} -> let root = \text{getRoot3 v in}}
\]

\[
\text{s = table { Perf \=> table { Per1 Sg \=> appPattern3 root C1aC2aC3ku; Per1 Pl \=> appPattern3 root C1aC2aC3n; Per2 Sg Masc \=> appPattern3 root C1aC2aC3k; Per2 Sg Fem \=> appPattern3 root C1aC2aC3sh; Per2 Pl _ \=> appPattern3 root C1aC2aC3achehu ; ... }); Imperf \=> table { ... }) ;}
\]

Using the above conjugating operation mkV3gdl implementation against the root form ‘sbr’ generates the perfective forms as shown below.

Perf Act (Per1 Sg) : ንምስ ወለ säbbärku – I broke
Perf Act (Per1 Pl) : ንምስ ወለ säbbärn – We broke
Perf Act (Per2 Sg Masc): ንምስ ወለ säbbärk – You broke (for Masc)
Perf Act (Per2 Sg Fem): ከንርን ኮብር–You broke (for Fem)

Perf Act (Per2 Pl Masc): ከንርታችሁ You broke (for plurals of any gender )-same for : s
Perf- Act (Per2 Pl Fem)

Perf Act (Per3 Sg Masc): ከንሩ ኮብሩ– He broke

Perf Act (Per3 Sg Fem): ከንሩቸ ኮብሩር– She broke

Perf Act (Per3 Pl Masc): ከንሩ- ኮብሩ– They broke - same for : Perf Act (Per3 Pl Fem)

...  

3.4 Amharic Morphology of Nouns

Numbers of the Amharic nouns plural and singular nouns are implemented in the research by adding plural suffix /-ኦች/-occ or /-ዎች/-wocc, the former for nouns ending in a consonant and the latter for nouns ending in a vowel.

The species/definiteness of the noun is determined by the suffix element attached to the noun is in a consonant or a vowel, singular or plural, and masculine or feminine. The research implemented the three basic suffix added to mark definiteness are /-ሆ/-u , /-ው/-w and /-ዋ/-wa . the three suffixes are implemented for nouns to which attached (Masc Sg and ends with a consonant),(Masc Sg and ends with vowel) and ( Fem Sg and ends with consonants) respectively.

The definite suffix added to plural nouns ,regardless of gender of the noun, is -u. For example, in the masculine, as in /ንጉሶኔ/-n∂gusocc “kings” (the plural of n∂gus “king”), the definite form becomes /ንጉሶቹ/ n∂gusocc-u „the kings”. In the feminine, as in /ንግስትኔ/-n∂g∂stocc “queens” (the plural of n∂g∂st “queen”), the definite form becomes /ንግስትቹ/ n∂g∂stocc-u “the queens”. 
3.5 Morphology of the Adjectives

In Amharic Adjectives takes position before the nouns they modify,

\[
\text{አርሱ} \quad \text{ስንፋ} \quad \text{ተማሪ} \quad \text{ናው} \quad = \\
\text{ስርሱ} \quad \text{ስናእፀ} \quad \text{ተማሪ} \quad \text{ናው}
\]

He lazy student is

”He is a lazy student.”

In this example, the adjective \text{sănäf} “lazy” precedes the noun \text{tämari} “student” which it modifies.

In the resource grammar implementation, Adjectives (A) are represented as

\[ A = \{ s : \text{Gender} \Rightarrow \text{Number} \Rightarrow \text{Species} \Rightarrow \text{Case} \Rightarrow \text{Str} \} ; \]

Unlike nouns gender is not treated as an inherent feature in the adjectives, one form of adjective can be used to describe both masculine and feminine nouns in some of the cases. Nouns and adjectives inflection have great deal of similarity, the above Adjective (A) implementation builds adjectives tables consisting of 32 (2x2x2x4) forms.

more than 50 regular adjectives in the Amharic Swedish Lexicon list built in a uniform manner using a single paradigm \text{mkA}.

A lexicographer can, for example, enter a new adjective in this list as shown below:

\text{beautiful}_A = \text{mkA} "ናእር" ;

where \text{mkA} is an operation that transfers a given string to an adjective table (\text{mkA} : \text{Str} \rightarrow \text{A}) inflecting it along the way to give a tabular output such as:

\[
\begin{align*}
\text{Masc Sg Def Nom} & : \text{የኗርበ} \\
\text{Masc Sg Def Acc} & : \text{የኗርበን} \\
\text{Masc Pl Def Acc} & : \text{የኗርበንን} \\
\text{Masc Pl Indef Nom} & : \text{የኗርበን} \\
\text{Fem Sg Def Dat} & : \text{አየኗርላይ}
\end{align*}
\]

........
So far in this section we have reviewed how the major Amharic Resource Grammar was implemented in GF, for the full understanding of the implementation and further to look into the remaining parts the Amharic resource grammar implementation. We recommend readers to refer (6). In the next section we provide some usability test on the Amharic Resource Grammar Library.

3.6 The Amharic Grammar Usability Test

The Amharic resource grammar implementation we have shown in section 3.3 to 3.5 has accomplished a lot of works, however it is not yet fully completed to be utilized by Application grammarians. developing multilingual translation application in controlled language applications projects such as Phrasebook for different domains areas requires an API of the resource grammar to which the Phrasebook is targeting. The Amharic resource grammar in its current status can be evaluated using the GF system. For the purpose of testing the Amharic Resource Grammar in this research we have compiled the GF system making sure to include the Amharic Resource Grammar implementation files available in the core system. We obtained the full source package from the grammatical framework main website.

The first step to perform English to Amharic translation test in GF system using the Amharic Resource Library is to import the English and Amharic Language concrete syntax (LangEng.gfo and LangAmh.gfo). This concrete syntaxes inherits the Lexicon (LexiconEng.gfo,LexiconAmh.gfo) and the Grammar (GrammarEng.gfo,GrammarAmh.gfo). Therefore by importing LangEng.gfo and LangAmh.gfo we also imports the lexicon and grammar files.

The test conducted on the Amharic Resource Grammar covers Amharic sentence translation and morphology of nouns and verbs.

3.7 Amharic Sentence Translation Test

Test 1)

> i LangEng.gfo LangAmh.gfo

Lang> P -lang=Eng "this beautiful girl is so clever" | l -lang=Amh -to_amharic

Lang> የህች ቀንጆ እንጋገር በጣም በላህ ማች።

---

3 www.grammaticalframework.org/download/index.html
Test 2)

Lang> P -lang=Eng “this girl is so clever” | l -lang=Amh -to_amharic
Lang > የህችልጃገረድበጣምነች።

Test 3)

Lang> P -lang=Eng “she loves wine” | l -lang=Amh -to_amharic
Lang > እርሷ ለይንትወዳለች።

Test 1 -3 shows an accurate translation using the Amharic resource library, for more accurate translation results refer to Appendix I.

Test 4)

Lang> P -lang=Eng “These beautiful girls are so clever” | l -lang=Amh -to_amharic
Lang>እነዚህ ወይንዎችልጃገረዶችበጣምናቸው

Test 5)

Lang> P -lang=Eng “These good girls are so beautiful” | l -lang=Amh -to_amharic
Lang> እነዚህጥሩዎችልጃገረዶችሁምወንቸው

Test 4 & 5 confirms the existence of some semantic imperfect translation of English to Amharic using the Amharic resource library. In these examples the erroneous translation obviously resulted from the paradigms module that handles modification of the Amharic adjectives. the Adjective “ቀንጆ” gets its number from the noun “ልጃገረዶች” and wrongly modified itself into its plural form “ቀንጆዎች”, the same way in the second example the Adjective “ጥሩ” modified itself into a plural form “ጥሩዎች” which resulted in inaccurate translation. To avoid such inaccurate translation the Amharic paradigm that modifies the Amharic adjective needs some revision. for more inaccurate translation results refer to Appendix F.
Test 6)
Lang> P -lang=Eng "This nice girl is so clever" | l -lang=Amh -to_amharic
Lang>

Test 7)
Lang> P -lang=Eng "This girls are so good" | l -lang=Amh -to_amharic
Lang>

Test 6 & 7 outputted an empty result because the input sentence involved the adjective word “nice” which is not found in the Swedish list. The Amharic Resource lexicon was built based on the Swedish list consisting of one hundred eighty nouns, eighty verbs, forty eight adjectives, four adverbs and their corresponding word inflections. In such circumstances sentences that includes words outside the Swedish list wouldn’t return a result. However, a lexicographer can expand the Swedish list by adding new words. Because of limitations on the number of words, usually multi-lingual translation applications are not designed only using the Amharic Resource Library, rather the main purpose of the resource library is to make domain based multi-lingual translation applications robust. In the next chapter we will see how the Amharic Resource Grammar Library can be used as a resource by domain based applications. The second test shows a number disagreement of the subject “Girls” and the determinant “this” which resulted an empty output. For more similar examples refer to Appendix G.

3.8 Testing the Amharic Morphology

We started the Amharic Verbal Morphology test by importing the LangAmh.gfo file the same way we did to conduct a test on the English to Amharic sentence translation in section 3.7. The LangAmh.gfo file inherits the important Amharic morphology function MorphoAmh.gfo under ParadigmsAmh.gfo module. The transliteration rule applied in the test is the one implemented by Markos(6) as referred in Appendix B.
3.8.1 Verbal Morphology

Verbal morphology is the most challenging task to grammarians to create a robust morphological formula for any language, Amharic being morphologically rich language largely shares the difficulties.

Test 1)

> i LangAmh.gfo
Lang> -retain ParadigmsAmh.gfo
Lang> compute_concrete -table mkV "sdb"

> 
Perf Act (Per1 Sg) : s’d’bk&’k&/øγøľh-
Perf Act (Per1 Pl) : s’d’bn/øγøľh
Perf Act (Per2 Sg Masc) : s’d’bk/ øγøľh
Perf Act (Per2 Sg Fem) : s’d’bx/ øγøľh
Perf Act (Per2 Pl Masc) : s’d’b!ch/& øγøľřv-

A total of one hundred forty inflected words produced for the tri-radical root verb “sdb’/øγøľ”, for the full list of the inflection table refer to Appendix H. in some cases the Amharic verbs inflection produces words that bears no meaning or none related meaning to the root word, for instance if we take the inflection of the tri-radical verb “nbr/ɦ_Source" , we find a result such as:

Perf Act (Per1 Sg) : n’b’rk&’k&/ɦ_Source-
Perf Act (Per1 Pl) : n’b’rn/ɦ_Source
Perf Act (Per2 Sg Masc) : n’b’rk/ ɦ_Source
Perf Act (Per2 Sg Fem) : n’b’rx/ ɦ_Source
Perf Act (Per2 Pl Masc) : n’b’r!ch/& ɦ_Source-

Act (Per1 Sg/Pl) : m’nб’r/øγɦ_Source
Act (Per2 Sg/Pl Masc/Fem) : m’nб’r/øγɦ_Source
Act (Per3 Sg/Pl Masc/Fem) : m’nб’r/øγɦ_Source
Pas(Per1 Sg/Pl) : m’nб’r/øγɦ_Source
Pas (Per2 Sg/Pl Masc/Fem) : m’nб’r/øγɦ_Source
Pas (Per3 Sg/Pl Masc/Fem) : m’nб’r/øγɦ_Source

From the above inflection example , we observe that, the inflected word “m’nб’r/øγɦ_Source” holds none related meaning to the root word “nbr/ɦ_Source".
3.8.2 Amharic Noun

Relatively speaking, compared to verbal morphology formulating the Amharic Noun morphology is an easy task to the grammarians, this is because unlike the verbal morphology the majority of the Amharic Nouns falls under few declension rules.

> i LangAmh.gfo
Lang> -retain ParadigmsAmh.gfo
Lang> compute_concrete -table mkN “አው”

Sg Def Nom : አው
Sg Def Acc : አውን
Sg Def Gen : ከአው
Sg Def Dat : ከአው

Pl Indef Acc : ከሚውን
Pl Indef Gen : ከሚው
Pl Indef Dat : ከሚው

A total of sixteen declension of words produced for the Noun “ስው”, for the full list of the inflection see Appendix I. similar to verbs inflection, for exceptional nouns the noun declension produces words that bears irrelevant words, for instance if we take the declension of the uncountable noun “ዱቄት”, we find a result such as:

Lang> compute_concrete -table mkN “ዱቄት” feminine

Sg Def Nom : ቱቄት
Sg Def Acc : ቱቄቱን
Sg Def Gen : ይዱቄቱ
Sg Def Dat : ይለዱቄቱ

Pl Indef Acc : ከሚዱቄቱን
Pl Indef Gen : ከሚዱቄቱ
Pl Indef Dat : ከሚለዱቄቱ

In the above noun declension example, we observe that the uncountable noun “ዱቄት” being pluralized by affixing the letter “ት” but the noun “ለው” is plural by its own.
3.8.3 Amharic Adjectives

Except the gender not treated as an inherent feature in adjectives, inflection of Amharic nouns and adjectives have a great deal of similarity(6), a single paradigm mkA was enough to build a representation of more than fifty regular adjectives in the Swedish Lexicon list adapted for Amharic language(6).

> i LangAmh.gfo

Lang> -retain ParadigmsAmh.gfo

Lang> compute_concrete -table mkA "$\phi\gamma\chi$"

> 

Masc Sg Def Nom : $\phi\gamma\chi\omega$
Masc Sg Def Acc : $\phi\gamma\chi\omega\eta$
Masc Pl Def Acc : $\phi\gamma\chi\omega\eta$

Masc Pl Indef Nom : $\phi\gamma\chi\omega$
Fem Sg Def Dat : $\lambda\phi\gamma\chi\phi$

Using the mkA paradigm function the adjective representation tables will consist thirty two adjective forms.

3.9 Setbacks of the Amharic Resource Grammar

The major setback on the Amharic Resource grammar is lack of an API of the resource grammar, which is the main method of Application software’s to import and use the paradigm functions and categories implemented in the resource grammar. In GF multi-lingual grammar formalism to support different writing systems, a different character sets is required. The simplest set, ASCI, works for the very few languages, while languages like Amharic, Arabic, Hebrew, Hindi and Russian need Unicode Character encoding. The GF system internally supports a 32-bit Unicode characters(15). The default encoding of .gf files is iso-latin-1. To make a 32-bit Unicode characters possible to read and write, a different characters encodings are used that overrides iso-latin-1. All files flagged with UTF-8 character encoding are encoded in UTF-8.

flags coding=utif8;

Many text editors, terminals and web browsers support UTF-8. However for some languages including Amharic, Arabic, Hebrew even though they are flagged with UTF-8 encoding in their
implementation and compiled internally in GF system with a 32-bit Unicode character, the actual characters are not displayed properly or simply the characters are replaced with “?” symbol in GF terminal. To deal with the none ASCII characters display problem a transliteration method that applies a one-to-one mappings between Unicode characters and ASCII characters (possibly strings to two ASCII characters) were used. Using this technique the research just discussed in this chapter Amharic transliteration, see Appendix B for full reference of “A- Transliteration Table for the Fidäl as implemented and used by Markos(6)” . While performing an experiment and discussing on domain based Amharic multi-lingual translation in GF in the next chapter, we used the pre-compiled standard transliteration rule that we can view the file in GF by the following GF command.

>unicode_table -amharic | wf -file=“AmhTransliterationRule.txt”

This command extract and exports the Amharic transliteration table into a text file. See Appendix C for full reference.

To experiment the Amharic word “አበባ/Abebbä” in GF’s system, using the default standard Amharic transliteration and Markos(1) transliteration file, the word “አበባ/Abebbä” should be represented as “ab.b(” and “!b’b!” respectively.

Therefore for the above reasons we used the Amharic transliteration module to see the actual Fidäl characters during the test, The commands used for this purpose are put_string, -to_amharic and from_amharic.

--The GF command below creates a file name ababa.txt and writes the actual transliterated Fidäl string “አበባ” into the file. this is according to the transliteration rule developed by Markos(6).

```
ps -to_amharic “!b’b!” | wf -file=“abeba.txt”
አበባ
```

--Using the in-built Amharic transliteration rule in GF, the same result can be achieved.

```
ps -to_amharic “ab.b(” | wf -file=“abeba.txt”
አበባ
```

In this chapter we have reviewed and tested extensively the research (6) that partially implemented Amharic Resource grammar in GF, The next chapter reviews GF inspired translation projects which are currently actively undergoing and progressing.
CHAPTER FOUR

GF Inspired Translation Projects

GF has inspired a range of language engineering projects since its inception. Translation systems, multi-lingual web gadgets, natural-language interfaces, dialogue systems, natural language resources are among the many more undergoing development. From these projects, our research work is more interested in the translation system projects, in this regard Molto project gets our big attention.

4.1 Molto Project

MOLTO project is an open source project funded by the European Union since 2008, the main goal of the project is to develop a set of tools that automatically translates documents on the web, with a high quality and between multiple languages in real time. MOLTO’s aspiration for high quality translation is not without a cost, in order to guarantee the quality the coverage is usually restricted to specific domains which can be covered by a grammar. As its main technique MOLTO project uses domain-specific semantic grammars and ontology-based interlinguas.

MOLTO translation is based on GF and its resource grammar library. So far MOLTO tools supported more than twelve European languages that includes English, German, and Italian. There are also undergoing projects to add more languages into MOLTO, among them are Arabic and Hibri languages which has the same Semitic root as Amharic language.

MOLTO tool is not the only one in the domain of online translation, there are a number of standards widely used translation tools on the web such as Systran (Babelfish) and Google Translate, these translation tools are based on Statistical Language Model (SLM). The major difference that distinguishes GF MOLTO project from other translating tools is its preferred precision oriented design rather than aiming at large coverage, for these reason MOLTO system focused on translating a domain based translation, MOLTO tools are predestined for translating what it has already customized. A domain can be e-commerce sites, Wikipedia articles, contracts, business letters, user manuals, and Phrasebooks. Domains such translating newspapers and novels are beyond the scope of MOLTO tools.

MOLTO hosted a number of multi-lingual online GF grammar translation applications, the most popular among the applications is the web based Phrasebook application that supports a multi-lingual translation between twenty languages as of writing this report. The Phrasebook consists 46 categories that includes Country, Phrase, Place, Transport, Question and Words. Fig.3
shows Molto Phrasebook being used to translate an English greeting message “nice to meet you” in twenty languages.

Fig 4.1: Molto Phrasebook “nice to meet you” greeting translated into 25 languages.

The main idea behind Molto project is to build an open source domain based multi-lingual translation plug-in tools that can be integrated into other web applications such as e-commerce sites, tourist websites and smart mobile phone browser. The GF grammar object files plug-in can be compiled in GF to suit the intended platform that hosts the application. The availability of embedded PGF interpreter in Java (the most popular programming language) enhanced the usability of GF in variety of platforms. JavaScript is one of the most widely supported languages in different platforms, almost all browsers supported it including mobile platforms, JavaScript
runnable in web browsers (16), it is usually the preferable scripting language by application programmers to create portable applications. Unlike java, javaScript embedded grammar interpreter doesn’t read PGF files thus for GF grammar applications targeting web browsers as the application host needs to compile the GF grammar in to JavaScript code. Fig. 4 shows below a Molto project JavaScript-based numeral translator developed for iPhone (16).

Fig. 4.2: A JavaScript-Based numeral translator running on iPhone

4.2 Building Amharic Phrasebook in Molto Project

Adding a language in to MOLTO online translations projects requires utilizing an API of the target language resource grammar library. The Amharic resource grammar we have reviewed in chapter three (6) had been partially implemented, thus to make a progress in Amharic application grammar development in Molto projects, the full implementation of the Amharic language resource grammar is demanding. The full resource grammar library, as of summer 2010 has around 80 categories and 200 abstract syntax functions. Out of these categories and syntax functions the Amharic resource grammar implemented by Markos left features such as case of object suffixes, relative clauses and aspects such as reciprocals and iterative for the various TAM's and voices as a future work (8).

A mini-resource grammar is an alternative to the full implementation of the Amharic resource grammar that can be developed by only implementing the core phrasal categories and functions that helps to produce a working resource grammar. Using the mini-resource grammar application grammarians can get access to the resources through an API. Building the Amharic mini-resource library can be started using resources from the existing Amharic resource grammar implementations.

The next chapter discusses the core part of the research, the experimentation of Amharic Grammar in GF and its results.
CHAPTER FIVE

Experimentation

This chapter discusses experimentation on Amharic Grammar in GF. The experiment aimed at evaluating the applicability of developing closed domain Amharic Grammar for the purpose of a multi-lingual translation. The Experiment covers two different approaches of building Amharic Grammar in GF. The first one is designed to test the limited translation of food comments which only able to deal with singular present active voice form, Its design requirement is also relatively simple and its data resources generating capacity is bounded by its design. Further enhancing the design by adding additional pronouns and paradigm functions, the experiment widened the translation resource capacity by threefold to accommodate translation on foods comments that include singular and plural present active voice form.

5.1 Domain Specific Grammar Selection

For the purpose of this research experiment, comments about foods has been used. We decided to use comments about food “foods grammar” mainly because a multi-lingual translation implementation of this domain already exists for about 15 languages. The “foods grammar” resource can be found at GF resource library5.

Experimenting Amharic Foods grammar on the existing Foods grammar allows us to sidestep the required language experts for the manual multi-lingual translation of the Amharic words used in the foods grammar. Evaluating the accuracy of the Amharic translation against many languages can be performed with a good knowledge of the target language Amharic and one other language from the multi-lingual implementation of foods grammar which in our case the knowledge of English.

5.2 The GF System Preparation

To conduct the GF grammars experiment, we need first to install the GF system. The GF system can be installed in different manners on different platforms more information can be found at the GF home page6 on how to install the GF system. The version of GF system we have installed on our windows system for the experimentation is the latest version of GF 3.5 which

5 www.gramaticalframework.org/src/
6 www.grammaticalframework.org/download/
was released on August 2013. This version is also available for the major computer platforms, Linux (including Ubuntu 32/64-bit), Mac OS, and Windows. Our best experience and intense familiarity with Windows systems fated our choice of the Windows version. A typical properly installed GF command shell interactive window looks as shown in fig.5.1

![Fig 5.1: A GF system command line interface](image)

### 5.3 Food Grammar

The English Foods grammar in the GF resource has been adapted and modified to construct the Amharic foods grammar. The Amharic foods grammar construction achieved by replacing the English words with their corresponding Amharic language dictionary equivalents. fig.5.2a shows English GF-readable BNF grammar for comments about food. The main difference between the Amharic grammar in fig.5.2b constructed for this experiment and the English grammar is the choice of the tokens. We translated the tokens in the English Foods Grammar to its corresponding Amharic tokens.
In the foods grammar description in fig.5.2 the terms “This., That., Mod., Wine…” at the left corner are just labels for the constants. Item, Kind and Quality are type identifiers of the their corresponding values. The step leading from BNF to GF is to separate the rules defining abstract syntax trees from the rules telling how trees are linearized (4). The next sub section just does the separation and build the abstract syntax and the concrete syntax for Amharic grammar.

### 5.4 Abstract and Concrete Food Grammar for Amharic and English

The abstract syntax for Food Food.gf in fig.5.3 is common for all languages implemented the
foods grammar. It defines the categories and the functions telling how the trees are linearized. For example the predication rule

**Pred. Comment ::= Item “is” Quality**

Becomes

```
fuc
Pred :Item -> Quality -> Comment;
```

and the common value types are grouped in to categories

```
Cat
Comment ; Item ; Kind ; Quality ;
```

In the abstract syntax, defining the types of the function specifies the category of arguments to the function, in the above example the function rules defined to expect values from the Item and Quality categories. This function definition in the abstract syntax will have its corresponding linearization implementation for each targeted languages in the concrete syntax. The concrete syntax for each language is different and can be more than one if need be.

Crafting the Amharic concrete syntax can be achieved simply by copying and making simple modification to the structure of the English food concrete syntax FoodEng.gf shown in fig.5.4. “.gf” is the file extension for the abstract and concrete syntax files. Because of the difference in the word order in Amharic and English construction of clauses a structural modification is required for the copied Amharic abstract FoodAmh.gf grammar. Amharic clauses takes Subject Object Verb order while in English clause construction follows Subject Verb Object word order(6). The following lucid example show the difference.

The boy loves a ball.

Subject Verb Object

-Amh: እጅስን ይወዳል።

Subject Object Verb

---
abstract Food = {
  flags startcat = Comment ;

cat
    Comment ; Item ; Kind ; Quality ;

fun
  Pred : Item -> Quality -> Comment ;
  This, That : Kind -> Item ;
  Mod : Quality -> Kind -> Kind ;
  Wine, Cheese, Fish : Kind ;
  Very : Quality -> Quality ;
  Fresh, Warm, Italian,
  Expensive, Delicious, Boring : Quality ;
}

Fig 5.3: Food Abstract syntax

In the foods abstract syntax, The flags tag “startcat=Comment” defines “Comment” as the beginning of the tree node.
concrete FoodEng of Food = {

  lincat
  Comment, Item, Kind, Quality = Str ;

  lin
  Pred item quality = item ++ "is" ++ quality ;
  This kind = "this" ++ kind ;
  That kind = "that" ++ kind ;
  Mod quality kind = quality ++ kind ;
  Wine = "wine" ;
  Cheese = "cheese" ;
  Fish = "fish" ;
  Very quality = "very" ++ quality ;
  Fresh = "fresh" ;
  Warm = "warm" ;
  Italian = "Italian" ;
  Expensive = "expensive" ;
  Delicious = "delicious" ;
  Boring = "boring" ;
}

Fig 5.4 : English concrete syntax, FoodEng.gf
concrete FoodAmh of Food = {
  flags coding = utf8 ;
  lincat Comment, Item, Kind, Quality = Str ;
  lin
    Pred item quality = item ++  quality ++  "\gamma\alpha" ;
    This kind = "\theta\nu" ++ kind ;
    That kind = "\theta" ++ kind ;
    Mod quality kind = quality ++ kind ;
    Wine = "\alpha\nu\gamma" ;
    Cheese = "\lambda\beta\eta" ;
    Fish = "\eta\lambda\theta" ;
    Very quality = "\eta\eta\eta\eta\eta" ++ quality ;
    Fresh = "\tau\eta\nu\eta" ;
    Warm = "\psi\phi\phi" ;
    Italian = "\psi\eta\lambda\phi\phi" ;
    Expensive = "\omega\gamma\alpha" ;
    Delicious = "\tau\lambda\gamma\eta" ;
    Boring = "\eta\eta" ;
}

Fig 5.6: Amharic concrete syntax FoodAmh.gf.
5.5 Translating Experiment on Food Grammar in GF

Since we have now built a multi-lingual food grammar for Amharic and English language as shown in section 5.4, we can start the translation experiment between the two languages in the GF shell. The first thing we do is import the abstract and the concrete syntaxFoodEng.gf and FoodAmh.gf. The GF system automatically imports the Food.gf as it knows the imported concrete syntaxes are dependent on the abstract syntax Food.gf. The concrete and the abstract syntax then automatically compiled to an object file with a file extension “.gfo”. The command used to accomplish this task is as follows

>import FoodAmh.gf FoodEng.gf

food>

GF is now ready to test the translation, let us see how the GF system translates the English sentence “this wine is expensive” in to Amharic

Food> parse –lang=Eng “this wine is expensive” | linearize

ይህ ምንድ ወድነው
This wine is expensive

food>

The above command “parse” parses the English Food grammar tree of the given sentence “this wine is expensive “and transfers the result by piping “|” to be linearized using the command “l” in to all the languages implemented in foods grammar. In this case the linearization result showing the translation of the input sentence in to the Amharic and English. Let us import an Italian Food concrete grammar and repeat the above multi-lingual translation experiment.

food>import FoodIta.gf

Food> p –lang=Eng “this wine is expensive” | l

quine ወድነው ምንድ ወድነው
This wine is expensive

questo vino è caro

Food>
The linearization process in the above example involved the concrete syntax FoodIta.gf which is used to linearization of the target language parsed tree into Italian grammar.

As a multi-lingual grammar formalism, GF needs to support the different characters set in different writing systems. ASCII system works for few languages, iso-latin-1 supports many of the European languages. But for many languages Unicode is required. To support the majority of the languages GF is designed to work internally with a 32 bits Unicode characters. With this Unicode facility GF makes it possible to give supports for the Semitic, Slavic, Sino-Tibetian and Japonic languages family members. Amharic being a member of Semitic language family is well established to work in GF under the 32 bit Unicode characters systems. many terminals, text editors and web browsers supports UTF-8, which encodes Unicode characters by means of variable-size sequences of 8-bits characters. Also all files generated by GF such as instances of the “.gfo” object files are encoded in UTF-8 purportedly to set the default inputs and outputs to be in UTF-8 format. The windows version of GF shell has failed to display the Amharic character as viewed in the above translation result "ወይን ወጥን ፈስት". This is because windows command shell input output system doesn’t support UTF-8, non-ASCII characters sets. However if the input is supplied using the transliteration ASCII-to-Unicode characters mapping system, the result can be exported to a text editor by the help of transliteration and data export GF commands. The command below shows Amharic sentence "ወይን ወጥን ፈስት" argument as a sequence of ASCII characters “yh w.yn wd n.w” as defined in the default GF transliteration file for Amharic.

```
 Food> p -lang=Amh "yh w.yn wd n.w" | l
 "yh w.yn wd n.w"
 This wine is expensive
 questo vino è caro
 food>
```

It is observed that the multi-lingual translation of the Amharic sentence “ｙｈ ｗｙｎ ｗｄ ｎ．ｗ/ Bernardino Carla ｍｐｅｒｓｉडａ ｍｐｅｒｓｉडａ/译者 output the same Italian translation result “questo vino è caro” as the English sentence “This wine is expensive” translated. In GF a translation of a sentence that bears similar meaning written in different languages results the same output.

In the above windows environment experiment the Amharic sentence supplied as an argument in a form of transliteration string “yh w.yn wd n.w” output itself in the same format. Transliterating and displaying the result in Amharic characters strings can be achieved by adding an optional command “–to_amharic” after the linearization command ”l”. The full command looks as follows
The optional command –lang=Amh inserted next to the linearization command ”l” dictates the GF system to parse and linearize only the Amharic grammar. If this option is left blank, the result will be generated to all the languages the concrete syntax implemented and imported in the running GF system.

Another approach in windows GF shell is to export the output into a text file where the Amharic translated outputs can be represented in the actual Amharic alphabets ከወን ብውድ ፊው.

In GF system, the multilingual food grammar implementation generates twelve thousand two hundred forty separate food comments for each language.

Practically, the above figure constitutes the set of sentences that holds the total number of valid sentences in the food grammars. It is from only these valid sentences in the set that can be supplied as an argument to the translation system. Otherwise, GF responds blank sentence for any arguments which doesn’t exactly map to one of the instances in the sentences set. However, it is important to note that valid inputs doesn’t always bear a meaningful sentences.

Out of the total 12,460 generated sentences, manually evaluating a sample of 1000 randomly generated unique sentences, we found out that there are as many as 274 records that doesn’t give any meaningful senses. This number accounts close to 22% of the total number of sentences in the sentence set. Some sentences such as “that boring fish is very delicious/ም ከጊአሣ ብጣም ፊው” are grammatically correct but conveys a contradictory message. such sentences are discovered in significant amount and identified as the
most difficult problems to solve. If we take an English sentence “this warm warm wine is very very very Italian” is one of the grammatically incorrect sentences generated by GF but still is a valid sentence as an argument. It is also observable that the corresponding literal translation of this meaningless English sentence to different languages are also effects of grammatically incorrect meaningless sentences. The above translation of the awkward English sentence in to Amharic results a meaningless Amharic sentence የአማርኛ ይጠኝ በሚለኝ ይጠኝ ይገኛ ተቀጥ እንወን ይወር። This is a lesson we have learned in the experiment that in GF translation system a garbage input always produce a garbage output. **Table 5.1** shows some of the valid arguments but the grammatically incorrect statements generated by GF.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>English</th>
<th>Amharic</th>
</tr>
</thead>
<tbody>
<tr>
<td>this wine is very very very Italian</td>
<td>የአማርኛ ይጠኝ በሚለኝ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>this warm warm wine is very very expensive</td>
<td>የአማርኛ ይጠኝ በሚለኝ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>that boring fish is very very delicious</td>
<td>ይ እግ እግ እግ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>that Italian fish is Italian</td>
<td>ያ እግ እግ እግ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>that very boring cheese is delicious</td>
<td>እግ እግ እግ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
</tbody>
</table>

**Table 5.1**: Grammaticaly incorrect sentences generated by GF for food grammar accounting 10% of the total set of sentences.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>English</th>
<th>Amharic</th>
</tr>
</thead>
<tbody>
<tr>
<td>this wine is Italian</td>
<td>የአማርኛ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>that expensive cheese is boring</td>
<td>እግ እግ እግ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>this wine is expensive</td>
<td>የአማርኛ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>this wine is very expensive</td>
<td>የአማርኛ ይጠኝ በሚለኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>that fish is fresh</td>
<td>እግ እግ እግ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>this fish is delicious</td>
<td>የአማርኛ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
<tr>
<td>that fresh fish is delicious</td>
<td>እግ እግ እግ ይጠኝ ይገኛ ተቀጥ እንወን ይወር።</td>
<td></td>
</tr>
</tbody>
</table>

**Table 5.2**: Meaningful sentences and their translations generated by GF for food.

---

43
To save time on typing sentences, we performed a random test on the accuracy of the translation using the GF command “gr”, the command generates random sentence for linearization, Appendix D lists some of the sentences randomly generated and linearized sentences.

Food> gr | l

odore: እኔ ም鲭ጆ ይው ነው
That cheese is very expensive
quel formaggio è caro

In GF translation some of these awkward sentences are resulted because the design of the food grammar doesn’t handle cases of different scenarios or doesn’t employ smart paradigm functions. The grammatically incorrect awkward sentences in some cases are generated because of generic handling of adjectives. The adjective “very” modifies itself as “very very” or modifying another Adjective such as warm as “very warm” forms a correct grammar, while the same pattern applied to the adjective “warm” it produces an incorrect meaningless grammar “warm warm” and “warm very”. Such design issues can be solved by introducing paradigm functions in the concrete syntax. in most cases these paradigm functions have a specific implementation to each language. All words belonging to closed category with in the lexical classification can be completely enumerated. The word “very” is part of this category where a special case handling paradigm function are devised for this category.

food> gt -number=20 | l -lang=Amh -to_amharic

odore: እኔ እኔ ይው ነው
odore: እኔ ፈቀጆ ይው ነው
odore: እኔ በተጠ ይው ነው
odore: እኔ ተጠ ይው ነው
odore: እኔ የጣሊያን ይው ነው
odore: እኔ በጣም ይው ነው
odore: እኔ በጣም ፈቀጆ ይው ነው
odore: እኔ በጣም ተጠ ይው ነው
odore: እኔ በጣም የጣሊያን ይው ነው
odore: እኔ በጣም በጣም ይው ነው
Table 5.3: The first 20 sentences generated

5.6 Foods Grammar

With the closed domain food grammar design and implementation we have discussed under section 5.4, we were only able to do translations of singular active voice sentences involving only three food items, six expressive words and one linking verb that generates 12,460 unique food comments. In this section by increasing the food grammar items by one adding the food item "Pizza", and adding additional pronouns "these" and "those" we will show how plural forms of the foods sentence translation become possible. The modifications on the food abstract syntax (Food.gf) provides us the new foods abstract syntax (Foods.gf) as described in fig.5.8. The addition of new item and new pronouns in the abstract foods grammar increased the total number of sentences generated from 12,640 sentences in food grammar to 32,640 sentences in foods grammar, for the later more than 20,000 of them are projected meaningful sentences.

The structural changes we have made on the abstract syntax are relatively minimal, but on the concrete syntax of each language FoodsEng.gf and FoodsAmh.gf shown in fig.5.9 respectively, the changes are a bit complex that involves adding paradigm functions, morphology of Nouns and case handling of nouns/number agreements.
abstract Foods = {
    flags startcat=Phrase ;
    cat
        Phrase ; Item ; Kind ; Quality ;
    fun
        Is : Item -> Quality -> Phrase ;
        This, That, These, Those : Kind -> Item ;
        Kind : Quality -> Kind -> Kind ;
        Wine, Cheese, Fish, Pizza : Kind ;
        Very : Quality -> Quality ;
        Fresh, Warm, Italian, Expensive, Delicious, Boring : Quality ;
    }

fig 5.8: Foods abstract syntax (Foods.gf) upgraded from Food abstract syntax Food.gf.
concrete FoodsEng of Foods = open Prelude in {
    lincat
    Phrase, Quality = SS ;
    Kind = {s : Number => Str} ;
    Item = {s : Str ; n : Number} ;

    lin
    Is item quality = ss (item.s ++ copula ! item.n ++ quality.s) ;
    This = det Sg "this" ;
    That = det Sg "that" ;
    These = det Pl "these" ;
    Those = det Pl "those" ;
    QKind quality kind = {s = n => quality.s ++ kind.s ! n} ;
    Wine = regNoun "wine" ;
    Cheese = regNoun "cheese" ;
    Fish = noun "fish" "fish" ;
    Pizza = regNoun "pizza" ;
    Very = prefixSS "very" ;
    Fresh = ss "fresh" ;
    Warm = ss "warm" ;
    Italian = ss "Italian" ;
    Expensive = ss "expensive" ;
    Delicious = ss "delicious" ;
    Boring = ss "boring" ;

    param
    Number = Sg | Pl ;

    oper
    det : Number -> Str -> {s : Number ; n : Number} =
}

concrete FoodsAmh of Foods = open Prelude in {
    lincat
    Phrase, Quality = SS ;
    Kind = {s : Number => Str} ;
    Item = {s : Str ; n : Number} ;

    lin
    Is item quality = ss (item.s ++ quality.s ++ copula ! item.n) ;
    This = det Sg "yh" ;
    That = det Sg "y(" ;
    These = det Pl "en.z'h" ;
    Those = det Pl "en.z'y(" ;
    QKind quality kind = {s = n => quality.s ++ kind.s ! n} ;
    Wine = regNoun "w.yn" ;
    Cheese = regNoun "ayb" ;
    Fish = noun "as( "as(w?c" ;
    Pizza = regNoun "p'z(" ;
    Very = prefixSS "b.T(m" ;
    Fresh = ss "tk-s" ;
    Warm = ss "m-q" ;
    Italian = ss "y.T(l'y(n" ;
    Expensive = ss "wd" ;
    Delicious = ss "T(f(C" ;
    Boring = ss "z.g'" ;

    param
    Number = Sg | Pl ;

    oper
    det : Number -> Str -> {s : Number -> Str} -> {s : Str ; n : Number} =
\n\n\n\n(a)
The new modified Foods grammar allows the parsing and linearization of plural forms of comments on foods. The translation of sentences like “These wines are delicious/እነዚህ ቈይኖች ጣፋጭ ናቸው”, “Those cheeses are expensive/እነዚያ አይቦች ፍድ ናቸው” become possible. Below is some examples of foods grammar system, for more examples refer to Appendix E.

Test 1)

Food> p-lang=Eng “these wines are delicious” | l-lang=Amh –to_amhric

አነዚህ ቈይኖች ጣፋጭ ናቸው.

Test 2)

Food> p-lang=Eng “those cheeses are expensive” | l-lang=Amh –to_amhric

እነዚያ አይቦች ፍድ ናቸው.

Test 3)

Food> p-lang=Eng “these boring wines are expensive” | l-lang=Amh –to_amhric

አነዚህ ዘጊ ወይኖች ፍድ ናቸው.

Test 4)

Food> p-lang=Eng “those Italian pizzas are fresh” | l-lang=Amh –to_amhric

እነዚያ ቈጠወ ይላማን ፒዛዎች ፍድ ናቸው.

5.7 Analysis of the Multi-lingual Food and Foods Grammar Experiment

5.7.1 Food Grammar Data Preparation

The food comment data is generated in GF using the food grammar by importing the abstract and concrete syntaxes of the food grammar and using the geretae_tree and linerization command. 12,460 unique food comments were generated. A sample of 1,000 English sentences with their corresponding Amharic translation records again randomly generated and reserved for the manual translation accuracy evaluation. Ms Access is used for sorting the sentences and removing duplicated sentences.
5.7.2 Food Grammar Experiment Analysis

In our first experiment on food grammar, our grammar formalism design consists the most common ten food items and seven common terms used to express the quality of a food item. With these closed domain food items and terms GF builds more than twelve thousand present tense singular active voice form Amharic food comments. Manually evaluating a sample of one thousand randomly generated and linearized sentences approximately 78% of the sentences are meaningful, while the rest 22% are either grammatically or semantically incorrect sentences. “that fish is very Italian/ያ አሣ በጣም የጣሊያን ነው” and “that boring fish is very delicious/ያ አሣ በጣም ብጥም ነው” is an example of grammatically and semantically incorrect sentences. Since the food comments multi-lingual translation system is assumed to be operated by human interactions, inputting grammatically incorrect sentences are very minimal.

In spite of the food translation system built in GF based on closed food domain have limitations on its coverage. The experiment showed a encouraging high translation quality. For a sample of 1,000 valid sentences a 84% accurate multi-lingual translations between English and Amharic language achieved.

5.7.3 Foods Grammar Data Preparation

By following a similar GF procedure that generated food comments, we generated 32,460 unique foods comments. A sample of 3,000 English sentences with their corresponding Amharic translation records randomly generated and reserved for a manual translation accuracy evaluation. Ms Access is used for sorting the sentences and removing duplicated food sentences.

5.7.4 Foods Grammar Experiment

The second experiment was made by modifying the food abstract syntax to add more items and pronouns. A paradigm function has also been added on the English and Amharic food concrete syntax to expand the food grammar formalism into foods grammar that handle more foods comments including present tense plural active voice forms. With the newly added items and paradigm functions in the foods grammar GF builds more than thirty two thousand foods comments that includes present tense plural active voice forms. The addition of the paradigm function in the concrete syntax allows the foods translation system to be able to translate more foods comments such as “these pizzas are Italian/እነዚህ የጋስ የጣሊያን ናቸው” and “those Italian wines are very expensive/እነዚያ የጣሊያን ወይኖች በጣም ነው ናቸው”. The evaluation of the translation of a sample of 3,000 randomly selected valid English sentences generated by foods grammar achieved a 81% accurate translation into Amharic. Table 5.4 shows the statistical data between the food grammar and foods grammar.
### Table 5.4 Food and Foods grammar data analysis.

<table>
<thead>
<tr>
<th>Type of Sentences</th>
<th>Sentence Generated</th>
<th>Randomly Selected Sentences for Manual Evaluation</th>
<th>Translation Success Rate, Based on the Sample Evaluation.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Food grammar</strong></td>
<td>-Present tense singular active voice form.</td>
<td>12,460 unique records</td>
<td>1,000</td>
</tr>
</tbody>
</table>
| **Foods grammar** | -Present tense singular active voice form.  
                  -Present tense plural active voice form. | 32,640 unique records | 3,000 | 81% |

Although the food and foods multi-lingual translation system experiment in GF demonstrated the feasibility of developing a closed domain Amharic translation systems. We don’t dare to declare these systems are meant to fully satisfy the foods domain environment. We understand maximizing the utilization of close domain translations systems in GF demands to consider many aspects of sentence translation such as gender, person, number and polarity. To see how Amharic multi-lingual translation can go further in a robust foods domain environment, It needs further modifying and redesigning the foods grammar to handle different cases that in particular concerns Amharic language.

Thus, in order to engage issues concerning Amharic language in a broader way either the full implementation of the Amharic resource grammar has to be achieved or an alternative Amharic mini-resource grammar must be produced, which both tasks are beyond the scope of this paper. However, our experiment on foods grammar can show a case for how these tasks can be achieved by using and modifying an existing resource grammars which are already implemented for other languages. Both the partially implemented Amharic resource grammar and mini-resource grammars implemented for many other languages are available in the GF main website http://www.gramaticalframework.org.
CHAPTER SIX

Conclusion and Recommendation

6.1 Conclusion

The emergence of NLP, a computerized approach to analyzing text that is based on both a set of theories and a set of technologies (24) still remains a very active area of research and development among linguist and computer science professionals. Related to processing and linguistic analysis of text a set of reusable language components and resources has been developed for a number of languages that includes tokenizers, stemmers, POS taggers, lemmatizers, named entity recognizers, term extractors, surface syntactic analysers, parsers and computational lexica. Likewise, Amharic Language lined itself among the few world languages that have their own unique writing system, attracted many researches from both linguistic and computer science professionals. For Amharic NLP many of the researches were conducted based on statistical approaches which as a result produced a number of research outputs and still attracting new researchers. Despite the growing number of research outputs a real progress was much slower mainly because of lack of large size Amharic corpora. The success of researches based on statistical approach is basically depends on the size and quality of the corpus involved in the research, this problem has been reported by many researchers involved in Amharic NLP. Developing a large size quality corpora requires a pragmatic knowledge in linguistics as well as a coordinated hard work and effort of professionals from different disciplines. To make a real progress in Amharic NLP researches developing a large size quality corpora is an essential task.

Meanwhile, another alternate to statistical NLP approach is a Grammar-based approach such as GF. GF specifically designed targeting quality rather than coverage sets restriction to provide large coverage in an open text translation as compared to the statistical approach. But when applied for a closed domain languages multi-lingual translation it works well and with good quality.
Our experiment on string-type Amharic grammar formalism for a food domain demonstrated our initial hypothesis that developing grammar formalism for closed domain Amharic language in GF is quite possible. Where application grammarians can follow a similar pattern further dealing with the core aspects of sentence translation such as gender, person, number and polarity agreements that in particular concerns Amharic language. Our experiment shows how GF makes it simple to describe complicated linguistic issues such as sentence structure and word inflection.

However, we also understand developing a robust closed domain Amharic multi-lingual translation applications can only be easily achieved when a fully implemented Amharic resource grammars libraries and its API is available.

Languages that have the full resource grammar in GF have reached over 28 as of August 2013. These languages provide application grammarians with a fully fledged readily available API. Because of these API’s writing a robust multi-lingual translation applications for these languages in major platforms become possible. The open source application grammar implemented in MOLTO online translations project is one example. With regard to Amharic resource grammar, the partially implemented Amharic resource grammar by Markos(1) has already laid the foundation for the fulfillment of the goal towards engineering fully fledged Amharic resource grammar library, further research and development is yet needs to come to implement more key categories in to the library and improve some of the existing Amharic morphological paradigms and case handling functions up to the limits where countering full features of the Amharic language becomes possible.

Although the paramount task ahead by Amharic GF researchers should be conducting continuous research on producing a fully fledged complete Amharic Resource grammar, it is understood that the realization process requires a lot of time and resources. However, in some cases developing language applications doesn’t require the utilization of all the categories and functions implemented in the resource grammar. Out of the existing total 80 categories and 200 abstract syntax functions of the GF grammar resource library, a mini-resource grammar for a language can be created by only implementing some of the most relevant categories and functions of the target language.
Our conclusion is that, the Amharic foods grammar experiment we had performed with the absence of Amharic resource grammar and its API had exhibited the cost and time effectiveness of Amharic multi-lingual translation development in the rule based GF system, this is proved by the relatively simplicity of designing Amharic grammar in GF. The performance of the Amharic foods grammar multi-lingual sentence translation system had also showed there is a lot of potential for Amharic language in GF to develop a variety of simple closed multi-lingual translation systems that could be useful in our everyday life.

6.2 Recommendation

We recommend Amharic grammarians to get engaged in the following research areas.

- Conduct research on top of this research by introducing more food Items, personal pronouns “I,We,He,She,They”, definite articles “The,A”, linking verbs “was,were” and regular verbs “eat,want,hate,like”.

- Conduct a research towards improving and completing the existing partially implemented Amharic resource grammar by Markos (1).

- Conduct a research for the implementation of Amharic-mini resource grammar and its API. Availability of a mini-Amharic resource grammar could allow application grammarians to develop a variety of medium size domain specific Amharic language multi-lingual translation applications. such applications can be museum object descriptions, greetings, foods comments, sport commentary, product descriptions and many more diverse multi-lingual translation applications for different platforms.

- Conduct a research on the possibility of integrating Amharic close domain multi-lingual translation applications with open source GF projects such as MOLTO phrasebook project.

- Conduct a research on the possibility of developing a closed domain multi-lingual translation in GF involving the major local languages that exists in Ethiopia.
• Conduct a research to identify a closed domain language areas where developing a multilingual GF translation application is applicable and useful.
REFERENCES


22. YIMAN, BAYE.: ከአማርኛስዋሰው ADDIS ABABA. ( e.m.p.d.a press.). (1987)

23. http://www.molto-project.eu/content/faq/what-languages-are-there-molto

# APPENDICES

## Appendix A: Amharic Alphabets

| ገ | ሐ | ሉ | ሊ | ላ | ሢ | ሣ | ሤ | ሥ | ሦ | ሧ | ረ | ሩ | ሪ | ራ | ሬ | ር | ሮ | ሯ | ሰ | ሱ | ሲ | ሳ | ሴ | ስ | ሶ | ሷ | ሸ | ሹ | ሺ | ሻ | ሼ | ሽ | ሾ | ሿ | | | | | | | | | | | | | | | | | | | |
| ግ | ጎ | ጏ | ጐ | ጑ | ጒ | ጓ | ጔ | ጕ | ጖ | ጗ | ጘ | ጙ | ጚ | ጛ | ጜ | ጝ | ጞ | ጟ | ጠ | ጡ | ጢ | ጣ | ጤ | ጥ | ጦ | ጧ | ጨ | ጩ | ጪ | ጫ | ጬ | ጭ | ጮ | ጯ | ጰ | ጱ | ጲ | ጳ | ጴ | ጵ | ጶ | ጷ | ጸ | ጹ | ጺ | ጻ | ጼ | ጽ | ጾ | ጿ |
| ጊ | ጋ | ጌ | ግ | ጎ | ጏ | ጐ | ጑ | ጒ | ጓ | ጔ | ጕ | ጖ | ጗ | ጘ | ጙ | ጚ | ጛ | ጜ | ጝ | ጞ | ጟ | ጠ | ጡ | ጢ | ጣ | ጤ | ጥ | ጦ | ጧ | ጨ | ጩ | ጪ | ጫ | ጬ | ጭ | ጮ | ጯ | ጰ | ጱ | ጲ | ጳ | ጴ | ጵ | ጶ | ጷ | ጸ | ጹ | ጺ | ጻ | ጼ | ጽ | ጾ | ጿ |

## Notes:

- This table illustrates the Amharic alphabet, which is used in Ethiopia for the Amharic language.
- The symbols represent the sounds and characters used in the Amharic script.
- Each row and column corresponds to a specific phonetic or grammatical category within the Amharic language.
### Appendix - B: Transliteration Table for *fidāl* adapted from "Markos Kasa 2010: IMPLEMENTING AN OPEN SOURCE ARARIC"

**Format:** UTF code no | *fidāl* character | transliteration in the system

| 1200 | ʕ | h' | | 1225 | ʕ | h' | | 1297 | ʕ | n' | | 124d | ʕ | j' | | 1302 | ʕ | j' | | 1337 | ʕ | j' | |
| 1201 | ʕ | h' | | 1226 | ʕ | h' | | 1298 | ʕ | N | | 1265 | ʕ | j' | | 1303 | ʕ | j' | | 1338 | ʕ | j' |
| 1202 | ʕ | h' | | 1227 | ʕ | S | | 1299 | ʕ | N | | 126d | ʕ | j' | | 1304 | ʕ | j' | | 1339 | ʕ | j' |
| 1203 | ʕ | h' | | 1228 | ʕ | v | | 129a | ʕ | N | | 126d | ʕ | j' | | 1305 | ʕ | j' | | 135a | ʕ | N | |
| 1204 | ʕ | h' | | 1229 | ʕ | R | | 129b | ʕ | N | | 12b0 | ʕ | j' | | 1306 | ʕ | j' | | 135b | ʕ | S | |
| 1205 | ʕ | h' | | 122a | ʕ | R | | 129c | ʕ | N | | 12b0 | ʕ | j' | | 1307 | ʕ | j' | | 135c | ʕ | S | |
| 1206 | ʕ | h' | | 122b | ʕ | R | | 129d | ʕ | N | | 12b0 | ʕ | j' | | 1308 | ʕ | j' | | 135d | ʕ | S | |
| 1207 | ʕ | h' | | 122c | ʕ | R | | 129e | ʕ | N | | 12b0 | ʕ | j' | | 1309 | ʕ | j' | | 135e | ʕ | S | |
| 1208 | ʕ | h' | | 122d | ʕ | R | | 129f | ʕ | N | | 12b0 | ʕ | j' | | 1310 | ʕ | j' | | 135f | ʕ | S | |
| 1209 | ʕ | h' | | 122e | ʕ | R | | 12a0 | ʕ | N | | 12b0 | ʕ | j' | | 1311 | ʕ | j' | | 135g | ʕ | S | |
| 1210 | ʕ | h' | | 122f | ʕ | T | | 12a1 | ʕ | N | | 12b0 | ʕ | j' | | 1312 | ʕ | j' | | 135h | ʕ | S | |
| 1211 | ʕ | h' | | 1230 | ʕ | N | | 12a2 | ʕ | N | | 12b0 | ʕ | j' | | 1313 | ʕ | j' | | 135i | ʕ | S | |
| 1212 | ʕ | h' | | 1231 | ʕ | N | | 12a3 | ʕ | N | | 12b0 | ʕ | j' | | 1314 | ʕ | j' | | 135j | ʕ | S | |
| 1213 | ʕ | h' | | 1232 | ʕ | N | | 12a4 | ʕ | N | | 12b0 | ʕ | j' | | 1315 | ʕ | j' | | 135k | ʕ | S | |
| 1214 | ʕ | h' | | 1233 | ʕ | N | | 12a5 | ʕ | N | | 12b0 | ʕ | j' | | 1316 | ʕ | j' | | 135l | ʕ | S | |
| 1215 | ʕ | h' | | 1234 | ʕ | N | | 12a6 | ʕ | N | | 12b0 | ʕ | j' | | 1317 | ʕ | j' | | 135m | ʕ | S | |
| 1216 | ʕ | h' | | 1235 | ʕ | N | | 12a7 | ʕ | N | | 12b0 | ʕ | j' | | 1318 | ʕ | j' | | 135n | ʕ | S | |
| 1217 | ʕ | h' | | 1236 | ʕ | N | | 12a8 | ʕ | N | | 12b0 | ʕ | j' | | 1319 | ʕ | j' | | 135o | ʕ | S | |
| 1218 | ʕ | h' | | 1237 | ʕ | N | | 12a9 | ʕ | N | | 12b0 | ʕ | j' | | 1320 | ʕ | j' | | 135p | ʕ | S | |
| 1219 | ʕ | h' | | 1238 | ʕ | N | | 12a0 | ʕ | N | | 12b0 | ʕ | j' | | 1321 | ʕ | j' | | 135q | ʕ | S | |
| 1220 | ʕ | h' | | 1239 | ʕ | N | | 12a1 | ʕ | N | | 12b0 | ʕ | j' | | 1322 | ʕ | j' | | 135r | ʕ | S | |
| 1221 | ʕ | h' | | 1240 | ʕ | N | | 12a2 | ʕ | N | | 12b0 | ʕ | j' | | 1323 | ʕ | j' | | 135s | ʕ | S | |
| 1222 | ʕ | h' | | 1241 | ʕ | N | | 12a3 | ʕ | N | | 12b0 | ʕ | j' | | 1324 | ʕ | j' | | 135t | ʕ | S | |
| 1223 | ʕ | h' | | 1242 | ʕ | N | | 12a4 | ʕ | N | | 12b0 | ʕ | j' | | 1325 | ʕ | j' | | 135u | ʕ | S | |
| 1224 | ʕ | h' | | 1243 | ʕ | N | | 12a5 | ʕ | N | | 12b0 | ʕ | j' | | 1326 | ʕ | j' | | 135v | ʕ | S | |
| 1225 | ʕ | h' | | 1244 | ʕ | N | | 12a6 | ʕ | N | | 12b0 | ʕ | j' | | 1327 | ʕ | j' | | 135w | ʕ | S | |
| 1226 | ʕ | h' | | 1245 | ʕ | N | | 12a7 | ʕ | N | | 12b0 | ʕ | j' | | 1328 | ʕ | j' | | 135x | ʕ | S | |
| 1200 | icaid | 1201 | icaid | 1202 | icaid | 1203 | icaid | 1204 | icaid | 1205 | icaid | 1206 | icaid | 1207 | icaid | 1208 | icaid | 1209 | icaid | 1210 | icaid | 1211 | icaid | 1212 | icaid | 1213 | icaid | 1214 | icaid | 1215 | icaid | 1216 | icaid | 1217 | icaid | 1218 | icaid | 1219 | icaid | 1220 | icaid | 1221 | icaid | 1222 | icaid | 1223 | icaid | 1224 | icaid |
|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|
**Appendix D:** list of sentences randomly generated and linearized from food grammar.

<table>
<thead>
<tr>
<th>English</th>
<th>Amharic</th>
</tr>
</thead>
<tbody>
<tr>
<td>that fish is boring</td>
<td>ይ አሣ በን ከው</td>
</tr>
<tr>
<td>that fish is delicious</td>
<td>ይ አሣ ጥኡም ከው</td>
</tr>
<tr>
<td>that wine is boring</td>
<td>ይ ወይን ከው</td>
</tr>
<tr>
<td>that Italian wine is very warm</td>
<td>ይ የጣሊያን ወይን በጣም ከው</td>
</tr>
<tr>
<td>that wine is very Italian</td>
<td>ይ ወይን በጣም የጣሊያን ከው</td>
</tr>
<tr>
<td>This fish is expensive</td>
<td>ይ ከ አሣ ውድ ከው</td>
</tr>
<tr>
<td>This wine is fresh</td>
<td>ይ ከ ወይን ትኩሥ ከው</td>
</tr>
<tr>
<td>This fresh wine is Italian</td>
<td>ይ የተኩሥ ወይን የጣሊያን ከው</td>
</tr>
<tr>
<td>That boring expensive አሣ is boring</td>
<td>ይ ከ ወጊ ውድ ከው አሣ ከው</td>
</tr>
<tr>
<td>This Italian fish is warm</td>
<td>ይ ከ የጣሊያን ወጊ በጣም ከው</td>
</tr>
<tr>
<td>This delicious wine is Italian</td>
<td>ይ የጠራ ወይን የጣሊያን ከው</td>
</tr>
<tr>
<td>this very boring wines is fresh</td>
<td>ይ የሱ በጣም ወጊ የአethyl ከው</td>
</tr>
<tr>
<td>This cheese is very boring</td>
<td>ይ ከ አይብ በጣም ከው አሣ ከው</td>
</tr>
</tbody>
</table>
### Appendix E: list of sentences randomly generated and linearized from foods grammar.

<table>
<thead>
<tr>
<th>English</th>
<th>Amharic</th>
</tr>
</thead>
<tbody>
<tr>
<td>This fresh wines are delicious</td>
<td>እነዚህ ትኩስ ተፋጭ ባራታ ነው</td>
</tr>
<tr>
<td>That pizza is Italian</td>
<td>የ ፒዛ የጣሊያን ነው</td>
</tr>
<tr>
<td>This fish is fresh</td>
<td>ያወ ትኩስ ነው</td>
</tr>
<tr>
<td>That warm fish is fresh</td>
<td>ያ የሙቅ ትኩስ ነው</td>
</tr>
<tr>
<td>Those cheeses are fresh</td>
<td>እነዚያ ከይብ ትኩስ ናቸው</td>
</tr>
<tr>
<td>Those cheeses are fresh</td>
<td>እነዚያ ከይብ ትኩስ ናቸው</td>
</tr>
<tr>
<td>These fish are very expensive</td>
<td>እነዚሁ ከምወ ውድ ናቸው</td>
</tr>
<tr>
<td>This fish is very Italian</td>
<td>ያወ ለጣሊያን ነው</td>
</tr>
<tr>
<td>Those boring fish are very delicious</td>
<td>እነዚያ ወጊ ለሆ ባራታ ነው</td>
</tr>
<tr>
<td>Those wines are very expensive</td>
<td>እነዚያ ከይብ ውድ ናቸው</td>
</tr>
<tr>
<td>That pizza is warm</td>
<td>ያ የሙቅ ነው</td>
</tr>
<tr>
<td>These fresh cheeses are expensive</td>
<td>እነዚሁ ከይብ ባራታ ነው</td>
</tr>
<tr>
<td>These expensive expensive cheese is fresh</td>
<td>ያ የሙቅ ከይብ ባራታ ነው</td>
</tr>
<tr>
<td>Those warm pizzas are boring</td>
<td>እነዚያ ወጊ ይቅ ዘጊ ናቸው</td>
</tr>
<tr>
<td>That boring expensive wine is boring</td>
<td>ያ ወጊ ውድ ወን ዘጊ ነው</td>
</tr>
<tr>
<td>This Italian cheese is warm</td>
<td>ያወ ለጣሊያን ከይብ ነው</td>
</tr>
<tr>
<td>This delicious pizza is Italian</td>
<td>ያወ የጣሊያን ፒዛ ነው</td>
</tr>
<tr>
<td>These very boring wines are fresh</td>
<td>እነዚያ ወጊ ለሆ ትኩስ ናቸው</td>
</tr>
<tr>
<td>This cheese is very boring</td>
<td>ያወ ከይብ ዘጊ ነው</td>
</tr>
</tbody>
</table>
**Appendix F:** list of sentences inaccurately linearized using the Amharic Resource Grammar.

<table>
<thead>
<tr>
<th>English</th>
<th>Amharic</th>
</tr>
</thead>
<tbody>
<tr>
<td>These clever boys love beer</td>
<td>እነዚህ ብልሆች ፍቅር ቢራ</td>
</tr>
<tr>
<td>Those bad boys drink beer</td>
<td>እነወታ መጥፎዎች ቢራ ይወድዳሉ</td>
</tr>
<tr>
<td>The young boys and girls are very clever</td>
<td>መጣቶቹ እና እና በጣም ቢልህ ይስው</td>
</tr>
<tr>
<td>The youngest boys and girls are very clever</td>
<td>እና እና በጣም ቢልህ ይስው</td>
</tr>
<tr>
<td>Those dirty young boys are bad</td>
<td>እነወታ መጥፎዎች ልጆች መጥፎዎች ናቸው</td>
</tr>
<tr>
<td>They broke the rules</td>
<td>ጉዳይ ፈስገው</td>
</tr>
</tbody>
</table>

**Appendix G:** list of empty outputs using the Amharic Resource Grammar.

<table>
<thead>
<tr>
<th>English</th>
<th>Amharic</th>
</tr>
</thead>
<tbody>
<tr>
<td>this boys love beer</td>
<td>Empty result due to the number disagreement</td>
</tr>
<tr>
<td>they are bad boy</td>
<td>&gt;&gt;</td>
</tr>
<tr>
<td>these boys and girls are nice</td>
<td>Empty result due to missing the word “nice” in the Amharic Lexicon.</td>
</tr>
<tr>
<td>the car is brand new</td>
<td>Empty result due to missing the word “brand” in the Amharic Lexicon.</td>
</tr>
</tbody>
</table>
Appendix H: A total of one hundred forty inflected words produced for the tri-radical root verb “sdb’/ዕሠ” using the Amharic resource grammar.

<table>
<thead>
<tr>
<th>Perf Act (Per1 Sg)</th>
<th>ውስጥላት</th>
<th>Perf Act (Per1 Pl)</th>
<th>ውስጥለኝ</th>
<th>Perf Act (Per2 Sg Masc)</th>
<th>ውስጥለኝ</th>
<th>Perf Act (Per2 Pl Masc)</th>
<th>ውስጥለኝ</th>
<th>Perf Act (Per2 Pl Fem)</th>
<th>ውስጥለኝ</th>
<th>Perf Act (Per3 Sg Masc)</th>
<th>ውስጥለኝ</th>
<th>Perf Act (Per3 Pl Masc)</th>
<th>ውስጥለኝ</th>
<th>Perf Act (Per3 Pl Fem)</th>
<th>ውስጥለኝ</th>
<th>Perf Act (Per3 Sg Fem)</th>
<th>ውስጥለኝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jus_Imperat Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>Jus_Imperat Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Jus_Imperat Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Jus_Imperat Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Jus_Imperat Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Jus_Imperat Act (Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>Jus_Imperat Act (Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>Jus_Imperat Act (Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>Jus_Imperat Act (Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>Genud Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>Genud Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Genud Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Genud Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Genud Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Genud Act (Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>Genud Act (Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>Genud Act (Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>Genud Act (Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>Perf Pas(Per1 Sg)</td>
<td>ውስጥላት</td>
<td>Perf Pas(Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Perf Pas(Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Perf Pas(Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Perf Pas(Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Perf Pas(Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>Perf Pas(Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>Perf Pas(Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>Perf Pas(Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>Imperf Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>Imperf Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Imperf Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Imperf Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Imperf Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Imperf Act (Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>Imperf Act (Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>Imperf Act (Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>Imperf Act (Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>Imperf Pas(Per1 Sg)</td>
<td>ውስጥላት</td>
<td>Imperf Pas(Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Imperf Pas(Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Imperf Pas(Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Imperf Pas(Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Imperf Pas(Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>Imperf Pas(Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>Imperf Pas(Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>Imperf Pas(Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>Cont Pas(Per1 Sg)</td>
<td>ውስጥ</td>
<td>Cont Pas(Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Cont Pas(Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Cont Pas(Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Cont Pas(Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Cont Pas(Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>Cont Pas(Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>Cont Pas(Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>Cont Pas(Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>Cont Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>Cont Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Cont Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Cont Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Cont Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Cont Act (Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>Cont Act (Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>Cont Act (Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>Cont Act (Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>CompPerf Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>CompPerf Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>CompPerf Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>CompPerf Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>CompPerf Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>CompPerf Act (Per3 Sg Masc)</td>
<td>ውስጦች</td>
<td>CompPerf Act (Per3 Pl Masc)</td>
<td>ውስጦች</td>
<td>CompPerf Act (Per3 Pl Fem)</td>
<td>ውስጦች</td>
<td>CompPerf Act (Per3 Sg Fem)</td>
<td>ውስጦች</td>
</tr>
<tr>
<td>Jus_Imperat Pas(Per3 Sg Fem)</td>
<td>ውስጥ</td>
<td>Jus_Imperat Pas(Per3 Pl Fem)</td>
<td>ውስ骝ች</td>
<td>Jus_Imperat Pas(Per3 Pl Masc)</td>
<td>ውስ骝ች</td>
<td>Jus_Imperat Pas(Per3 Pl Fem)</td>
<td>ውስ骝ች</td>
<td>Jus_Imperat Pas(Per3 Pl Masc)</td>
<td>ውስ骝ች</td>
<td>Jus_Imperat Pas(Per3 Sg Masc)</td>
<td>ውስ骝ች</td>
<td>Jus_Imperat Pas(Per3 Pl Masc)</td>
<td>ውስ骝ች</td>
<td>Jus_Imperat Pas(Per3 Pl Fem)</td>
<td>ውስ骝ች</td>
<td>Jus_Imperat Pas(Per3 Sg Fem)</td>
<td>ውስ骝ች</td>
</tr>
<tr>
<td>Infinitive Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>Infinitive Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Infinitive Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Infinitive Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Infinitive Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Infinitive Act (Per3 Sg Masc)</td>
<td>ውስ.truth</td>
<td>Infinitive Act (Per3 Pl Masc)</td>
<td>ውስ.truth</td>
<td>Infinitive Act (Per3 Pl Fem)</td>
<td>ውስ.truth</td>
<td>Infinitive Act (Per3 Sg Fem)</td>
<td>ውስ.truth</td>
</tr>
<tr>
<td>Gerund Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>Gerund Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Gerund Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Gerund Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Gerund Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Gerund Act (Per3 Sg Masc)</td>
<td>ውስ.truth</td>
<td>Gerund Act (Per3 Pl Masc)</td>
<td>ውስ.truth</td>
<td>Gerund Act (Per3 Pl Fem)</td>
<td>ውስ.truth</td>
<td>Gerund Act (Per3 Sg Fem)</td>
<td>ውስ.truth</td>
</tr>
<tr>
<td>Parti Act (Per1 Sg)</td>
<td>ውስጥ</td>
<td>Parti Act (Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Parti Act (Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Parti Act (Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Parti Act (Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Parti Act (Per3 Sg Masc)</td>
<td>ውስ.truth</td>
<td>Parti Act (Per3 Pl Masc)</td>
<td>ውስ.truth</td>
<td>Parti Act (Per3 Pl Fem)</td>
<td>ውስ.truth</td>
<td>Parti Act (Per3 Sg Fem)</td>
<td>ውስ.truth</td>
</tr>
<tr>
<td>Parti Pas(Per1 Sg)</td>
<td>ውስጥላት</td>
<td>Parti Pas(Per1 Pl)</td>
<td>ውስጥለኝ</td>
<td>Parti Pas(Per2 Sg Masc)</td>
<td>ውስጦች</td>
<td>Parti Pas(Per2 Pl Masc)</td>
<td>ውስጦች</td>
<td>Parti Pas(Per2 Pl Fem)</td>
<td>ውስጦች</td>
<td>Parti Pas(Per3 Sg Masc)</td>
<td>ውስ.truth</td>
<td>Parti Pas(Per3 Pl Masc)</td>
<td>ውስ.truth</td>
<td>Parti Pas(Per3 Pl Fem)</td>
<td>ውስ.truth</td>
<td>Parti Pas(Per3 Sg Fem)</td>
<td>ውስ.truth</td>
</tr>
</tbody>
</table>
### Appendix I: list of sentences accurately linearized using the Amharic Resource Grammar.

<table>
<thead>
<tr>
<th><strong>Sentence</strong></th>
<th><strong>English</strong></th>
<th><strong>Amharic</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>I will come to you</td>
<td>እኔ ሰደ እርሳንተ እመጣለሁ</td>
<td>እኔ ሰደ እርስዎ እመጣለሁ</td>
</tr>
<tr>
<td>I love you</td>
<td>እኔ እርስዎን እወድዳለሁ</td>
<td>እኔ እርስዎን እወድዳለሁ</td>
</tr>
<tr>
<td>these girls are bad</td>
<td>ድህኑ ወንድ ወንድ መጥፎዎች ናቸው</td>
<td>ድህነ ሥታታች መጥፎዎች ናቸው</td>
</tr>
<tr>
<td>these boys love beer</td>
<td>ድህነ ሥታ ቢራ ይወድዳሉ</td>
<td>ድህነ ሥታ ቢራ ይወድዳሉ</td>
</tr>
<tr>
<td>Those very bad boys drink beer</td>
<td>ድህነ በጣም መጥፎ ልጆች ቢራ ይጠጣሉ</td>
<td>ድህነ በጣም መጥፎ ልጆች ቢራ ይጠጣሉ</td>
</tr>
<tr>
<td>I eat bread</td>
<td>እኔ ዳቦ እበላለሁ</td>
<td>እኔ ዳቦ እበላለሁ</td>
</tr>
<tr>
<td>this car is new</td>
<td>ዕህ ወንድ እንስ ከው</td>
<td>ዕህ ወንድ እንስ ከwald</td>
</tr>
<tr>
<td>these cars are old</td>
<td>ድህነ ወንድ እርስዎች ናቸው</td>
<td>ድህነ ወንድ እርስዎች ናቸው</td>
</tr>
<tr>
<td>she breaks the window</td>
<td>እርሷ ወስኞቱን ዋስብራለች</td>
<td>እርሷ ወስኞቱን ዋስብራለች</td>
</tr>
<tr>
<td>those windows are clean</td>
<td>ድህነ ወስኞት ዋእን ዋት ዋት ዋት</td>
<td>ድህነ ወስኞት ዋእን ዋት ዋት ዋት</td>
</tr>
</tbody>
</table>
DECLARATION

I undersigned declare that this thesis is my original work and has not been presented for a degree in any other university, and that all materials used for the thesis have been duly acknowledged.

____________________________________________
Nebyou Woubshet Worede
June, 2014

The thesis has been submitted for the examination my approval as a university advisor.

____________________________________________
Dr. Solomon Teferra
June, 2014