SYNTHESIS OF LOW BANDGAP ALTERNATING COPOLYMERS BASED ON FLUORENE-QUINOXALINE AND BENZOTHIADIAZOLE UNITS

A PROJECT PRESENTED TO SCHOOL OF GRADUATE STUDIES
ADDIS ABABA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY

ADVISOR: WENDIMAGEGN MAMMO (Prof.)

BY: ENDALE MULUGETA

July 9, 2010
Acknowledgement

First of all, I would like sincerely to thank my advisor Professor Wendimagegn Mammo for his guidance, kindness and encouragement throughout this project. It has been a great experience to learn from him through discussions. I am so grateful for his patience and trust. I would like to thank Dr Shimelis Admassie for performing Uv-vis and CV measurements of the polymers, Desta Anteneh for his encouragement, NMR measurements of the samples and for valuable discussions during this project. My special thanks to my friends Zewdneh Genene and Mekonnen Abebayehu shared useful ideas and Yoseph Atlaw for his cooperation to run NMR.

I feel indebted to every member of my great family especially my mother Lakech Teshome.

Finally, I would like to extend my gratitude to Department of Chemistry, AAU, and Wolaita Sodo University, WSU, for giving me the opportunity to join postgraduate programme.

Above all and before everything I am grateful to God for everything he gave me.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Table of contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of tables</td>
<td>iv</td>
</tr>
<tr>
<td>List of schemes</td>
<td>v</td>
</tr>
<tr>
<td>List of figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
</tbody>
</table>

1. INTRODUCTION | 1 |

2. LITRATURE REVIEW | 4 |
 2.1. The fluorene monomer sub-unit | 4 |
 2.2. Synthesis of fluorene-based polymers | 7 |
 2.3. Optical and electronic properties of polyfluorenes | 8 |
 2.4. Applications of polyfluorenes | 9 |
 2.5. The quinoxaline monomer sub-unit | 9 |
 2.6. Synthesis of quinoxaline polymers | 11 |

3. OBJECTIVES OF THE WORK | 14 |

4. RESULT AND DISCUSSION | 15 |
 4.1. Synthesis of quinoxaline-based monomers | 15 |
 4.2. Synthesis of 6,7-diphenyl-4,9-di(thiophene-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline. | 23 |
 4.3. Attempted synthesis of pyrazino[3,4-g]quinoxaline 42 and 43 | 27 |
5. SYNTHESIS OF THE COPOLYMERS--- 28

5.1. Characterization of the polymers--30

6. CONCLUSION ---34

7. EXPERIMENTAL ---36

7.1. Materials and Methods--36

7.2. Reagents---36

7.3. Procedures---37

8. REFERENCES---47

9. APPENDICES---51
List of table

Page

Table 1: 1H -NMR (400.13, CDCl$_3$) data (δ_{ppm}) of compound 34 and 35.---------17

Table 2: 13C-NMR (100.6, CDCl$_3$) data (δ_{ppm}) of compound 34 and 35. .---------18

Table 3: 1H -NMR (400.13, CDCl$_3$) data (δ_{ppm}) of compound 36, 37 and 38. ----21

Table 4: 13C-NMR (100.6, CDCl$_3$) data (δ_{ppm}) of compound 22, 36, 37 and 38.--23

Table 5: 1H -NMR (400.13, CDCl$_3$) data (δ_{ppm}) of compound 40 and 41.---------25

Table 6: 13C-NMR (100.6, CDCl$_3$) data (δ_{ppm}) of compound 39, 40 and 41. ------26

Table 7: Optical data of the polymers in solution and in film. ------------------------32
List of Schemes

<table>
<thead>
<tr>
<th>Scheme 1: Synthesis of 9,9-disubstituted fluorene monomer via nucleophilic substitution reaction.</th>
<th>Page 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2: Synthesis of 9,9-disubstituted fluorene monomers using phase transfer catalysis.</td>
<td>Page 6</td>
</tr>
<tr>
<td>Scheme 3: Synthesis of boronate ester (path a) and boronic acid (path b) for Suzuki coupling reaction.</td>
<td>Page 7</td>
</tr>
<tr>
<td>Scheme 4: Synthesis of fluorene-based polymers using (A) Yamamoto, (B) Suzuki, and (C) Stille coupling reactions.</td>
<td>Page 8</td>
</tr>
<tr>
<td>Scheme 5: Synthesis of quinoxaline derivative 15.</td>
<td>Page 10</td>
</tr>
<tr>
<td>Scheme 6: Synthesis of quinoxaline-based monomer 20 by the iminooxime cyclization route.</td>
<td>Page 10</td>
</tr>
<tr>
<td>Scheme 7: Synthesis of quinoxaline-based monomer 24 by the benzothiadiazole route.</td>
<td>Page 11</td>
</tr>
<tr>
<td>Scheme 8: Synthesis of poly[quinoxalinevinylene) 26 via Stille cross-coupling.</td>
<td>Page 11</td>
</tr>
<tr>
<td>Scheme 9: Synthesis of quinoxaline-based copolymer using Stille cross-coupling reaction.</td>
<td>Page 12</td>
</tr>
<tr>
<td>Scheme 10: Synthesis of quinoxaline based copolymer 31.</td>
<td>Page 12</td>
</tr>
<tr>
<td>Scheme 11: Synthesis of 1,2-bis-(4-octyloxy)phenyl)ethane-1,2-dione (35).</td>
<td>Page 16</td>
</tr>
<tr>
<td>Scheme 12: Synthesis of quinoxaline–based monomer 38.</td>
<td>Page 19</td>
</tr>
<tr>
<td>Scheme 13: Synthesis of compound 41.</td>
<td>Page 24</td>
</tr>
<tr>
<td>Scheme 14: Synthesis of pyrazino[2,3-g]quinoxalines 42 and 43.</td>
<td>Page 28</td>
</tr>
</tbody>
</table>
Scheme 15: Synthesis of copolymer 44.--------------------29

Scheme 16: Synthesis of copolymer 45.--------------------30
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Structures of some conjugated polymers.</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2</td>
<td>UV-Vis spectra of polymer 44 and 45 in solution.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3</td>
<td>UV-Vis spectra of polymer 44 and 45 in film.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Cyclic voltammogram of polymer 44.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Cyclic voltammogram of polymer 45.</td>
<td>34</td>
</tr>
</tbody>
</table>
List of abbreviations

DMF: N,N-Dimethylformamide
HOMO: Highest Occupied Molecular Orbital
LUMO: Lowest Unoccupied Molecular Orbital
δ: Chemical shift
J: Coupling constant
s: Singlet
d: Doublet
t: Triplet
brd: Broad doublet
brs: Broad singlet
m: Multiplet
dd: Doublet of doublets
ppm: Parts per million
NBS: N-Bromosuccinimide
PLED: Polymer light emitting diodes
PL: Photoluminescence
EL: Electroluminescence
PPP: Poly(p-phenylene)
PPV: Poly(p-phenylenevinylene)
PPE: Poly(p-phenyleneethylene)
TEAOH: Tetraethylammonium hydroxide
HAc: Acetic acid
DME: Dimethoxy ethane
M_n: number average molecular weight
M_w: weight average molecular weight
PFs: Polyfluorenes
BPO: Benzoylperoxide
Abstract

Donor/Acceptor-Copolymers, as so-called “low-band-gap” π-conjugated polymers, have been widely investigated and applied in different areas such as organic photovoltaics (OPVs), organic light emitting diodes (OLEDs) and organic field effect transistors (OFETs). Due to the attractive features of those functional organic polymer materials such as light weight, flexibility and low cost of production they have attracted recent interest in research development.

In the course of this project, the synthesis of polyfluorene copolymers was attempted. Monomers based on quinoxaline, namely, 5,8-bis-(5-bromo-thiophen-2-yl)-2,3-bis(4-octyloxyphenyl)quinoxaline was successfully synthesized. Two copolymers, namely, poly[5-(5-(9,9-bis-[2-(2-methoxy-ethoxy)-ethyl]-7-methyl-9H-fluoren-2-yl)-thiophen-2-yl)-8-(5-methyl-thiophen-2-yl)-2,3-bis-(4-octyloxyphenyl)-quinoxaline] and poly[5-(5-(7-(7-(9,9-bis-[2-(2-methoxy-ethoxy)-ethyl]-9H-fluoren-2-yl)-benzo[1,2,5]thiadiazol-4-yl)-9,9-bis-[2-(2-methoxy-ethoxy)-ethyl]-9H-fluoren-2-yl)-thiophen-2-yl)-2,3-bis-(4-octyloxy-phenyl)-8-thiophen-2-yl-quinoxaline].

Were prepared with a palladium(0)-catalyzed Suzuki-coupling polymerization reaction and the polymers were characterized by NMR, Uv-Vis a
1. INTRODUCTION

Conjugated polymers have attracted considerable attention as a new class of electronic material, since the study of these systems has generated entirely new scientific concepts as well as potential for new technology\(^1\). Conjugated polymers with low specific weight, processable, soluble, tunable and flexible mechanical properties are useful to obtain a unique and novel material with numerous exciting applications\(^1-4\).

Organic polymers (conjugated polymers) have been widely employed in electronic device fabrication mainly for their insulating properties. Starting from 1997 the role of organic polymers and oligomers in the electronic industry has been continuously reconsidered in a new light as potential substituents of conventional inorganic conductors in a great variety of applications\(^1-5\). Indeed, the pioneering work of Shirakawa, MacDiarmid, Heeger and coworkers allowed thin films of polyacetylene to be obtained\(^6\), a new organic polymer discovered by Natta in 1958\(^7,8\) which exhibited a relatively high electrical conductivity by “doping” with bromine or iodine\(^9\). This fundamental discovery opened the way to the development of a wide range of organic polyconjugated materials, with different structural frameworks based upon aromatic, heteroaromatic, vinylic or acetylenic π-system (fig 1).

\[
\begin{align*}
\text{Polyacetylene (PA)} & : \quad \begin{array}{c}
\text{Poly}(p\text{-phenylene}) \quad (\text{PPP}) \\
\text{Polythiophene (PT)} & : \quad \begin{array}{c}
\text{Poly}(p\text{-phenylenevinylene}) \quad (\text{PPV}) \\
\text{Polypyrrole (PPy)} & : \quad \begin{array}{c}
\text{Polyaniline (PANI)}
\end{array}
\end{array}
\end{array}
\end{align*}
\]

Fig 1: Structures of some conjugated polymers.
Among the great variety of applications developed during the last two decades, organic polymers (PPV, PPE and PPP) have been employed in the fabrication of electroluminescent devices\(^6\) plastic lasers\(^7\) and photovoltaic cells\(^8\). Furthermore, optical non-linearities of conjugated polymers offer potential applications in electrooptical and optical devices such as digital optical switch, light modulators and high density optical data storage devices\(^{10-13}\). New molecular architectures are continuously designed with the aim of improving the performance of electrical and electrooptical devices.

During the past years these conjugated polymers have given rise to an enormous amount of experimental and theoretical work devoted to (i) the analysis of their structure and properties using a whole arsenal of physical techniques, (ii) the development of synthesis methods allowing a better control of their structure and electronic properties, (iii) the synthesis of functional polymers in which the electronic properties are associated with specific properties afforded by covalently attached prosthetic groups\(^{14,15}\) and (iv) the analysis of their multiple technological applications extending from bulk utilization such as antistatic coatings, energy storage to highly sophisticated electronic, photonic and bioelectronics devises\(^{15,16}\).

The world-wide demand for energy has grown dramatically over the last century with an increase in the industrialization of the world. The need for energy is likely to grow even more in the 21st century with the improvements in living standards across the planet. This high demand of energy brings into question the energy sources currently used and the depletion of natural resources\(^{17}\). Today, fossil fuels like coal, oil and natural gas are used for more than 60% of the world’s electricity production. These fuels have a very negative impact on the environment and many researchers agree that the earth’s climate is changing as a consequence of fossil fuel emissions. The earth’s resources of oil, coal and natural gas usually referred to as non-renewable energy resources are limited
and will be depleted. Estimates suggest that within 20 years oil and natural gas production rates will start to decrease with these prospects, new sources of energy must be implemented that do not rely on depleting resources. There are several examples of renewable and more environmentally friendly ways to produce electricity like bio fuels, hydroelectric power, wind power and solar energy.

Renewable energy, for instance the energy provided by the sun, can be used in solar collector system to heat water or by direct conversion into electric energy in photovoltaic devices. Current renewable energy systems cannot produce energy at the low cost that fossil fuel power plants can. For large scale implementation of renewable energy power plants, it is therefore necessary to develop systems that can compete on an economic level with fossil fuel.
1. LITERATURE REVIEW

Recent application of alternating copolymers in light-emitting diodes (LEDs)\(^\text{19}\), field-effect transistors (FETs)\(^\text{20,21}\) and plastic solar cells\(^\text{21}\) have attracted great attention. In polymer light-emitting diodes (PLEDs)\(^\text{22}\), polyfluorenes are promising candidates as blue emitters due to their high photoluminescence quantum efficiencies (PLQEs) as a solid film\(^\text{23}\), their excellent solubility, film forming ability, and the ease of controlling their properties through facile substitution in the 9,9-position of the fluorene unit\(^\text{24}\). For example the substituent at the 9,9-position decouple when they are placed at 90° angles to the π-conjugated system of the fluorene molecule this allows a fluorene compounds solubility and aggregation behavior to be improved without the influence of its electronic properties\(^\text{25}\). In addition, chemical modification on the main chain, side chain, and chain end of polyfluorenes allow elaborate tuning of emission color covering the whole visible range (blue, green, yellow, red and white)\(^\text{26-28}\) and improvement of long-term operational stability\(^\text{28,29}\) in organic electronic and photonics\(^\text{20,21}\), exhibiting efficient polarized light emission\(^\text{30}\), long lasting blue electroluminescence, impressive lasing gain\(^\text{31}\), and promising performance in organic solar cells\(^\text{31}\).

2.1. The fluorene monomer sub-unit

The ability to functionalize polyfluorene at the methylene bridge without distorting the conjugation between monomer units has been utilized as a method to improve the applications and properties of polyfluorenes. For example in unsubstituted fluorene, the protons at the sp\(^3\) carbon in the methylene bridge (9-position) are susceptible towards oxidation reaction\(^\text{32,33}\). Such chemical reaction can be suppressed by double alkylation\(^\text{33}\) or arylation\(^\text{33}\) of fluorene, which has the additional advantage of enhancing the solubility in organic solvents\(^\text{33}\).

The 9,9-disubstituted fluorene monomer can be synthesized by using different types of reactions; the most commonly used reactions are nucleophilic
substitutions using an alkyllithium reagent (Scheme 1) and the phase transfer catalysis reaction (Scheme 2)34.

In nucleophilic substitution reaction using an alkyllithium reagent, 2,7-dibromofluorene cannot be used as a starting material, due to the relative competitive reaction of the halogens with the alkyl lithium reagents than the proton on the benzylic carbon atom C9-H (Figure 1). Hence, this method can only use fluorene moiety as starting material and requires consequent bromination of the 9,9-disubstituted fluorene for the subsequent reactions.

Scheme 1: Synthesis of 9,9-disubstituted fluorene monomer via nucleophilic substitution reaction.

An alternating pathway that has been used for the synthesis of 9,9-disubstituted fluorenes is the phase transfer catalysis reaction. This reaction involves the use of two phase system composed of equal volumes of toluene and 50% (w/w) aqueous NaOH, and tetrabutylammonium bromide as a phase transfer catalyst (Scheme 2). The advantage of this reaction is that it can be implemented on 2,7-dihalogenated fluorene, and eliminates the risk of halogenating functional groups on the side chain35.

Scheme 1: Synthesis of 9,9-disubstituted fluorene monomer via nucleophilic substitution reaction.
Scheme 2: Synthesis of 9,9-disubstituted fluorene monomers using phase transfer catalysis.

The subsequent step, after the synthesis of 2,7-dibromo-9,9-dialkylfluorene, is preparation of the respective 2,7-diboronic acid and boronate ester for a consecutive Suzuki type copolymerization. The synthesis of 2,7-diboronic acids or boronate esters uses a very strong base like n-BuLi for the formation of the aryllithium through metal-halogen exchange. Subsequent treatment of the aryllithium with tributylborate gives the fluorene-2,7-diboronic acid (6) after an acid work up whereas treatment with pinacolborane gives compound 7 as depicted in Scheme 3.
Scheme 3: Synthesis of boronate ester (path a) and boronic acid (path b) for Suzuki coupling reaction.

2.2. Synthesis of fluorene-based polymers

Through molecular design, fluorene-based conjugated oligomers can be tailored from crystalline to morphologically-stable amorphous materials. Oligofluorenes are quite attractive for the fabrication of blue-emitting devices because of their high photoluminescence quantum yields of up to 90% in the solid state. They also bring a number of unique strengths in the organic optoelectronics devices.

Fukuda and coworkers were the first to report fluorene-based polymers via oxidative polymerization of 9-alkyl and 9,9-dialkylfluorenes in the presence of ferric chloride37. A wide diversity of polyfluorenes is readily accessible with
versatile synthetic strategies supported by various cross-coupling reactions. The most prominent types of reactions used to prepare PFs are the Ni(0)-mediated Yamamoto and the Pd-catalyzed Suzuki condensations32. (Scheme 4)

Scheme 4: Synthesis of fluorene-based polymers using (A) Yamamoto, (B) Suzuki, and (C) Stille coupling reactions.

2.3. Optical and electronic properties of polyfluorenes.

Polyfluorenes absorb UV light (π^* transition at about 380 nm) and emit blue light, with two photoluminescence maxima around 420-425 and 445 nm32. To improve the optical absorption to longer wavelengths, synthesis of alternating fluorene copolymers, which contain blocks of electron accepting and electron donating moieties along the polymer backbone, have been developed32. Recently donor-acceptor conjugated copolymers based on fluorene with various acceptors were reported in the literature, including benzothiadiazole38 and quinoxaline39.

Due to the fact that the 9-position is not conjugated to the fluorene π-system and far away from the aryl coupled 2- and 7-positions, the influence of the alkyl side
chain architecture on the optical properties of polyfluorenes is negligible under dilute conditions. Strong influences have, however, been found on the aggregation behavior and in the solid state, which are reflected in distinct differences in the optical properties32.

2.4. Applications of polyfluorenes.

Fluorene-based conjugated polymers have received a lot of attention that can be attributed to the possibility that they could be used to develop all-plastic, full-color, light emitting diodes. An important driving force for this is the desire of building ultra thin films and flexible screens for electronic devices ranging from cell phones to computers and televisions. Except their manifold use in organic and polymer electronic, fluorene-based π-conjugated materials have recently found widespread applications as sensors, for instance as sensors for biologically interesting analytes32.

2.5. The quinoxaline monomer sub-unit.

Quinoxaline derivatives are very important nitrogen-containing heterocyclic compounds. They have found applications in efficient electroluminescence materials40 and in organic semiconductors41. The most common method of preparing quinoxaline-containing monomers involves the condensation of an aryl 1,2-diamine unit with a 1,2-dicarbonyl compound in refluxing ethanol or acetic acid42.

An interesting entry from oxalyl chloride to quinoxalines was made by Ji and Lee43 (Scheme 5). They demonstrated the synthesis of quinoxaline by the condensation between 1,2-phenylenediamines and 1,2-diketo compounds, which
are available by the reactions of oxalyl chloride with mixed copper-magnesium reagents43.

![Scheme 5: Synthesis of quinoxaline derivative 15.](image)

There were reports on the synthesis of quinoxaline-based monomers via the iminooxime cyclization route and the benzothiadiazole route. The former route involves the oxidative cyclization of 2-(hydroxyimino)-1,2-diarylethanes to diarylquinoxalines. Scheme 6 depicts an application of this strategy towards the synthesis of 20. Unfortunately, this method has problems of product purification and low yield44,45

![Scheme 6: Synthesis of quinoxaline-based monomer 20 by the iminooxime cyclization route.](image)
The benzothiazole route, on the other hand, is easier to carry out and gives higher yields of quinoxaline-based monomers. Scheme 7 depicts the synthesis of 24 starting from benzothiadiazole (21)\(^{46}\).

Scheme 7: Synthesis of quinoxaline-based monomer 24 by the benzothiadiazole route.

In the last few years, there were reports on the synthesis of polymers having a quinoxaline unit. According to Takashi Fukuda and co-workers, poly-quinoxaline derivatives can be excellent electron ejecting materials (n-type) for photovoltaic devices because they have advantageous properties such as high electron affinity, good thermal stability and good processability\(^{47,48}\). There are various methods such as the Stille\(^{49}\) (Scheme 8) Sonogashira, Suzuki\(^{41}\) and Heck cross coupling reactions\(^{50}\) leading to the preparation of copolymers based on quinoxaline derivatives.

Lee and coworkers51 prepared π-conjugated copolymers in high yield with thiophene as electron donating material and diheptylquinoxaline as strong electron withdrawing material via the Stille cross coupling reaction methodology (Scheme 9).

\begin{equation}
\begin{array}{c}
\text{[Scheme 9: Synthesis of quinoxaline-based copolymer using Stille cross-coupling reaction.]} \\
\text{By changing the substituents on the quinoxaline unit, one can improve or manage the properties of the copolymers. The n-hexylquinoxaline copolymer 31 was obtained by organometallic polycondensation and the resulting copolymer had good solubility in common organic solvents such as CHCl$_3$, THF, and toluene (Scheme 10).} \\
\end{array}
\end{equation}

Scheme 10: Synthesis of quinoxaline based copolymer 31.

Quinoxaline acceptor units emerge especially suitable to alter the band-gap of polyfluorene copolymers allowing light emission from blue to yellow–orange50,52. In recent studies with a focus on stable blue light emission, random polyfluorene copolymers with quinoxaline units appeared to result in higher efficiencies than those comprised of alternating copolymers53,54 This concept allows altering the
blue emission of pure polyfluorene to longer wavelengths and the copolymers reveal amorphous behavior and high thermal stabilities up to 430 °C53,54
3. OBJECTIVES OF THE WORK

The aim of this project work is to synthesize some conjugated, low bandgap, alternating quinoxaline and benzothiadiazole-based copolymers with 9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene sub-unit.

Co-polymerization will be achieved using palladium-catalyzed Suzuki-cross-coupling reaction. The intermediate compounds and the polymers will be characterized by spectroscopic techniques, including NMR, UV-Vis and CV.
4. RESULTS AND DISCUSSION.

In the course of this project work, two copolymers based-on 9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene, quinoxaline and benzothiadiazole units were synthesized using the Suzuki coupling polymerization reaction. These were, poly[5-(5-(9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluoren-2-yl)thiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)-8-(thiophen-2-yl)quinoxaline] (44) and poly[5-(5-(7-(7-(9,9-bis[2-(2-methoxyethoxy)ethyl]-9H-fluoren-2-yl)-benzo[1,2,5]thiadiazol-4-yl)-9,9-bis-[2-(2-methoxyethoxy)ethyl]-9H-fluoren-2-yl)thiophen-2-yl)-2,3-bis(4-octyloxyphenyl)-8-thiophen-2-yl-quinoxaline] (45).

Attempted synthesis of a pyrazino[2,3-g]quinoxaline and a benzothiadiazole[3,4-g]quinoxaline were also made. The syntheses started by the preparation of the required monomers for the copolymerization reaction as discussed below.

The synthetic route that led to the quinoxaline-based monomer \(38\) is shown in Scheme 12.

The synthesis of \(38\) commenced by the preparation of 1,2-dione \(35\) as depicted in Scheme 11. Thus, 4-bromophenol (33) was treated with 1-bromoocytane in the presence of anhydrous potassium carbonate in DMF to give 1-bromo-4-octyloxybenzene (34). Compound 34 was converted to the corresponding Grignard reagent by treatment with Mg in THF and the Grignard reagent was added to a mixture of LiBr and CuBr. Oxalyl chloride was then added to this mixture to afford 1,2-bis-(4-octyloxyphenyl)ethane-1,2-dione (35). Compounds 34 and 35 were characterized based on their NMR spectra as described below.
Scheme 11: Synthesis of 1,2-bis-(4-octyloxy)phenyl)ethane-1,2-dione (35).

The 1H-NMR spectrum of compound 34 (Table 1) showed two signals in the aromatic and four signals in the aliphatic region. The doublet peaks at δ 6.79 ($J = 8.0$ Hz) and δ 7.38 ($J = 8.0$ Hz) are attributed to the identical protons H-3 and H-5 and H-2 and H-6, respectively. The triplet at δ 3.93 is assigned to the H-2' which is on the carbon atom attached to the oxygen and the quintet at δ 1.79 is due to the methylene at C-3'. The multiplet between δ 1.50 – 1.30 is attributed to five methylene groups and the triplet at δ 0.92 is assigned to the terminal methyl group H-9' (Appendix 1).

The 13C-NMR spectrum of compound 34 (Table 2) showed four resonances in the aromatic region and eight resonances in the aliphatic region. The quaternary carbon signals at δ 112.5 and 158.3 are assignable to C-1 and C-4, respectively. The carbon resonance at δ 132.2 is attributed to C-2 and C-6 and the signal at δ
116.3 is assigned to C-3 and C-5. The aliphatic carbon signals at δ 68.3, 31.8, 25.7, 31.8, 26.0, 31.9, 22.6 and 14.1, are due to C-2', C-3', C-4', C-5', C-6', C-7', C-8' and C-9', respectively. Thus, the data obtained from 1H-NMR, 13C-NMR and DEPT-135 agrees with the structure of compound 34.

Table 1: 1H-NMR (400.13, CDCl$_3$) data (δ_{ppm}) of compounds 34 and 35.

<table>
<thead>
<tr>
<th></th>
<th>34</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(d, $J = 8.0$ Hz, 2H, H-2 and H-6)</td>
<td>(d, $J = 8.0$ Hz, 4H, H-2', H-6')</td>
</tr>
<tr>
<td>7.38</td>
<td>7.94</td>
<td></td>
</tr>
<tr>
<td>6.79</td>
<td>6.96</td>
<td></td>
</tr>
<tr>
<td>(d, $J = 8.0$ Hz, 2H, H-3 and H-5)</td>
<td>(d, $J = 8.0$ Hz, 4H, H-3', H-5')</td>
<td></td>
</tr>
<tr>
<td>3.93</td>
<td>4.04</td>
<td></td>
</tr>
<tr>
<td>(t, $J = 6.8$ Hz, 2H, H-2')</td>
<td>(t, 4H, H-2'')</td>
<td></td>
</tr>
<tr>
<td>1.79</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>(q, 2H, H-3')</td>
<td>(q, 4H, H-3'')</td>
<td></td>
</tr>
<tr>
<td>1.50-1.30</td>
<td>1.47-1.27</td>
<td></td>
</tr>
<tr>
<td>(m, 10H, H-4' to H-8')</td>
<td>(m, 20H, H-4''-H-8'')</td>
<td></td>
</tr>
<tr>
<td>0.92</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>(t, 3H, H-9')</td>
<td>(t, 6H, H-9'')</td>
<td></td>
</tr>
</tbody>
</table>

Likewise, the 1H-NMR spectrum of compound 35 (Table 1) showed doublets at δ 6.96 ($J = 8.0$ Hz) and 7.94 ($J = 8.0$ Hz), which integrated for four protons each, due to H-3 and H-5 and H-2 and H-6, respectively, on both aromatic rings. The triplet at δ 4.04, which integrates for four protons, is due to the methylene protons on the carbon atoms attached to the oxygen. The quintet at δ 1.82, which integrates for four protons, is assigned to CH$_2$ groups at C-3''. The unresolved multiplet between δ 1.27 - 1.47 is attributed to the remaining CH$_2$ groups on the side chains. Finally, triplet at δ 0.91 is due to H-9'' (Appendix 4).
Table 2: 13C-NMR (100.6 MHz, CDCl$_3$) data (δ ppm) of compound 34 and 35.

<table>
<thead>
<tr>
<th>34</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>158.3 (C-4)</td>
<td>193.6 (C-1, C-2)</td>
</tr>
<tr>
<td>132.2 (C-2, C-6)</td>
<td>164.5 (C-4')</td>
</tr>
<tr>
<td>116.3 (C-3, C-5)</td>
<td>132.4 (C-2’, C-6’)</td>
</tr>
<tr>
<td>112.5 (C-1)</td>
<td>126.1 (C-1’)</td>
</tr>
<tr>
<td>68.3 (C-3’, C-2’)</td>
<td>114.7 (C-3’, C-5’)</td>
</tr>
<tr>
<td>31.9 (C-4’)</td>
<td>68.5 (C-2’’)</td>
</tr>
<tr>
<td>31.8 (C-5’)</td>
<td>31.8 (C-7’’)</td>
</tr>
<tr>
<td>26.0 (C-6’)</td>
<td>29.0 (C-3’’, C-6’’, C-5’’)</td>
</tr>
<tr>
<td>25.7 (C-7’)</td>
<td>25.9 (C-6’’)</td>
</tr>
<tr>
<td>22.6 (C-8’)</td>
<td>22.6 (C-8’’)</td>
</tr>
<tr>
<td>14.1 (C-9’)</td>
<td>14.1 (C-9’’)</td>
</tr>
</tbody>
</table>

The 13C-NMR (Table 2) and DEPT-135 spectra of compound 35 confirmed the presence of three quaternary carbons, two methine, seven methylene and one methyl groups. The presence of two equivalent carbonyl groups was confirmed by the appearance of a signal at δ 193.6. The peak at δ 68.4 is due to the oxygenated methylene groups and the peak at δ 14.1 is due to the terminal methyl groups. The remaining signals at δ 31.8, 29.0, 25.9 and 22.6 are attributed to C-7’’, C-3’’-C-5’’, C-6’’ and C-8’’, respectively.

The synthetic route towards the quinoxaline segment 36 and the total synthesis of monomer 38 is depicted in Scheme 12. Thus, bromination of commercially available 2,1,3-benzothiadiazole (21) using Br$_2$ and 48% HBr gave 4,7-dibromobenzo[c][1,2,5]thiadiazole (22) in 81% yield as a greenish crystalline solid. Compound 22 was subjected to Stille coupling reaction with tributyl(thiophene-2-yl)stannane in the presence of bis-(triphenylphosphine)palladium(II) chloride as a catalyst to give compound 36.
Scheme 12: Synthesis of quinoxaline-based monomer 38.

The 1H-NMR spectrum compound 22 showed only a singlet at δ 7.64 in agreement with the two chemically equivalent protons H-5 and H-6 in the molecule. The 13C-NMR spectrum of compound 22 displayed only three carbon resonances among which two are due to quaternary carbon atoms. The quaternary carbon resonance at δ 114.5 is attributable to C-4 to which the bromine is attached. The carbon signal at 153.4 is due to the other quaternary carbon atoms connected to the thiadiazole moiety at C-8 and C-9. The only methine carbon signal at δ 132.4 is due to C-5 and C-6.

Compound 36 was also characterized based on its NMR spectra prior to converting it to compound 38. Thus, the 1H-NMR spectrum (Table 3) of 36 showed four signals in the aromatic region. The singlet at δ 7.91 is due to the two
equivalent methine protons (H-5 and H-6) in the central aromatic ring. The thiophene ring protons appeared at δ 8.14 (dd, $J = 1.2$, 3.6 Hz, H-5’), 7.49 (dd, $J = 1.2$, 5.2 Hz) and 7.24 (dd, $J = 3.6$, 5.2 Hz, 2H H-4’) (Appendix 7).

The 13C-NMR spectrum (Table 4) of compound 36 displayed seven carbon resonances. Of these, three are quaternary carbon atoms and the remaining four are methine carbons. The quaternary carbon resonance at δ 152.7 is attributed to C-8 and C-9 to which the heteroatom nitrogen atoms are attached. The other quaternary carbon resonance at δ 128.1 is due to the two carbon atoms at C-4 and C-7 and the third quaternary carbon signal at δ 139.4 is due to C-2’ on the thiophene rings. The methine carbon signal at δ 127.5 is due to C-5 and C-6 and the signals at δ 125.8, 126.7 and 126.0 are due to C-3’, C-4’, C-5, respectively.

Reduction of compound 36 by the action of zinc powder in acetic acid at 80 °C and subsequent condensation of the resulting diamine with 1,2-dione 35 gave compound 37 in 71.7% yield (Scheme 12). Compound 37 was brominated using N-bromosuccinimide under nitrogen atmosphere for 24 h to give a mixture of products which was further purified by silica gel column chromatography (toluene:hexane (1.5:3.5) solvent system) and pure quinoxaline monomer 38 was obtained in 78.95% yield. Compounds 37 and 38 were characterized based on their NMR data as described below.

The 1H-NMR spectrum (Table 3) of compound 37 showed six signals in the aromatic region and five signals in the aliphatic region. The spectrum suggested that 37 is a symmetrical molecule. The triplet at δ 4.02 is due to the methylene protons (H-2’’) on the carbon atoms attached to the oxygens. The unresolved multiplet at δ 1.34-1.49 is due to H-8’’, H-7’’, H-6’’, H-5’’, H-4’’ and the triplet at δ 0.93 is due to the terminal methyl protons. The aromatic proton resonances appeared in the region between δ 6.9 and 8.12. The singlet at δ 8.12 is due to H-6 and H-7. The ABC pattern at δ 7.20 (dd), 7.53 (dd) and 7.87 (dd) is due to the thiophene ring protons H-4’, H-5’ and H-3’, respectively. The remaining doublets
at δ 7.74 and 6.92 are due due to H-2”, and H-3”, respectively, on the octyloxy-substituted aromatic rings (Appendix 9).

Table 3: 1H-NMR (400.13, CDCl$_3$) data (δ_{ppm}) of compound 36, 37 and 38.

<table>
<thead>
<tr>
<th></th>
<th>36</th>
<th>37</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ_{ppm}</td>
<td>δ_{ppm}</td>
<td>δ_{ppm}</td>
</tr>
<tr>
<td></td>
<td>(dd, $J = 1.2$, 3.6 Hz, 2H, H-5’)</td>
<td>(s, 2H, H-6, H-7)</td>
<td>(s, 2H, H-6, H-7)</td>
</tr>
<tr>
<td></td>
<td>8.14</td>
<td>8.12</td>
<td>7.93</td>
</tr>
<tr>
<td></td>
<td>(s, 2H, H-5, H-6)</td>
<td>(d, $J = 4$ Hz, 2H, H-5’)</td>
<td>(d, $J = 8$ Hz, 4H, H-2”)</td>
</tr>
<tr>
<td></td>
<td>7.91</td>
<td>7.87</td>
<td>7.66</td>
</tr>
<tr>
<td></td>
<td>(dd, $J = 1.2$, 5.2 Hz, 2H, H-3’)</td>
<td>(d, $J = 8.4$ Hz, 4H, H-2”)</td>
<td>(d, $J = 4$ Hz, 2H, H-4’)</td>
</tr>
<tr>
<td></td>
<td>7.49</td>
<td>7.53</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>(dd, $J = 3.6$, 5.2 Hz, 2H, H-4’)</td>
<td>(d, $J = 5.2$ Hz, 2H, H-3’)</td>
<td>(d, $J = 4$ Hz, 2H, H-3’)</td>
</tr>
<tr>
<td></td>
<td>7.24</td>
<td>7.53</td>
<td>7.10</td>
</tr>
<tr>
<td></td>
<td>(t, $J = 3.6$, 4.4 Hz, 2H, H-4’)</td>
<td>(d, $J = 8$ Hz, 4H, H-3”)</td>
<td>(d, $J = 8$ Hz, 4H, H-3”)</td>
</tr>
<tr>
<td></td>
<td>6.92</td>
<td>4.04</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td>(d, $J = 8.4$ Hz, 4H, H-3”)</td>
<td>(t, 4H, H-2”)’’</td>
<td>(t, 4H, H-2”)’’</td>
</tr>
<tr>
<td></td>
<td>4.02</td>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>(t, 4H, H-2”)’’</td>
<td>(q, 4H, H-3”)’’</td>
<td>(q, 4H, H-3”)’’</td>
</tr>
<tr>
<td></td>
<td>1.83</td>
<td>1.28-1.51</td>
<td>1.28-1.51</td>
</tr>
<tr>
<td></td>
<td>(q, 4H, H-3”)’’</td>
<td>(m, 20H, H-4”’’-H-8”)’’</td>
<td>(m, 20H, H-4”’’-H-8”)’’</td>
</tr>
<tr>
<td></td>
<td>1.34-1.49</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>(m, H-7”’, H-6”’, H-5”’, H-4”’)</td>
<td>(t, 6H, H-9”’)</td>
<td>(t, 6H, H-9”’)</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t, 6H, H-9”’)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 13C-NMR spectrum (Table 4) of compound 37 displayed a total of twenty signals of which twelve appeared in the aromatic region and eight in the aliphatic region. The DEPT-135 spectrum revealed that there are one methyl, seven methylene, and six methine carbons. Thus, six of the twenty carbon atoms are
quaternary carbon atoms. The six quaternary carbon signals at δ 159.9, 131.0, 151.1, 136.8, 131.1, and 138.8 are attributable to C-4$$'', C-1$$'', C-2 and C-3, C-9 and C-10, C-5 and C-8, C-2', respectively. The six methine carbons signals at δ 114.2, 131.9, 128.7, 126.2, 128.6 and 126.5 are attributable to C-3$$'' and C-5$$'', C-2$$'' and C-6$$'', C-6 and C-7, C-3', C-4', and C-5', respectively. The aliphatic region carbon signals at δ 14.1, 22.6, 26.1, 29.1, 29.3, 31.0, 31.8, 68.1 are due to C-9''', C-8''', C-7''', C-6''', C-5''', C-4''', C-3''', C-2''', respectively.

The 1H-NMR spectrum (Table 3) of compound 38 is in a good agreement with the incorporation of bromine atoms at position 5' of the thiophene moieties of compound 37. Thus, the singlet peak at δ 7.93 attributed to H-6 and H-7, the four doublet signals at δ 7.66, 7.50, 7.10, and 6.93 is due to H-2$$'', H-4', H-3' and H-3'', respectively. The triplet at δ 4.04 is due to H-2''', quintet at δ 1.85 is due to C-3''', multiplet at δ 1.28-1.55 are due to H-8''''' – H-4''''' and triplet at δ 0.94 is due to H-9''''' (Appendix 12).

The 13C-NMR spectrum (Table 4) of 38 displayed twelve aromatic and eight aliphatic carbon resonances. Of the twelve aromatic carbons, seven are quaternary carbons whose resonances appeared at δ 160.0, 151.1, 138.8, 136.8, 131.1, 131.0, 126.2 and are attributed to C-4$$'', C-2', C-2 and C-3, C-9 and C-10, C-5 and C-8, C-1''', C-5', respectively. The peak at δ 128.7 is due to methine carbons C-6 and C-7 on the benzene ring of the quinoxaline core unit. The two methine carbon peaks at δ 114.2 and 131.9 are due to the equivalent C-3$$'' and C-5$$'' and C-2''and C-6'' on the benzene rings. The remaining methine peaks at δ 126.2 and 128.6 are assignable to C-3' and C-4' on the thiophene rings. The aliphatic carbon signal at δ 68.1 is due to C-2''''' and the carbon peaks at δ 31.8, 29.3, 29.2, 29.1, 26.1, 22.7, 14.2 are attributable to C-3''''', C-4''''', C-5'''''', C-6''''', C-7'''''', C-8''''', C-9''''', respectively.
Table 4: 13C-NMR (100.6, CDCl$_3$) data (δ_{ppm}) of compound 22, 36, 37 and 38.

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>36</th>
<th>37</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.3 (C-5, C-6)</td>
<td>152.7 (C-8, C-9)</td>
<td>159.9 (C-4'')</td>
<td>160.0 (C-4'')</td>
<td></td>
</tr>
<tr>
<td>153.4 (C-8, C-9)</td>
<td>128.1 (C-4, C-7)</td>
<td>151.1 (C-2, C-3)</td>
<td>151.1 (C-2')</td>
<td></td>
</tr>
<tr>
<td>132.7 (C-4, C-7)</td>
<td>127.5 (C-5, C-6)</td>
<td>138.8 (C-2')</td>
<td>138.8 (C-2, C-3)</td>
<td></td>
</tr>
<tr>
<td>139.4 (C- 2')</td>
<td>136.8 (C-9, C-10)</td>
<td>136.8 (C-9, C-10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.8 (C-3')</td>
<td>131.9 (C-2'')</td>
<td>131.9 (C-2'')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.7 (C-4')</td>
<td>131.1 (C-5, C-8)</td>
<td>131.1 (C-5, C-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.0 (C-5')</td>
<td>131.0(C-1'')</td>
<td>131.0 (C-1'')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.7 (C-6, C-7)</td>
<td>128.7 (C-4')</td>
<td>128.6 (C-4')</td>
<td>128.6 (C-3')</td>
<td></td>
</tr>
<tr>
<td>126.5 (C-5')</td>
<td>126.5 (C- 6, C-7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.2 (C-3')</td>
<td>126.2 (C-5')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.2 (C-3'')</td>
<td>114.2 (C-3'')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.1 (C- 2''')</td>
<td>68.1 (C-2''')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.8 (C-3''')</td>
<td>31.8 (C-3'''')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.0 (C-4''')</td>
<td>29.3 (C-4'''')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.3 (C-5'''')</td>
<td>29.2 (C-5'''')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.1 (C- 6'''')</td>
<td>29.1 (C-6'''')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.1 (C-7''''')</td>
<td>26.1 (C-7''''')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.6 (C-8''''')</td>
<td>22.7 (C- 8''''')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 (C-9''''')</td>
<td>14.2 (C-9''''')</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Synthesis of 6,7-diphenyl-4,9-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (41)

Scheme 13 shows the synthetic route towards compound 41. Thus, compound 22 was prepared by bromination with bromine in 48% HBr. Treatment of 22 with a 1:1 (v/v) mixture of fuming nitric acid and fuming sulphuric acid afforded 4,7-
dibromo-5,6-dinitrobenzo[cd][1,2,5]thiadiazole (39) in 29% yield after recrystallization from ethanol and further purification by silica gel column chromatography (ethyl acetate:hexane (0.5:4.5) solvent system). The 1H-NMR spectrum of 39 showed no proton signal. The 13C-NMR (Table 6) together with the DEPT-135 spectrum proved that all carbon signals are due to quaternary carbon atoms. Thus, the peaks at δ 151.4, 144.7 and 110.3 are attributed to C-8 and C-9, C-5 and C-6, and C-4 and C-7, respectively.

Scheme 13: Synthesis of compound 41.

Once pure compound 39 was obtained, it was subjected to Stille coupling reaction with tributyl(thiophene-2-yl)stannane in the presence bis-(triphenylphosphine)palladium(II) dichloride as a catalyst to give compound 40 in
72.7% yield. The 1H-NMR spectrum of compound 40 was in good agreement with the incorporation of thiophene rings at the C-3 and C-6 of compound 39. The doublet of doublets peaks at δ 7.77, 7.54 and 7.26 are attributed to H-5', H-3' and H-4', respectively.

Similarly, the 13C-NMR spectrum of 40 (Table 6) was in good agreement with the assigned structure. The spectrum revealed a total of seven carbon signals of which four are due to quaternary carbons and the remaining three are due to methine carbons. The three methine carbon peaks at δ 131.5, 131.0, and 128.0 are assignable to the methine carbons C-4', C-5', C-3', respectively, of the thiophene rings. The four quaternary carbon peaks at δ 152.2, 129.6, 121.5, and 120.8 can be assigned to C-8 and C-9, C-5 and C-6, C-2', and C-4 and C-7, respectively.

Table 5: 1H-NMR (400.13, CDCl$_3$) data (δ ppm) of compound 40 and 41.

<table>
<thead>
<tr>
<th></th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(dd, J = 1.2, 5.2 Hz, 2H, H-5')</td>
<td>(d, J = 8.0 Hz, 2H, H-5')</td>
</tr>
<tr>
<td></td>
<td>7.77</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>(dd, J = 0.8, 3.6 Hz, 2H, H-3')</td>
<td>(d, J = 12.0 Hz, 4H, H-2'')</td>
</tr>
<tr>
<td></td>
<td>7.54</td>
<td>7.85</td>
</tr>
<tr>
<td></td>
<td>(dd, J = 3.6, 4.8 Hz, H-4')</td>
<td>(d, J = 8.0 Hz, 2H, H-3')</td>
</tr>
<tr>
<td></td>
<td>7.26</td>
<td>7.72</td>
</tr>
<tr>
<td></td>
<td>(dd, J = 3.6, 4.8 Hz, H-4')</td>
<td>(m, 6H, H-3'', H-4'')</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t, J = 4 Hz, 2H, H-4')</td>
</tr>
</tbody>
</table>

Reduction of 5,6-dinitro-4,7-dithiophen-2-yl-benzo[c][1,2,5]thiadiazole (40) was effected using excess iron powder in acetic acid at 45 °C. The intermediate diamine was subsequently condensed with commercially available benzil to
afford compound 41. The 1H-NMR spectrum of compound 41 displayed five sets of signals in the aromatic region of which three are due to thiophene ring methine protons while the remaining signals are due to benzene ring methine protons. The doublets at δ 9.05 and 7.72 are attributed to H-3’ and H-5’, respectively. The triplet at 7.35 is attributed to H-4’, doublet at 7.85 is attributed to H-2” and the multiplet at 7.45 is attributed to H-3” and H-4”.

The 13C-NMR spectrum of compound 41 has a total of twelve carbons signals, of these six quaternary carbons, six methine carbons. The quaternary carbon signals at 153.3, 130.6, 138.1, 151.9, 133.2, 135.9 is due to C-6, C-5, C-5, C-2’, C-1”, C-4, respectively. The remaining methine carbons peak at δ 131.4, 128.3, 129.6, 129.3, 126.8, and 125.3 can be assigned to C-2”, C-3”, C-4”, C-3’, C-5’, and C-4’.

Table 6: 13C-NMR (100.6, CDCl$_3$) data (δ_{ppm}) of compound 39, 40 and 41.

<table>
<thead>
<tr>
<th></th>
<th>39</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.4</td>
<td>(C-8, C-9)</td>
<td>152.2</td>
<td>153.3(C-10, C-11)</td>
</tr>
<tr>
<td>144.5</td>
<td>(C-4, C-7)</td>
<td>131.5</td>
<td>151.9(C-6, C-7)</td>
</tr>
<tr>
<td>110.3</td>
<td>(C-5, C-6)</td>
<td>131</td>
<td>138.1(C-5, C-8)</td>
</tr>
<tr>
<td></td>
<td>129.6</td>
<td></td>
<td>135.9(C-2’)</td>
</tr>
<tr>
<td></td>
<td>128.0</td>
<td></td>
<td>133.2(C-1”)</td>
</tr>
<tr>
<td></td>
<td>121.5</td>
<td></td>
<td>131.4(C-2”)</td>
</tr>
<tr>
<td></td>
<td>120.8</td>
<td></td>
<td>130.6(C-4, C-9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>129.6(C-4”)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>129.3(C-3”)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>128.3(C-3”)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>126.8(C-5’)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125.3(C-4’)</td>
</tr>
</tbody>
</table>
The bromination of compound 41 was attempted with \(N \)-bromosuccinimide in a 1:1 mixture of acetic acid and chloroform. The NMR spectral result showed a mixture of products. Attempt was made to separate the desired product using silica gel column chromatography. It was, however, not possible to separate the mixture.

4.3 Attempted synthesis of pyrazino[3,4-\(g \)]quinoxalines 42 and 43.

In the course of this project, attempt was made to synthesize pyrazino[3,4-\(g \)]quinoxalines 42 and 43. Scheme 13 shows the general synthetic plan for the preparation of compounds 42 and 43. Thus, compound 40 was reduced with zinc and acetic acid and the ensuing tetraamine was treated with the appropriate dicarbonyl compound as depicted in Scheme 14. In both cases, the yields of the products were very low and the products were not successfully separated. This is presumably because the formation of intermediate tetraamine was not either complete during the reduction or the tetraamine decomposed to a large extent after it was formed.
Scheme 14: Synthesis of pyrazino[2,3-g]quinoxalines 42 and 43.

5. Synthesis of the copolymers.

The overall goal of the project work was to synthesize conjugated low bandgap alternating copolymers. Thus, monomer 39, which was prepared according to the route described in Scheme 12, was subsequently subjected to two polymerization reactions as depicted in Schemes 15 and 16. The first polymerization reaction was performed with 9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene (6). The second polymerization reaction was done between 39 (25%), 9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene (6)(50%) and 4,7-dibromobenzo[c][1,2,5]thiadiazole (22) (25%). Both reactions were conducted...
using a modified Suzuki coupling reaction with tetrakis(triphenylphosphine)palladium(0) as a catalyst and tetraethylammonium hydroxide as the base, instead of K$_2$CO$_3$ or NaHCO$_3$, which were used for the standard Suzuki polymerizations. The use of tetraethylammonium hydroxide is believed to reduce the reaction time to 2-4 hours compared to the 24 hours required for the standard Suzuki polymerization5. The low molecular weight oligomers and unreacted starting materials were separated by Soxhlet extraction with ether and the higher molecular weight materials were extracted with chloroform and precipitated from methanol as described in the Experimental section. Both 44 and 45 were obtained as red powders. The CHCl$_3$ solutions of both polymers had deep red colors.

Scheme 15: Synthesis of copolymer 44.
5.1. Characterization of the polymers

In conjugated polymers, the bandgap determines which wavelength of light is absorbed and emitted by the material. Among the factors that influence the bandgap of a polymer are conjugation length, solid state ordering and the presence of electron withdrawing or donating moieties.

Optical properties

Figures 2 and 3 show the UV-Vis absorption spectra of polymers 44 and 45 measured in chloroform solutions and as thin films of the polymers on glass.
plates, respectively. For polymer 44, the absorption maxima (λ_{max}) were detected at 392 and 519 nm in solution and at 395 and 529 nm in thin film. In contrast, the absorption maxima appeared at 380 and 466 nm in solution and at 483 nm in film for polymer 45.

Figure 2: UV-Vis spectrum of polymer 44 and 45 in solution.

Figure 3: UV-Vis spectrum of polymer 44 and 45 in film.
Table 7: Optical data of the polymers in solution and in film.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>λ_{max}(nm)</th>
<th>λ_{onset}(nm)</th>
<th>E_g(ev)</th>
<th>λ_{max}(nm)</th>
<th>λ_{onset}</th>
<th>E_g(ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>392, 519</td>
<td>630</td>
<td>1.97</td>
<td>393, 529</td>
<td>679</td>
<td>1.83</td>
</tr>
<tr>
<td>45</td>
<td>380, 466</td>
<td>607</td>
<td>2.04</td>
<td>483</td>
<td>639</td>
<td>1.94</td>
</tr>
</tbody>
</table>

The λ_{max} at 466 nm in the UV-Vis spectrum of the CHCl$_3$ solution of polymer 45 was blue-shifted by 53 nm compared to that of polymer 44 (Table 7). This blue shift may be attributed to a less co-planar conformation and highly flexible chain of polymer 45, which could have occurred by the inclusion of benzothiadiazole unit in the polymer chain. A blue-shift of 46 nm was observed between the long-wavelength absorption maxima of the thin films of the two polymers.

The absorption maxima of both polymers showed red-shifts in thin films, compared to the spectra recorded in CHCl$_3$ solutions. This is because of a higher concentration of interacting polymer chains - interchain interactions becomes dominating thereby enhancing the excited state energy transfer from fluorene units to respective acceptors. As a result an unstructured red-shifted emission appeared.54

The optical bandgaps (E_g) defined by the onset of the absorption spectra were determined for both polymers (Table 7). Thus, the onset of absorption was 630 nm for the absorption spectrum of 44 recorded in CHCl$_3$ solution and the calculated optical bandgap was 1.97 eV. A bandgap of 1.83 eV was calculated from the onset of the absorption spectrum of 44 recorded from thin film. The corresponding bandgap values for polymer 45 were 2.04 eV (CHCl$_3$ solution) and 1.94 eV (thin film). These findings demonstrated that the two polymers are rather low-bandgap polymers.
Electrochemical properties

Cyclic voltammetry is one of the most useful methods, which provides a great deal of useful information about the electrochemical behavior of conjugated polymers.

The electrochemical behaviors of polymers 44 and 45 were studied by cyclic voltammetry. Figures 4 and 5 show the cyclic voltammograms of 44 and 45, respectively. The HOMO and LUMO levels were determined from the oxidation and reduction peaks. Thus, the HOMO and LUMO levels were -5.2 eV and -3.1 eV for polymer 44. The corresponding values for polymer 45 were -5.3 eV and -3.2 eV, respectively. Although both polymers showed the same electrochemical bandgap ($E_g = 2.1$ eV), with the inclusion of an electron acceptor benzothiadiazole unit in polymer 45, the LUMO level was slightly lower than that of polymer 45. This implies that the electron affinity of polymer 45 is higher than that of polymer 44. As a result polymer 45 may be used as an electron acceptor material in devices. The higher HOMO level of polymer 44 implies the polymer may be easily oxidized than polymer 45.

![Figure 4: Cyclic voltammogram of polymer 44.](image)

Figure 4: Cyclic voltammogram of polymer 44.
6. CONCLUSION

In this project work, two low bandgap alternating polyfluorene copolymers were synthesized by the Suzuki coupling reaction using Pd(0) as a catalyst and tetraethylammonium hydroxide as a base. The donor-acceptor-donor segments were derived from quinoxaline 38 and benzothiadiazole units. The fluorene sub-unit contained 2-(2-methoxyethoxy)ethyl pendant groups at the C-9 position. Both polymers had good solubility in CHCl₃. The CHCl₃ solutions of both polymers had red color. Polymers 44 and 45 had low bandgaps. Thus, the optical bandgaps were determined from the UV-Vis spectra of both polymers in CHCl₃ solution as well as for the thin films of the polymers on glass. Similarly, the electrochemical bandgaps were estimated from the cyclic voltammograms of both polymers. It is worth noting that the introduction of benzothiadiazole units in polymer 45 showed a significant improvement over the absorption spectrum of 44 by having a better coverage of the visible region and by the disappearance of
the valley at ca 440 nm. Hence, polymer 45 can be a better candidate for solar cell application as it will have a better coverage of the solar irradiance in the region up to 600 nm.
7. EXPERIMENTAL

7.1. Materials and Methods

All of the compounds prepared in the course of the synthetic work were purified and characterized by NMR and UV-Vis techniques. 1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer at 400.13 and 100.6 MHz, respectively, in CDCl$_3$ and chemical shifts were reported in δ-ppm unit. The residual non-deuterated solvent signals were used as internal reference. The UV-Vis spectra were recorded in chloroform using T60 UV-Visible Spectrophotometer at room temperature. Cyclic voltammetric studies were performed on a BASi Epsilon Electrochemical Workstation using platinum electrodes at a scan rate of 100 mV.s$^{-1}$ and a Ag/Ag$^+$ (0.10 M of AgNO$_3$ in acetonitrile) reference electrode in a solution of 0.1 M of tetrabutylammonium tetrachloroborate (Bu$_4$NCl$_4$) in acetonitrile.

7.2 Reagents

Bromine (BDH), potassium carbonate (Riedel-de Haen), sodium sulphate (Riedel-de Haen), N-bromosuccinimide (NBS) (Aldrich), 1-bromooctane (Aldrich), DMF (Aldrich), 2-(tributylstannyl)thiophene (Aldrich), 4-bromophenol (Aldrich), bis-(triphenylphosphine)palladium(II) dichloride(Aldrich), 2,1,3-benzothiadizole (Aldrich), dichloromethane (Aldrich), oxalyl chloride (Aldrich), hexane(Aldrich), acetone (Aldrich) were bought and used as received. Tetrahydrofuran (THF) was dried over Na-benzophenone under nitrogen atmosphere. Analytical grade methanol and chloroform were purchased from BDH. Analytical thin layer chromatography was performed on aluminum sheets precoated with 0.2 mm silica-gel 60 F$_{254}$ (Merck). For open column chromatographic purification, glass columns packed with Silica gel 60 (230-400 mesh), were used.
7.3. Procedures.

7.3.1. Synthesis of 4,7-dibromobenzo[c][1,2,5]thiadiazole (22).

In 1000 mL flask, a mixture of 2,1,3-benzothiadizole (19 g, 0.14 mol) and 48%HBr (76 mL) were heated at 110 °C with continuous stirring. Bromine (21 mL) was added to the mixture from a pressure equalizing dropping funnel. During refluxing, a white solid deposited on the walls of the flask. Additional HBr (66 mL) was added and the mixture was heated for 3 h. The mixture then was allowed to cool to room temperature and sufficient saturated solution of NaHSO₃ added to consume completely any excess Br₂. It was then filtered by suction, washed with 5% Na₂S₂O₃ and water. The product was recrystallized from isopropyl alcohol and dried in a vacuum oven to afford compound 22 (37.4 g, 91.0 %).

^1H-NMR (400 MHz, CDCl₃): δ[ppm] 7.64 (s, H-5, H-6); ^13C-NMR (100 MHz, CDCl₃): δ [ppm] 114.3 (C-5, C-6), 153.4 (C-8, C-9), 132.7 (C-4, C-7).

7.3.2. Synthesis of 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (36).

4,7-Dibromobenzo[c][1,2,5]thiadiazole (22) (10 g, 34 mmol) and Pd(PPh₃)₂Cl₂ (0.48 g, 0.68 mmol, 2mol%) were dissolved in THF (140 mL) by refluxing under nitrogen atmosphere. Tributyl(thiophene-2-yl)stannane (20.6 mL, 68 mmol) was then added dropwise from a dropping funnel over 70 min and the refluxing continued overnight. The completion of the reaction was checked by TLC (dichloromethane:pet-ether (1:4) solvent system). The mixture was then cooled to room temperature and the solvent was removed by rotary evaporatoration. The residue was taken up in petroleum ether and the resulting solid was collected by suction filtration to afford 36 (8.02 g, 78.5%).
1H-NMR (400 MHz, CDCl$_3$): δ[ppm] 8.14 ($dd, J = 1.2, J = 3.6$ Hz, 2H, H-5'), 7.91 (s, 2H, H-5, H-6), 7.49 ($dd, J = 1.2, 3.6$ Hz, 2H, H-3'), 7.24 ($dd, J = 3.6, 5.2$ Hz, 2H, H-4'); 13C-NMR (100 MHz, CDCl$_3$): δ[ppm] 152.7 (C-8, C-9), 126.01 (C-4, C-7), 128.1 (C-5, C-6), 139.4 (C-2'), 126.7 (C-3') 127.5 (C-4'), 125.8 (C-5').

7.3.3. **Synthesis of 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]thiadiazole (39).**

4,7-Dibromobenzo[c][1,2,5]thiadiazole (22) (10 g, 34 mmol) was added in small portions to a mixture of fuming HNO$_3$ (100 mL) and fuming H$_2$SO$_4$ (100 mL) at 0 °C. The reaction mixture was allowed warm to room temperature and after stirring for 96 h it was poured into ice water (250 mL). The resulting greenish yellow slurry was filtered and the residue was recrystallized from ethanol and further purified by silica gel column chromatography (hexane:ethyl acetate (1:4) solvent system) to afford 39 (2.75 g, 21.1 %).

13C-NMR (100 MHz, CDCl$_3$): δ[ppm] 151.4 (C-8, C-9), 144.7 (C-5, C-6), 110.3 (C-4, C-7).

7.3.4. **Synthesis 1-bromo-4-octyloxybenzene (34).**

To a mixture of p-bromophenol (10 g, 0.058 mol) and DMF (80 mL) in a three necked round-bottomed flask, of anhydrous K$_2$CO$_3$ (35 g, 0.253 mol) was added. The mixture was heated at 100 °C and 1-bromooctane (10 mL, 0.087 mol) was added from a pressure equalizing dropping funnel. After the addition was complete, the mixture was heated following the reaction progress of reaction by TLC (diethyl ether: hexane (3:2) solvent system). After 5 h, the mixture was cooled to room temperature and filtered. The filtrate was acidified with 2 M HCl and extracted with diethyl ether. The combined extract was washed with 1 M NaOH followed by brine solution and then dried over anhydrous Na$_2$SO$_4$.
Evaporation of the solvent under reduced pressure gave compound 34 (9.12 g, 55\%) as a yellowish oil.

\[^1H-NMR \text{ (400 MHz, CDCl}_3\text{): } \delta[ppm] \ 7.38 \ (d, J = 8 \text{ Hz, 2H, H-2 and H-6}), \ 6.79 \ (d, J = 8 \text{ Hz, 2H, H-3 and H-5}), \ 3.93 \ (t, J = 6.8 \text{ Hz, 2H, H-2'}), \ 1.79 \ (q, 2H, H-3'), \ 1.50 - 1.30 \ (m, 10H, H-4' to H-8'), \ 0.92 \ (t, 3H, H-9'); \ ^{13}C-NMR \text{ (100 MHz, CDCl}_3\text{): } \delta[ppm] \ 158.3 \ (C-4), \ 132.2 \ (C-2,C-6), \ 116.3 \ (C-3,C-5), \ 112.5 \ (C-1), \ 68.3 \ (C-3',C-2'), \ 31.9 \ (C-4'), \ 31.8 \ (C-5'), \ 26.0 \ (C-6'), \ 25.7 \ (C-7'), \ 22.6 \ (C-8'), \ 14.1 \ (C-9'). \]

7.3.5. Synthesis of 5,6-dinitro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (40).

A solution of 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]thiadiazole (39) (2.71 g, 7.03 mmol) and 2-tributylstannylthiophene (6.54 g, 17.52 mmol) in freshly distilled THF(35 mL) was degassed and put under nitrogen atmosphere. The mixture was heated to reflux and Pd(PPh\textsubscript{3})\textsubscript{2}Cl\textsubscript{2}(98.98 mg, 0.141 mmol) dissolved in freshly distilled THF(3.5 mL) was added via a siring. After 5 h an orange precipitate had formed and the heating was removed. When the mixture had cooled to room temperature, the precipitate was filtered off and washed with petroleum ether. Since the crude product contained trace of 2-tributylstannylthiophene, it was dissolved in boiling THF and precipitated by addition of petroleum ether. The precipitate was collected by filtration and washed with petroleum ether to give 40 (2.00 g, 72.72\%)

\[^1H-NMR \text{ (400 MHz, CDCl}_3\text{): } \delta[ppm] \ 7.77 \ (dd, J = 1.2, 5.2 \text{ Hz, 2H, H-5'}), \ 7.54 \ (dd, J = 0.8, 3.6 \text{ Hz, 2H, H-3'}), \ 7.26 \ (dd, J = 3.6, 4.8 \text{ Hz, 2H, H-4'}); \ ^{13}C-NMR \text{ (100 MHz, CDCl}_3\text{): } \delta[ppm] \ 152.2 \ (C-8, C-9), \ 131.5 \ (C-4'), \ 131 \ (C-5'), \ 129.6 \ (C-5, C-6), \ 128.0 \ (C-3'), \ 121.5 \ (C-2'), \ 120.8 \ (C-4, C-7). \]
7.3.6. Synthesis of 1,2-bis-(4-octyloxyphenyl)ethane-1,2-dione (35).

A Grignard reagent was prepared by dropwise addition of 1-bromo-4-octylbenzene (34) (8.0 g, 0.03 mol) in THF (10 mL) to a suspension of magnesium (0.85 g, 0.03 mol) in THF (18 mL). In a separate flask, a solution of LiBr (5.17 g, 59.4 mmol) in THF (20 mL) was added to a stirred suspension of CuBr (4.28 g, 29.7 mmol) in THF (20 mL). The mixture was stirred until it become homogenous and was then cooled to a temperature of −50 °C (immersion cooler). The Grignard reagent was added to LiBr/CuBr suspension. Oxaly chloride (1.89 g, 14.88 mmol) was added and after 30 min the reaction was quenched with saturated NH₄Cl. The organic layer was separated, washed with saturated NH₄Cl, dried over anhydrous Na₂SO₄ and the solvent was removed to afford a pale yellow product (7.1g), which was further purified by silica gel column chromatography (pet ether:ethyl acetate (4.5:0.5) solvent system) to afford 35 (3.01 g, 22.99 %) as a pale yellow solid.

1H-NMR (CDCl₃, 400.13 MHz): δ[ppm] 7.94 (d, J = 8.0 Hz, 4H, H-2', H-6'), 6.96 (d, J = 8.0 Hz, 4H, H-3', H-5'), 4.04 (t, 4H, H-2''); 1.82 (q, 4H, H-3''), 1.47-1.27 (m, 20H, H-4''-H-8''), 0.95 (t, 6H, H-9''); 13C-NMR (CDCl₃, 100.6 MHz): δ[ppm] 193.6 (C-1, C-2), 164.5 (C-4'), 132.4 (C-2', C-6'), 126.1 (C-1'), 114.7 (C-3', C-5'), 68.5 (C-2''), 31.8 (C-7''), 29.0 (C-3'' to C-5''), 25.9 (C-6''), 22.6 (C-8''), 14.1 (C-9'').

7.3.7. Synthesis of 2,3-bis-(4-octyloxyphenyl)-5,8-dithiophen-2-yl-quinoxaline (37).

A mixture of 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (36) (1.0 g, 3.33 mmol) and zinc dust (2.62 g, 39.94 mmol) in acetic acid (90 mL) was stirred at 80 °C under nitrogen for 5 h until the reaction mixture turned white. The insoluble material was separated by suction filtration. To the filtrate was added 1,2-bis-(4-octyloxyphenyl)ethane-1,2-dione (35) (1.55 g, 3.23 mmol) and the mixture was
heated at 60 °C under nitrogen following the reaction progress of reaction by TLC (pet ether:toluene 3:2 as solvent system). After 5 h, the reaction mixture was cooled to room temperature, the precipitate was collected by suction filtration and washed with acetic acid, methanol and water and was dried in a vacuum oven overnight to afford 37 (1.68 g, 71.1%).

Mp.101-104 °C

\[
\begin{align*}
\delta [\text{ppm}] & 8.12 (s, 2\text{H}, \text{H-6}, \text{H-7}), \\
7.87 (d, J = 4 \text{ Hz}, 2\text{H}, \text{H-5'}), \\
7.74 (d, J = 8.4 \text{ Hz}, 4\text{H}, \text{H-2''}), \\
7.53 (d, J = 5.2 \text{ Hz}, 2\text{H}, \text{H-3'}), \\
7.20 (t, J = 3.6, 4.4 \text{ Hz}, 2\text{H}, \text{H-4'}), \\
6.92 (d, J = 8.4 \text{ Hz}, 4\text{H}, \text{H-3''}), \\
4.02 (t, 4\text{H}, \text{H-2'''}), \\
1.83(q, 4\text{H}, \text{H-3'''}), \\
1.34 – 1.49 (m, \text{H-7''}, \text{H-6''}, \text{H-5''}, \text{H-4''}), \\
0.93 (t, 6\text{H}, \text{H-9'''})
\end{align*}
\]

\[
\begin{align*}
\delta [\text{ppm}] & 159.9 (\text{C-4'''}, 151.1 (\text{C-2, C-3}), \\
138.8 (\text{C-2'}), 136.8 (\text{C-9, C-10}), 131.9 (\text{C-2''}), 131.1 (\text{C-5, C-8}), 131.0(\text{C-1''}), 128.7 (\text{C-6, C-7}), 128.6 (\text{C-4'}), 126.5 (\text{C-5'}), 126.2 (\text{C-3'}), 114.2 (\text{C-3''}), 68.1 (\text{C- 2''}), 31.8 (\text{C-3'''}), 31.0 (\text{C-4'''}), 29.3 (\text{C-5'''}, 29.1 (\text{C- 6'''}, 26.1 (\text{C-7'''}, 22.6 (\text{C-8'''}, 14.1 (\text{C-9''''})
\end{align*}
\]

7.3.8. Synthesis of 5,8-bis(5-bromothiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)- quinoxaline (38).

Compound 37 (1.24 g, 1.76 mmol) was dissolved in THF (47.13 mL) in a two-necked flask. NBS (627.84 mg, 3.53 mmol) was added and the mixture was stirred under nitrogen. The contents of the flask were protected from light by wrapping the flask with aluminum foil. After 80 min, The progress of the reaction was monitored by TLC. An additional amount of NBS (25 mg) was added and the mixture was stirred overnight. The reaction was quenched by adding water and was extracted with dichloromethane. The combined CH$_2$Cl$_2$ extract was washed with distilled water and brine, dried over anhydrous Na$_2$SO$_4$ and the solvent was removed by rotary evaporation. The resulting product was further purified by silica gel column chromatography (toluene:hexane (1.5:3.5) solvent system) to afford 38 (1.2 g, 78.95%).
Mp. 108-117 °C
\[^1\text{H-NMR (CDCl}_3\text{, 400.13 MHz): } \delta[\text{ppm}]\ 7.93 (s, 2H, H-6, H-7), 7.66 (d, J = 8 Hz, 4H, H-2''), 7.50 (d, J = 4Hz, 2H, H-4'), 7.10 (d, J = 4 Hz , 2H, H-3'), 6.93 (d, J = 8 Hz, 4H, H-3''), 4.04 (t, 4H, H-2'''), 1.85 (q, 4H, H-3'''), 1.28-1.51 (m,20H, H-4'''-H-8'''), 0.94 (t, 6H, H-9'''); \[^{13}\text{C-NMR (CDCl}_3\text{, 100.6 MHz): } \delta[\text{ppm}]\ 160.0 (C-4''), 151.1 (C-2'), 138.8 (C-2, C-3), 136.8 (C-9, C-10), 131.9 (C-2''), 131.1 (C-5, C-8), 131.0 (C-1''), 128.7 (C-4''), 128.6 (C-3'), 126.5 (C- 6, C-7), 126.2 (C-5'), 114.2 (C-3''), 68.1 (C-2'''), 31.8 (C-3'''), 29.3 (C-4'''), 29.2 (C-5'''), 29.1 (C-6''), 26.1 (C-7'''), 22.7 (C- 8''), 14.2 (C-9'').\]

7.3.9. **Synthesis of 6,7-diphenyl-4,9-dithiophen-2-yl[1,2,5]thiadiazole[3,4- g]quinoxaline (41).**

To a mixture of 5,6-dinitro-4,7-di(thiophen-2-yl)benzo[c][1,2,5] thiadiazole (40) (850 mg, 2.175 mmol) and acetic acid (50 mL) was added iron powder (2.46 g, 43.93 mmol) and the mixture was heated at 45-50 °C. The progress of the reaction was monitored by TLC (dichloromethane:pet ether (1:1)) and after 3 h the starting material disappeared completely. Benzil (457.35 mg, 2.175 mmol) was added and the mixture was stirred overnight at room temperature. Acetic acid was removed by rotary evaporation and the residue was recrystallized from ethanol. This gave 41 (216 mg, 19.67%) as a dark blue-green powder.

\[^1\text{H-NMR (CDCl}_3\text{, 400.13 MHz): } \delta[\text{ppm}]\ 9.05 (d, J = 8 Hz, 2H, H-5'), 7.85 (d, J = 12 Hz, 4H, H-2''), 7.72 (d, J = 8 Hz, 2H, H-3''), 7.45 (m, 6H, H-3'', H-4''), 7.35 (t, J = 4 Hz, 2H, H-4'); \[^{13}\text{C-NMR (CDCl}_3\text{, 100.6 MHz): } \delta[\text{ppm}]\ 153.3(C-10, C-11), 151.9(C-6, C-7), 138.1(C-5, C-8), 135.9(C-2''), 133.2(C-1''), 131.4(C-2''), 130.6(C-4, C-9), 129.6(C-4''), 129.3(C-3'), 128.3(C-3''), 126.8(C-5'), 125.3(C-4').\]

7.3.10. **Synthesis of 9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene (3).**

42
Fluorene (8 g, 48.1 mmol) was dissolved in THF (120 mL) and cooled to \(-78^\circ\text{C}\). 2.5 M \(n\)-BuLi (20 mL, 50 mmol) was added and the mixture was stirred for 30 min at the same temperature. 1-Chloro-2-(2-methoxyethoxy)ethane (6.8 g, 49.1 mmol) was then added and stirring continued for 1 h at \(-78^\circ\text{C}\) followed by stirring at room temperature for 30 min. The cooling bath was placed back and the reaction mixture was cooled to \(-78^\circ\text{C}\). 2.5 M \(n\)-BuLi (24 mL, 60 mmol) was added and the mixture was stirred for 45 min. Then, 1-chloro-2-(2-methoxyethoxy)ethane (7.2 g, 52 mmol) was added. After stirring at \(-78^\circ\text{C}\) for 30 min, the immersion cooler was turned off and the mixture was allowed to warm to room temperature gradually overnight. The mixture was quenched by adding water and the aqueous phase was extracted with diethyl ether. The combined organic phase was washed with distilled water and dried over anhydrous Na\(_2\)SO\(_4\). The solvent was removed on a rotary evaporator and the oily crude product was passed through a column of silica gel using chloroform and chloroform-methanol (4.9:0.1) solvent systems and compound 3 was obtained in pure form (5.78 g, 32.4%).

\(^{1}\text{H NMR (CDCl}_3, 400 MHz) \delta[ppm]:\) 7.71 (dd \(J=1.2, 8\text{Hz}, 2\text{H})\), 7.45 (dd \(J = 6.8, 1.2 \text{Hz}, 2\text{H})\), 7.38 (m, 4H), 3.32 (m, 10H), 3.21 (t, 4H), 2.77 (t, 4H), 2.46 (t, 4H).

7.3.11. Synthesis of 2,7-dibromo-9,9-bis(2-(2-methoxyethoxy)ethyl)-9\(H\)-fluorene (4).

9,9-Bis(2-(2-methoxyethoxy)ethyl)-9\(H\)-fluorene (3) (5.78 g, 15.6 mmol) was dissolved in DMF (80 mL) and bromine (80 mL, 73.75 mmol) dissolved in DMF (5 mL) was added drop-by-drop from a pressure-equalizing dropping funnel over 30 min. Then it was stirred following the progress of reaction by TLC (CHCl\(_3\):MeOH (4.9:0.1)). After 115 min, more bromine (1.2 mL) was added and stirring continued overnight. The reaction mixture was quenched with aqueous Na\(_2\)S\(_2\)O\(_3\).5H\(_2\)O solution (10%) and then extracted with diethyl ether. The ether extract was washed with distilled water, dried over anhydrous Na\(_2\)SO\(_4\) and the solvent was removed to give an oily material (11.8 g). The crude product was
purified by passing through a column packed with silica gel and using CHCl₃ and CHCl₃:MeOH (4.9:0.1) solvent mixture. 2,7-dibromo-9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene (4) (8.0 g, 97%) was obtained in a pure form.

¹H NMR (CDCl₃, 400 MHz) δ[ppm]: 7.56 (d, J = 1.6 Hz, 2H), 7.52 (s, 2H), 7.49 (d, J = 1.6 Hz, 2H), 3.32 (t, 4H), 3.3 (s, 6H), 3.2 (t, 4H), 2.8 (t, 4H), 2.39 (t, 4H).

7.3.12. Synthesis of 2,2’-(9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (6).

2,7-Dibromo-9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene (4) (8.0 g, 16.01 mmol) was dissolved in dry THF (250 mL) under nitrogen atmosphere and cooled to -78 °C. 2.5 M n-BuLi (15.8 mL, 40 mmol) was added to the cooled mixture. Then, 2-isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8 g, 32.02 mmol) was added and stirred for some time. Then the immersion cooler was turned off and the mixture was stirred overnight. The reaction mixture was quenched with water and extracted with diethyl ether. The organic phase was dried over anhydrous Na₂SO₄. Up on removal of the solvent, an oily material was obtained which almost solidified on standing. To the crude material, hot petroleum ether was added and the material was dissolved, and when cooled a white material precipitated. The white solid was collected by suction filtration, dried in a vacuum oven to afford the title compound (2.67 g, 28%).

¹H NMR (CDCl₃, 400 MHz) δ[ppm]: 7.87 (s, 2H), 7.83 (d, J = 7.2 Hz, 2H), 7.73 (2 d, J = 7.6 Hz, 2H), 3.32 (t, 4H), 3.28 (s, 6H), 3.2 (t, 4H), 2.69 (t, 4H), 2.5 (t, 4H), 1.41 (s, 24H).

7.3.13. Synthesis of poly[5-(5-(9,9-bis-[2-(2-methoxyethoxy)ethyl]-9H-fluoren-2-yl)-thiophen-2-yl)-2,3-bis-(4-octyloxyphenyl)-8-thiophen-2-yl-quinoxaline] (44).
5,8-Bis(5-bromothiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)quinoxaline (38) (0.1 g, 0.12 mmol) was mixed with 2,2’-(9,9-bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (6) (0.17 g, 0.12 mmol), tetrakis(triphenylphosphine)palladium(0) (13 mg) and toluene (10 mL) and was refluxed for 10 min under nitrogen atmosphere. 20% (w/w) Tetraethylammonium hydroxide in water (0.45 mL, 0.63 mmol) was added with a syringe and the mixture was refluxed for 3 h. Bromobenzene (0.158 mL, 1.69 mmol) was added and after 1 h phenylboronic acid (0.18 g, 1.5 mmol) was added. After 1 h of refluxing, the mixture was allowed to cool to room temperature and was precipitated by slowly adding the mixture in to methanol, filtered, washed with methanol and dried. The resulting solid was dissolved in chloroform, and was washed with ammonia and with water. The chloroform solution was concentrated to a small volume and the polymer was reprecipitated from methanol, filtered and dried. The dark-red colored solid was Soxhlet extracted first with diethyl ether and then with chloroform. The chloroform portion was concentrated to a small volume and the polymer was reprecipitated from methanol, filtered and dried to afford polymer 44 (117 mg).

2,2’-(9,9-Bis(2-(2-methoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (6) (144.65 mg, 0.23 mmol) was mixed with 5,8-Bis(5-bromothiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)quinoxaline (38) (100 mg, 0.12 mmol), 4,7-dibromobenzo[c][1,2,5]thiadiazole (22) (34.16 mg, 0.12 mmol), tetrakis(triphenylphosphine)palladium(0) (13 mg) and toluene (10 mL) and was refluxed for 10 min under nitrogen atmosphere. 20% (w/w) Tetraethylammonium hydroxide in water (0.35 mL, 0.49 mmol) was added with a
syringe and the mixture was refluxed for 3 h. Bromobenzene (0.1 mL, 0.96 mmol) was added and after 1 h phenylboronic acid (0.19 g, 1.55 mmol) was added. After 1 h of refluxing, the mixture was allowed to cool to room temperature and was precipitated by slowly adding the mixture into methanol, filtered, washed with methanol and dried. The resulting solid was dissolved in chloroform, and was washed with ammonia and with water. The chloroform solution was concentrated to a small volume and the polymer was reprecipitated from methanol, filtered and dried. The red-colored solid was Soxhlet extracted first with diethyl ether and then with chloroform. The chloroform portion was concentrated to a small volume and the polymer was reprecipitated from methanol, filtered and dried to afford polymer 45 (122.7 mg).
8. REFERENCES

53. Wu, W-C.; Liu, C-L.; Chen, W-C. Polymer 2006, 47, 527 and references cited there in.
Appendix 1: 1H-NMR spectrum of 1-bromo-4-octyloxybenzene (34).
Appendix 2: 13C-NMR spectrum of 1-bromo-4-octyloxybenzene (34).
Appendix 3: Dept-135 spectrum of 1-bromo-4-octyloxybenzene (34).
Appendix 4: 1H-NMR spectrum of 1,2-bis-(4-octyloxyphenyl)ethane-1,2-dione (35).
Appendix 5: 13C-NMR spectrum of 1,2-bis-(4-octyloxyphenyl)ethane-1,2-dione (35).
Appendix 6: Dept-135 NMR spectrum of 1,2-bis-(4-octyloxyphenyl)ethane-1,2-dione (35)
Appendix 7: 1H NMR spectrum of 4,7-dithiophen-2-yl-benzo[c][1,2,5]thiadiazole (36).
Appendix 8: 13C- NMR spectrum of 4,7-di-thiophen-2-yl-benzo[c][1,2,5]thiadiazole(36).
Appendix 9: 1H-NMR spectrum of 2,3-bis-(4-octyloxyphenyl)-5,8-di(thiophene-2-yl)quinoxaline (37).
Appendix 10: 13C-NMR spectrum of 2,3-bis-(4-octyloxyphenyl)-5,8-di(thiophene-2-yl)quinoxaline (37).
Appendix 11: DEPT-135 spectrum of 2,3-bis-(4-octyloxyphenyl)-5,8-di(thiophene-2-yl)quinoxaline (37).
Appendix 12: 1H-NMR spectrum of 5,8-bis(5-bromothiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)quinoxaline (38).
Appendix 13: 13C-NMR spectrum of 5,8-bis(5-bromothiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)quinoxaline (38).
Appendix 14: DEPT-135 spectrum of 5,8-bis(5-bromothiophen-2-yl)-2,3-bis(4-(octyloxy)phenyl)quinoxaline (38).
Appendix 15: 13C-NMR spectrum of 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]thiadiazole (39).
Appendix 16: 13C-NMR spectrum of 5,6-dinitro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (40).
Appendix 17: Dept-135 NMR spectrum of 5,6-dinitro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (40).