One year retrospective review of disease patterns and clinical outcomes of patients admitted in intensive care units of Armed Force General Teaching Hospital in Addis Ababa, Ethiopia.

Researcher: SAMUEL HAILE (em&cc msc)
Advisor: Dr. ASSEFU W/TSADIK (MD) ANAESTHESIOLOGIST
Mr. HAYMANOTE GEREMEW (msc), lecturer

Department: Emergency Medicine
ADDIS ABABA UNIVERSITY SCHOOL OF HEALTH SCIENCE
DEPARTMENT OF EMERGENCY MEDICINE
ADDIS ABABA ETHIOPIA
DECEMBER 2014
Disease patterns and clinical outcomes of patients admitted from January 1, 2013 up to December 30, 2014 in intensive care units of Armed Force General Teaching Hospital in Addis Ababa, Ethiopia.

A Thesis will be submitted to the school of graduate studies of Addis Ababa University in Partial Fulfilment of the Requirements for the Degree of Masters of Science in Emergency Medicine.

ADDIS ABABA, ETHIOPIA
DECEMBER, 2014-12-03
TABLE OF CONTENT

PAGE

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>II</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>III</td>
</tr>
<tr>
<td>ABBREVIATION</td>
<td>IV</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>V</td>
</tr>
</tbody>
</table>

Chapter I

1.1 Introduction ...1
1.2 Statement of problem ..3
1.3 Significance of the study ..4

Chapter Two

LITERATURE REVIEW ..5

Chapter Three

1.3 Objective of the study ..8
1.3.1 General objective ...8
1.3.2 Specific objective ...8

Chapter Four

METHODOLOGY

4.1 Study design and study period ..9
4.2 Study area ..9
4.3 Study variables ..9
4.4 Source Population ...9
4.5 Selection and evaluation of study subjects9
4.6 Sample size Determination ...9
4.7 Eligibility and Exclusion Criteria9
 4.7.1 Inclusion criteria ..9
 4.7.2 Exclusion criteria ..9
4.8 Data Collection and processing10
4.9 Data entry and analysis ...10
4.10 Ethical Considerations ..10
4.11 Operational definition ...12

Chapter Five

RESULT TABLE ..13

Chapter Six

DISCUSSION ..18

Chapter Seven

Conclusion and recommendation20
Limitation of the study ...20
ANNEX I
Reference..21

ANNEX II
Questionnaire..25
Abstract

Background
The intensive care unit (ICU) is a health care delivery service for patients who are very sick with potentially recoverable diseases. They can benefit from more detailed observation, monitoring and treatment than is generally available in the standard lying-in ward or department.

Objective: To assess disease pattern and outcome of admissions into the ICU of Armed Force Teaching Hospital, Addis Ababa, Ethiopia.

Methods
A one-year retrospective study will be conducted from January 1, 2013 to December 30, 2014. The study will be carried out in February 2015 consisted of looking at the master registry and daily records of patients admitted in the intensive care unit of Armed Force General Teaching Hospital. The case report will also be examined. A record of the patients demographic characteristics, duration of stay in the ICU, and pattern of morbidity and mortality will be made. The data will be presented as frequency (%) or mean and histograms. Categorical data will be analysed using the chi square test where appropriate.

Result
During the study period 280 patients were admitted to ICU. Male patient compromised the majority of the study population. Male to female ratio of 3:1 the mean age of the study population was 30 years with interquartile range of 21-35 years.

Discussion
In this study disease characteristics and mortality rate of patients admitted in ICU of AFGH hospital shows TBI had the major admission accounts for 25(8.9%), the second most admission is DKA, 18(6.3%) from these patient transferred to ward is 16(88.9%), and, the third commonest admission is MI 17(6.1%).

Conclusion and Recommendation
In this study TBI was the most frequent admission diagnosis for all age group accounting for 25(8.9%), followed by DKA which is responsible for 12(12.9%) admissions and concerning the outcome of the patient admitted to ICU death accounts for 82(29.3%).
LIST OF TABLES

Table 1: Age and sex distribution ICU patient in Armed Force Teaching Hospital, Addis Ababa, Ethiopia (January 2012 - December 2014). ...13

Table 2: Top 10 leading cause of ICU admission diagnoses by age group (January 2012 - December 2014)..14

Table 3: Top 5 leading mortality of ICU patient at Armed Force Teaching Hospital, Addis Ababa, Ethiopia (January 2012 - December 2014)...15

Table 4: Outcome of admitted patients in ICU at Armed Force Teaching Hospital, Addis Ababa, Ethiopia (January 2012 - December 2014)...15
Figure 1. Top 10 and 5 disease categories at ICU by ages at Armed Force Teaching Hospital, Addis Ababa, Ethiopia (January 2012 - Dec 2014).
ABBREVIATIONS
AFGH-armed force general hospital.
CVP-Central venous pressure.
CVC- Central venous catheters
CDC- Centre for Disease Control
ECG- Electrocardiography.
ICU- Intensive Care Unit.
IDC- international disease classification
PICU- Paediatric Intensive Care Unit
SICU- Surgical Intensive Care Unit
SSI- Surgical site infection
TBI-traumatic brain injury
WHO-World Health Organization
ACKNOWLEDGMENT

I am very much grateful to the persistent mentor, encouragement, support and patience of my advisors, Dr. Asfuweltdetsdike, Department of anesteotologist and Haymanotegeremew department of emergency medicine and critical care Addis Ababa University. Without whom this research wouldn’t have been successfully conducted. I extend my gratitude for their unreserved, constructive and invaluable commentary from the beginning of the research project till its conclusion. Also I would like to extend my best regards to Dr. Akelilu for his continuous follow up throughout my course.

I wish to thank ARMEDFORCE GENERAL TEACHING HOSPITAL staffs of Surgical wards and SICU for their support in identifying the Target patient and sample collection.

I am grateful to nurses at ICU wards for their cooperation during sample collection. And their unreserved support in facilitating good working environment. And I acknowledge to Ato Daniel Tindye by printing the paper.

I greatly acknowledge the financial assistance of Addis Ababa University for covering the Research last but not least my everlasting appreciation is to my wife, Sr. Haymanote Terefe.
Chapter I: INTRODUCTION

1.1. Background

The modern concept of intensive care is said to have been pioneered by an anaesthesiologist in Denmark over half a century ago during the polio pandemic (1). Since then, intensive care units (ICUs) have significantly improved the quality of care and outcomes of critically ill and injured patients, predominantly in high resource settings (2, 3, 4).

The main purpose of the ICU is to prevent mortality by intensively monitoring and treating critically ill patients who are considered at high risk of mortality. This, however, comes at a huge cost to all the parties involved: the hospital, the personnel, and the caregivers of patients (5). It is usually only offered to patients whose condition is potentially reversible and who have a good chance of surviving with intensive care support. Since these patients are critically ill, the outcome of intervention is sometimes difficult to predict. In critical care medicine, intensive care unit (ICU) results can be assessed on the basis of outcomes such as “death” or “survival” by means of indicators such as mortality rates. Evaluation of the outcomes of medical interventions can assess the efficacy of treatment, making it possible to take better decisions, to further improve quality of care, to standardize conduct, and to ensure effective management of the high-level resources needed to deliver intensive care services thereby optimizing resource utilization (6).

Although mortality in patients depends on many factors such as demographic and clinical characteristics of the population, infrastructure and non-medical factors (management and organization), case mix, admission practice, it is also affected by ICU performance (4).

The intensive care unit (ICU) is a healthcare delivery service for patients who are critical with potentially recoverable diseases. They can benefit from more detailed observation, monitoring, and treatment than is generally available in the standard lying-in ward or department (8).

In sub-Saharan Africa, ICUs have varying qualities and quantities of infrastructure necessary for the provision of proper critical care services (6, 7). The reported disease characteristics and mortality rates of patients admitted to ICUs in sub-Saharan Africa vary widely from one
Population to anther (11, 12, 13). In a study of severe head injury patients in the ICU of National Hospital Abuja in Nigeria, the mortality rate was 68.4% (14) while in another study of neurological and obstetric patients, the mortality rates were 43.5% and 33% respectively (15, 16). A similar study of critical care obstetric patients in Burkina Faso revealed mortality rate of 60%, (17) while the mortality rate in the general ICU population in Uganda was found to be 25% (18).

Ethiopia is a low-income country in East Africa with a population of 90 million people, is provided by numerous clinics in the country side, and hospitals located mostly in larger towns. The total number of hospitals in Addis Ababa city is 52 (health indicators, FMOH: EFY 2001) out of the total 52 hospitals about 10 of them public, the rest about 42 hospitals are run by private investors and non-profited organizations couldn’t get any literature how many of them have ICU. These are public Access hospitals with government funding, and the with specialized ICU care for Patients with critical illness within the public system. In general, patients pay a standard fee scaled to income for hospital admission whether or not it also includes ICU admission; ability to pay is not a factor in deciding the ICU admission. A small number of private hospitals with semi-tertiary capacity provide specialized ICU care; however these services are not freely Accessible to the general public. Some hospitals have ICU services that operate with varying levels of equipment and staff.

The regional hospitals in the respective zones usually send their sickest patients to these referral hospitals for ICU and other specialized care. The disease patterns and clinical Outcomes of the patients admitted in the ICU of AFGH are unknown. In this study the aim is to describe the disease patterns and clinical outcomes of patients admitted to the ICUs of AFGTH.
1.2 Statement of problem

Intensive care has become very important in the management of critically sick patient. ICU is a part of the hospital where critically ill patients who require advanced airway, respiratory, and hemodynamic supports are usually admitted with the aim of achieving an outcome better than if the patients were admitted into other parts of the hospital.

The main problem of the ICU department of AFGTH is the nurses will work by six month rotation and they are new to managing ICU patients so this will have influence and gap on the outcome of patient who admitted in intensive care unit so The intension of this study is,
1-There is no study done on patterns and outcome of ICU patients in AFGTH.
2-To study/identify the contributing factor for good or poor outcome of patients in the ICU.
1. 4. Significance of the study

These ICUs are dedicated patient care areas at AFGTH, specifically Free for Military Personnel and their family for caring critically ill patients and injured patients. They serve all medical, surgical and trauma patients of adult and paediatrics. This provides the higher referral service for patients coming from other Army referral hospitals and health centres. The importance of this study is

1/ There is no data on disease patterns and clinical outcomes of the patients admitted in the ICU of AFGTH are could not come across study searching pub med and other web site and survey. Therefore the primary intent of this study will be to assess the morbidity pattern and outcome of admissions in the ICU of Armed Force Teaching Hospital, Addis Ababa, Ethiopia.

2/ the result used as base line to improve quality of service.
3/ based on the outcome to construct additional ICU in the hospital
CHAPTER TWO
Literature Review

Critical care medicine and critical care nursing involved in Scandinavia in the early 1950s to coordinate respirators and healthcare professionals with special skills in advanced life support.

The term intensive care unit was coined in the United States in 1958, in connection with the organisation of the first special care units. Initially the critical care was focused on problems of the heart and lungs and on life-support efforts for patients who other disciplines considered being “hopelessly ill patient” (19).

The development of new medical procedures, expensive technology, specialised clinical care, and pharmacological treatment of critical care patients over the years has allowed the survival of more patients, with complex illnesses and extensive injuries. Precise definitions of “ICU patients” and “intensive care” are lacking, but, intensive care is mainly a concept indicating a specific level of care. The patients in the ICU are seriously sick patients, are usually a heterogeneous group of patients, and have high morbidity. ICUs are organised in many different ways depending on the underlying patient groups and where they are located in hospital ICU, source, intense and labour demanding environment that consumes substantial hospital and social resources for a minority (19).

The physician, anaesthetist assess provides care for critically ill patients pre and post-surgical patients and those needing airway management, special nutrition and therapy including the control of infection (20). The diagnosis and treatment of patients with acute life-threatening diseases with a purpose to restore them to their previous health and quality of life is the goal of the ICU (21).

Intensive care units (ICUs) in most of the developed world are high-technology facilities with the most advanced medical technology, electronic monitoring, mechanical ventilation and other life-support measures, as well as up-to-date drugs and highly trained and skilled personnel. In the tropics, however, various levels of care for the critically ill have been described, and intensive care in the developing world has been defined as doing the best for the critically sick with the
resources available (23,24). Caring for the critically sick patient is a challenge in developing countries, where health needs often outstrip available resources (22,23). Necessary equipment is scarce and often malfunctions, (25,26) and trained manpower is limited. Intensive care in such settings is reduced to high dependency nursing care, (23) yet the patients are critically sick, need intensive care, and so cannot be turned away from the hospitals.

In sub-Saharan Africa the availability of intensive care unit (ICU) services is limited by a variety of factors, including lack of financial resources, lack of available technology and well-trained staff (27). Admission patterns and outcome in some ICUs in developing countries have been described previously, and all reports show evidence of the need for improvement in funding, manpower, training, and equipment (28, 29, and 30).

In sub-Saharan Africa, ICUs have varying qualities and quantities of infrastructure necessary for the provision of proper critical care services (9, 10). The reported disease characteristics and mortality rates of patients admitted to ICUs in sub-Saharan Africa vary widely from one population to another (11,12 and 13). In a study of severe head injury patients in the ICU of national Hospital Abuja in Nigeria, the mortality rate was 68.4%, (14) while in another study of neurological and obstetric patients, the mortality rates were 43.5% and 33% respectively (15,16). A similar study of critical care obstetric patients in Burkina Faso revealed mortality Rate of 60%, (17), while the mortality rate in the general ICU population in Uganda was found to be 25% (18).

Traditionally, the outcome after intensive care has focused largely on mortality (3). This may not be an adequate overall measure as the mortality rate for patients in the ICU depends on many of reasons including the underlying diagnostic category. The mortality increases during and after intensive care, but after two years it parallels that of the general population (5).

In Ethiopia previous study shows which is done black lion teaching hospital in patterns of medical admission in to micub/n 1985-2000 acute infection and cardiovascular disease accounted for half of the entire critical care admission with infectious disease accounted for 30% among specific diagnose diabetic ketoacidosis was the leading cause of admission followed by acute myocardial infection and severe and complicated malaria each accounting for (7, 8,9,10),and(9.3) of all admission respectively.
Trends of admission over the sixteen year period showed steady increase in relative frequency of acute complication of non-communicable disease consisting of diabetes, acute myocardial infarction and stroke while infectious disease showed interspersed peak of admission conceding with epidemic.

The overall mortality of the medical ICU was 32% with proportionally more female death 34.8, severe and complicated malaria was the leading cause of death (10.3%) followed by tetanus (6.4%) the increase in relative and absolute frequency of acute complication of non-communicable disease most probably heralds on emerging epidemic of non-communicable disease related to life style change in the urban well to do in addition to existing problems of infectious disease of poverty.
CHAPTER THREE

Objective of the study

3.1 General Objective

To assess the morbidity pattern and outcome of admitted patients in the ICU of Armed Force Teaching Hospital, Addis Ababa, Ethiopia.

3.2 Specific Objectives

1- To describe the demographic characteristics of patients admitted in ICU at AFGTH.
2- To assess the disease pattern of ICU patients.
3- To assess outcome of patients admitted in ICU.
CHAPTER FOUR:
METHODOLOGY

4.1. Study design and study period
A one year retrospective review of patients admitted to the ICU was reviewed from January 1, 2013 to December 31, 2014.

4.2. Study area
The study was conducted at ICU, AFGTH, and Addis Ababa, Ethiopia. AFGTH is one of the biggest Military hospitals in the country; it has 545 beds and is located at the centre of the Addis Ababa city in Lideta Sub city. The hospital receives referred patients from all military hospitals and health centres and provides local emergency service.

4.3. Study variables

4.3.1 Dependent variables: Disease patterns and Outcome of patients.

4.3.2 Independent variables: age, sex, ethnicity, religion, ICU characteristics and length of stay.

4.4. Source of Population
All admissions to the ICU in the study period were included.

4.5. Selection and evaluation of study subjects
A Selection and Evaluation Method was case-series study of all admissions using patient registers book.

4.6. Sample size determination
One year data (January 1, 2013 to December 31, 2014) from the admission and discharge registration book

4.7. Inclusion and Exclusion Criteria
4.7.1. Inclusion criteria
Patients who admitted in the ICU eligible and included in this study.

4.7.2. Exclusion criteria:
Paediatric patient excluded from the study.

4.8. Data Collection and processing
Data on socio-demographic variables, diagnosis during admission, and outcome of patients collected from patients registration book admitted to the ICU.

Study data, including basic demographics and primary diagnoses, is transferred from the handwritten data into an Excel spreadsheet (Microsoft Corporation) and then manually coded.

4.9. Data entry and analysis
Data entry and analysis done by using EPI info version 6 for data entry and SPSS version computer 17.0 software for data analysis. The data is double checked and cleaning will be done.

Procedure, frequency, and univariate functions will be performed to check for any outliers and to clean the dataset. The descriptive statistics including the total number of patients admitted to ICU, gender distribution, age groups, ethnicity and religion is calculated. Trained Nurses will be review, attendance registers, and nurses’ report books. Separate information obtained on the basic characteristics of the ICUs, including human resources and available medical equipment.

The information recorded on a structured questionnaire that developed by the investigator based on the elements intended to study.

Additional study data included: 1) the frequencies and average length of ICU stay for each IDC diagnosis category; 2) the rates and causes of ICU deaths; and 3) the in-ICU mortality rates for each diagnoses. The generated data compiled by frequency table, charts and graphs.
4.10. Ethical consideration

Ethical consideration

Permission to carry out the study was obtained from the institutional review board of Addise Ababa university college of health science, school of medicine, department of emergency medicine. And the research title evaluated and approved by the research department board of ARMED FORCE GENERAL TEACHING HOSPITAL. To ensure confidentiality name and any other personal identities were not used during data collection.

Dissemination of the result

The study result was presented to Addise Ababa university faculty of medicine, department of emergency medicine and document was disseminated to all responsible bodies in the study ar
Operational Definitions

Intensive care unit is a health care delivery service for patients who are very sick with potentially recoverable diseases.

Outcome is something that happens as a result of an activity or process.

Admission is the right or permission to enter a place.

ICU Mortality is calculated as the number of deaths of patients given a particular diagnoses divided by the total number of patients with that diagnosis.

Disease pattern is concerned with the study of factor determining and influencing the frequency and distribution of disease, injury and other health related events and their cause in a defined humane population, also the sum of knowledge gained in such study.
CHAPTER FIVE

ICU patient demographic

During the study period 280 patients were admitted to ICU. Male patient compromised the majority of the study population. Male to female ratio of 3:1 the mean age of the study population was 30 years with interquartile range of 21-35 years as shown in table 2

Table 1: Socio-demographic characteristics of patients admitted at the ICU in Armed Force Teaching Hospital, Addis Ababa, Ethiopia (January 2013 - December 2014).

<table>
<thead>
<tr>
<th>Socio demographic variables</th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>%</td>
<td>No</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Age Group (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-19</td>
<td>13</td>
<td>4.6%</td>
<td>50</td>
<td>17.8%</td>
<td>22%</td>
</tr>
<tr>
<td>20-29</td>
<td>14</td>
<td>5%</td>
<td>56</td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td>30-39</td>
<td>20</td>
<td>7.1%</td>
<td>46</td>
<td>16.4%</td>
<td>24%</td>
</tr>
<tr>
<td>40-49</td>
<td>13</td>
<td>4.6%</td>
<td>29</td>
<td>10.4%</td>
<td>15%</td>
</tr>
<tr>
<td>>50</td>
<td>9</td>
<td>3.2%</td>
<td>30</td>
<td>10.7%</td>
<td>14%</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td></td>
<td>211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amhara</td>
<td>38</td>
<td>13.5%</td>
<td>94</td>
<td>33.5%</td>
<td>47%</td>
</tr>
<tr>
<td>Oromo</td>
<td>16</td>
<td>5.7%</td>
<td>47</td>
<td>16.7%</td>
<td>22%</td>
</tr>
<tr>
<td>Tigray</td>
<td>13</td>
<td>4.6%</td>
<td>35</td>
<td>12.5%</td>
<td>17.1%</td>
</tr>
<tr>
<td>Gurage</td>
<td>1</td>
<td>0.5%</td>
<td>6</td>
<td>2.1%</td>
<td>3%</td>
</tr>
<tr>
<td>Somali</td>
<td>2</td>
<td>0.7%</td>
<td>6</td>
<td>2.1%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Welayeta</td>
<td>0</td>
<td>0%</td>
<td>6</td>
<td>2.1%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>0.5%</td>
<td>15</td>
<td>5.3%</td>
<td>6%</td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
<td></td>
<td>209</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthodox</td>
<td>50</td>
<td>17.9%</td>
<td>126</td>
<td>45%</td>
<td>63%</td>
</tr>
<tr>
<td>Muslim</td>
<td>8</td>
<td>2.9%</td>
<td>33</td>
<td>11.8%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Protestant</td>
<td>12</td>
<td>4.3%</td>
<td>39</td>
<td>14%</td>
<td>18%</td>
</tr>
<tr>
<td>Catholic</td>
<td></td>
<td>0%</td>
<td>7</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>0%</td>
<td>5</td>
<td>1.8%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td></td>
<td>210</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
Top ICU diagnosis and disease categories by age group

TBI was the most frequent admission diagnosis for all age group accounting for 25 (26.9%), followed by DKA which is responsible for 12 (12.9%) admissions and CLD and bronchial asthma had the lowest ICU admission.

Non communicable disease categories (trauma, DKA, MI, CHF, CLD, HTN) accounted major admission. as shown below on table 3

Table 2: Top 10 ICU diagnoses by age group admitted at the ICU in Armed Force Teaching Hospital, Addis Ababa, Ethiopia (January 2013 - December 2014).

<table>
<thead>
<tr>
<th>IDC Category</th>
<th>Male</th>
<th>Female</th>
<th>Average Length of ICU stay in day</th>
<th>Recovered</th>
<th>Deaths in ICU</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI</td>
<td>25</td>
<td>-</td>
<td>6.28</td>
<td>18</td>
<td>7%</td>
<td>100%</td>
</tr>
<tr>
<td>DKA</td>
<td>12</td>
<td>6</td>
<td>3.33</td>
<td>16</td>
<td>2%</td>
<td>100%</td>
</tr>
<tr>
<td>MI</td>
<td>15</td>
<td>2</td>
<td>4.12</td>
<td>15</td>
<td>2%</td>
<td>100%</td>
</tr>
<tr>
<td>CHF</td>
<td>9</td>
<td>4</td>
<td>3.77</td>
<td>5</td>
<td>3%</td>
<td>100%</td>
</tr>
<tr>
<td>HTN</td>
<td>5</td>
<td>3</td>
<td>3.00</td>
<td>5</td>
<td>3%</td>
<td>100%</td>
</tr>
<tr>
<td>SBO</td>
<td>6</td>
<td>2</td>
<td>8.63</td>
<td>3</td>
<td>3%</td>
<td>100%</td>
</tr>
<tr>
<td>Diabetic</td>
<td>7</td>
<td>1</td>
<td>3.00</td>
<td>7</td>
<td>1%</td>
<td>100%</td>
</tr>
<tr>
<td>Stroke</td>
<td>6</td>
<td>1</td>
<td>5.86</td>
<td>5</td>
<td>2%</td>
<td>100%</td>
</tr>
<tr>
<td>CLD</td>
<td>4</td>
<td>3</td>
<td>3.00</td>
<td>1</td>
<td>1%</td>
<td>100%</td>
</tr>
<tr>
<td>B.asthma</td>
<td>4</td>
<td>2</td>
<td>3.33</td>
<td>4</td>
<td>2%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Clinical outcome of patient admitted in ICU

During the study period 280pt were admitted in ICU, from these patient 194(69.3%) patients transferred to ward, and the mortality rate is, 82(29.3%) as shown table, the main cause of death is CHF, TBI, and CLD, HTN and CLD as shown in table 5, and the outcome not indicated or unknown are included below in table 4.

Table 3. Clinical outcome of admitted patients in ICU at Armed Force Teaching Hospital, Addis Ababa, Ethiopia (January 2013 - December 2014).

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of patients</th>
<th>Total no of admission</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>Transferred to ward</td>
<td>152</td>
<td>42</td>
<td>194</td>
</tr>
<tr>
<td>Death</td>
<td>54</td>
<td>28</td>
<td>82</td>
</tr>
<tr>
<td>Outcome not indicated</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>209</td>
<td>71</td>
<td>280</td>
</tr>
</tbody>
</table>

Table 4. Main Cause of Death

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Total No of admission</th>
<th>No death</th>
<th>Total in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLD</td>
<td>7</td>
<td>6</td>
<td>85.7%</td>
</tr>
<tr>
<td>SBO</td>
<td>8</td>
<td>5</td>
<td>62.5%</td>
</tr>
<tr>
<td>CHF</td>
<td>13</td>
<td>8</td>
<td>61.5%</td>
</tr>
<tr>
<td>HTN</td>
<td>8</td>
<td>3</td>
<td>37.5%</td>
</tr>
<tr>
<td>SEVERE ASTHMA</td>
<td>4</td>
<td>2</td>
<td>33.3%</td>
</tr>
</tbody>
</table>
Figure 1 Top 10 ICU admission by disease category
Figure 2. Top 5 ICU admission by disease

- TBI
- DKA
- MI
- CHF
- HTN

Frequency

Male
Female
CHAPTER SIX
DISCUSSION
AFGH has generally 540 beds and 10 ICU beds; the ratio of ICU beds to hospital beds 1:54 this ratio is below internationally recommended standard, and the hospital has two mechanical ventilator, four cardiac monitor, one portable ultrasound, and one infusion pump, and the ICU has no ABG analysis, capnographic, CVP mentoring capacity this shows that AFGH has significant lack necessary resource and infrastructure for the provision of high quality intensive care to critically sick patient. AFGH, ICU staffing has 4 internists they are working by 2 months, 3 surgeon, 1 anesthetologist, 12 ordinary nurses and one trained master emergency medicine and critical care specialist. Similar to the published literature on the state of ICU in other developing country (33, 34, 40-43) I found that none of the ICUs component reviewed meets the minimum standard of basic requirement of the intensive care unit, as per multinational consensuses or professional bodies recommendation (32, 44).

In this study disease characteristics and mortality rate of patients admitted in ICU of AFGH hospital shows TBI had the major admission accounts for 25(8.9%), the second most admission is DKA, 18(6.3%) from these patient transferred to ward is 16(88.9%), and, the third commonest admission is MI 17(6.1%), and). From the top ten ICU diagnosis high mortality rate accounts by CLD, which had, (85.7%), next high mortality rate recorded by SBO which had (62.5%), the third high mortality rate accounts (61.5%) by CHF. The forth HTN which is 37.5, and the fifth high mortality rate record by severe asthma by 33.3%.

In sub-Saharan Africa, ICUs have varying qualities and quantities of infrastructure necessary. For the provision of proper critical cares services (9, 10). The reported disease characteristics and mortality rates of patients admitted to ICUs in sub-Saharan Africa vary widely from one population to another (11, 12,13). In a study of severe head injury patients in the ICU of National Hospital Abuja in Nigeria, the mortality rate was 68.4%, (14) while in another study of neurological and obstetric patients, the mortality rates were 43.5% and 33% respectively (15,16). A similar study of critical care obstetric patients in Burkina Faso revealed mortality Rate of 60% (17), while the mortality rate in the general ICU population in Uganda was found to be 25% (18). The regional practice of restricting admission potentially infectious patient to ICU unit may have also resulted in the triage of even critically ill patient with communicable disease to lower levels of care inflating the proportion of non-communicable disease in the ICU, for
example all of the ICU in Tanzania place some limit on admission of patients with TB, HIV, hepatitis C, regardless of acuity.

The patient population in some studies shows younger is compared with patient admitted to ICU, in most developed world (28, 29) a similar demographic finding to other studies of ICU in sub-Saharan Africa which have reported predominately young age ICU population (34, 45, 30, 31).

The overall young population and male predominance in this study, May in some extent reflects traumatic brain injury long shown to have a working age more predominance. Other disease also affects medium age, however I did not address admission decisions making in this study.

Non communicable disease accounted for most of ICU admission, with trauma alone consuming over 20% highlighting the growing burden of the non-communicable disease with sub-Saharan Africa as shown in other studies (35, 36).

Intracranial injury was the most common reason for ICU admission adult, and overall population and carried a substantial in ICU mortality, similar to finding in previous studies in other developing country (30, 37, 38), among the top ten ICU diagnosis patient with non TB pneumonia had the highest in ICU mortality, potentially because these were HIV/AIDS, PCP known to carry a high in ICU mortality, even in area of high facility (39).
CHAPTER SEVEN

7.1 CONCLUSION & RECOMMENDATION

In this study TBI was the most frequent admission diagnosis for all age group accounting for 25(8.9%), followed by DKA which is responsible for 12(12.9%) admissions and concerning the outcome of the patient admitted to ICU death accounts for 82(29.3%), this shows high mortality rate, so this can be due to severely limited infrastructure, personnel, and resource, make it difficult or impossible to provide optimum care to critically ill patient and likely to contributing to the dauntingly high mortality rate so the concerned bodies must give special attention to solve the problem.

7.2 limitations of the study

The limitations of this study include the retrospective design relative paucity of the clinical data available in the patient registration book. The available data only supported categorization of patient by primary diagnosis and the specific means by which the clinical arrived to these diagnoses is unclear and also the luck of referral data on patient admitted to the ICU limit the study.
Appendix.I

Reference

15. Ohaegbulam SC, Okafor UV, Ihekire O, Elumelu E: Using the revised trauma score to predict outcome in severely head injured patients in a developing nation – a pilot study.

39. Africa: a report of the first two years of activity of the intensive care unit of Ouagadougou

44. OKEDA; medical admission in to the intensive care unit (ICU) of the legose university teaching hospital. niger post grand Med J 2001, 8(4): 179-182.

46. Naghavi M, forouzanfar MH; burden of non-communicable disease in sub seharane Africa in 1990 and 2010; global burden of disease, injuries and risk factor study 2010, lancet 2013, 381; S95.

55. Valentin A, Ferdinade P, ESICM working group on quality improvement; recomendation on basic requirement for intensive care unit; structural and organizational aspects. Intensive Care Med 2011, 37(10); 1575-1587.

Appendix II

Questionnaire
The purpose of this questionnaire is to study the demography, ICU characteristics and disease patterns and outcomes in patients who are admitted to intensive care unit (ICU) of Armed Force Teaching Hospital, Addis Ababa, Ethiopia. The responses will not be used for other purposes than research. So you are kindly requested to give your responses honestly.

A data collection form for January 2013 to December 2014.

<table>
<thead>
<tr>
<th>Part one socio demographic characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>QUESTION</td>
</tr>
<tr>
<td>001</td>
<td>Age in years</td>
</tr>
<tr>
<td>002</td>
<td>Gender</td>
</tr>
<tr>
<td>003</td>
<td>Unit</td>
</tr>
<tr>
<td>004</td>
<td>Marital status</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part two Base line information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>050</td>
<td>Date of admission in ICU</td>
</tr>
<tr>
<td>051</td>
<td>Date of transfer</td>
</tr>
<tr>
<td>052</td>
<td>Source of referal</td>
</tr>
<tr>
<td>053</td>
<td>ICU admission</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part three information during admission</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0200</td>
<td>Diagnosis during admission</td>
</tr>
<tr>
<td>0201</td>
<td>Clinical out come</td>
</tr>
</tbody>
</table>