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Abstract

In this project, we have studied the quantum properties of a light produced by a de-

generate parametric oscillator that contains a two-level atom. Employing the master

equation we have obtained the quantum Langevin equation and the equation of time

evolution for the expectation values of the cavity mode and atomic operators. With

the aid of the solutions of these equations, we have calculated the correlation proper-

ties of noise operators. Using the obtained correlation properties of noise operators

and the large time approximation scheme, we determined the mean and variance of

photon number, the power spectrum, second order correlation function and quadra-

ture variance.

We have found that the variance of the photon number is greater than the mean

photon number, indicating that the light produced by a two level atom has super-

Poissonian photon statistics. On the other hand, the photons in the fluorescent light

are antibunching. In addition, the power spectrum of the fluorescent light from a

two-level atom driven by a coherent light, turns out to be a single peak. It is found

that the width of the spectrum increases with ε/κ. Finally, we found that the cavity

mode is in a squeezed state and the squeezing occurs in the minus quadrature.
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Chapter 1

Introduction

Nonlinear optics is the study of the behavior of light in nonlinear medium (i,e the

medium in which the dielectric polarization responds nonlinearly). When light inte-

racts with nonlinear crystal it induces polarization. The amount of polarization of

a material depends linearly or nonlinearly on the applied electric field. Propagation

of electromagnetic field in a nonlinear medium is affected by the dielectric polariza-

tion induced by the field. When electromagnetic radiation is incident on a nonlinear

medium, a response with greater or less than the driving frequency can appear. The

frequencies of the response in such a system are related to the driving frequency by

an integer multiple and these are called harmonic responses [1]. But under certain

conditions, a response with frequency less than the driving frequency can appear.

The response with frequency less than the driving frequency is called sub-harmonics

and the response with frequency greater than the driving frequency is called supper

harmonics. Some examples of nonlinear interactions are; second harmonic generation,

sum frequency generation and sub-harmonic generation. Sub harmonic generation [2-

6] as well as second harmonic generation [2, 4, 5] is a typical process of leading to the

production of squeezing light. In second harmonic generation a photon of frequency

1



2

ω interacts with nonlinear material and is up converted into photon with twice the

frequency of the initial photon. In sum frequency generation two photons of different

frequencies are combined to provide a photon of frequency equal to the sum of the

two frequencies. In this project work we consider a degenerate parametric oscillator

whose cavity contains a two-level atom. In an optical parametric amplifier, the high

frequency is called the pump, the lower frequency of primary interest is called the

signal, and the remaining frequency is called the idler [1]. The interaction of the

signal light, produced by the parametric amplifier, with the two-level atom leads to

the generation of fluorescent light. Thus the cavity mode in this case consists of the

signal light and the fluorescent light emitted by the two-level atom. A light mode

confined in a cavity, usually formed by two mirrors, is called cavity mode [2]. Also we

analyze the quantum statistical properties of the fluorescent and the signal light ap-

plying the quantum Langevin equations and large time approximation scheme. This

analysis can also be done using the master equation. We also derive the equations

of evolution for the expectation values of atomic and cavity mode operators along

with the obtained quantum Langevin equation. Applying the resulting equations, we

calculate the mean and variance of the photon number, the power spectrum for the

cavity mode and for the fluorescent light. We also determine the second order corre-

lation function for the fluorescent light. Finally we calculate quadrature variance for

the cavity mode and fluorescence light.



Chapter 2

Cavity Mode Dynamics

2.1 The Master Equation

We consider a single two-level atom inside a degenerate parametric oscillator coupled

to a vacuum reservoir. We represent the upper and lower levels of the atom by |a〉 and

|b〉, respectively. We assume the atom to be at resonance with the cavity mode. In a

Figure 2.1: A single two level atom inside a parametric oscillator

degenerate parametric oscillator, a pump photon of frequency 2ω is down converted

into a pair of highly correlated signal photons each of frequency ω [2, 3, 6, 10]. It so

turns out that the signal light is in a squeezed state. With the pump mode treated

3
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Figure 2.2: Degenerate parametric oscillator

classically, the parametric interaction can be described by the Hamiltonian

Ĥ1 =
iε

2
(â†2 − â2). (2.1.1)

The interaction of the cavity mode with the two-level atom is also describable by the

Hamiltonian

Ĥ2 = ig(σ̂+â− â†σ̂−). (2.1.2)

where â† and â are respectively the creation and annihilation operators for cavity

mode, ε is a real constant proportional to the amplitude of the pump mode, g is

the atom-cavity mode coupling constant, and σ̂+ =| a〉〈b |, σ̂− =| b〉〈a | are atomic

operators satisfying the commutation relations [2]

[σ̂±, σ̂∓] = ±σ̂z, (2.1.3)

[σ̂±, σ̂z] = ∓2σ̂±, (2.1.4)

[σ̂z, σ̂±] = ±2σ̂±, (2.1.5)

in which

σ̂z =| a〉〈a | + | b〉〈b | . (2.1.6)
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On account of Eqs. (2.1.1) and (2.1.2), the Hamiltonian describing the parametric

interaction and the interaction of the cavity mode with the two-level atom has the

form

Ĥ =
iε

2
(â†2 − â2) + ig(σ̂+â− â†σ̂−). (2.1.7)

Thus the master equation for a two-level atom and parametric oscillator in a cavity

coupled to a vacuum reservoir is obtained by substituting the expression (2.1.7) into

the relation [2]

dρ̂

dt
= −i[Ĥ, ρ̂] +

κ

2
(2âρ̂â† − â†âρ̂− ρ̂â†â), (2.1.8)

one obtains

dρ̂

dt
=

ε

2
(â†2ρ̂− ρ̂â†2 − â2ρ̂+ ρ̂â2)

+g(σ̂+âρ̂− ρ̂σ̂+â− â†σ̂−ρ̂+ ρ̂â†σ̂−)

+
κ

2
(2âρ̂â† − â†âρ̂− ρ̂â†â). (2.1.9)

This represents the master equation for a two level atom inside subharmonic generator

coupled to vacuum reservoir and κ is a cavity damping constant.

2.2 Time evolution of atomic expectation values

In this section we seek to obtain the equation of evolution for cavity mode and atomic

operators. The time evolution of the expectation value of an operator Â can be written

as [2]

d

dt

〈
Â(t)

〉
= Tr

(
dρ̂

dt
Â

)
. (2.2.1)
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Employing the master equation along with Eq. (2.2.1) we can write

d

dt
〈σ̂−〉 = Tr

(
dρ̂

dt
σ̂−

)
=

ε

2
Tr(â†2ρ̂σ̂− − ρ̂â†2σ̂− − â2ρ̂σ̂− + ρ̂â2σ̂−)

+gTr(σ̂+âρ̂σ̂− − ρ̂σ̂+âσ̂− − â†σ̂−ρ̂σ̂− + ρ̂â†σ̂2
−)

+
κ

2
Tr(2âρ̂â†σ̂− − â†âρ̂σ̂− − ρ̂â†âσ̂−). (2.2.2)

Now using the cyclic property of trace operation together with the identities of com-

mutation relation [2, 4]

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂, (2.2.3)

we see that

d

dt
〈σ̂−〉 =

ε

2
Tr(ρ̂σ̂−â

†2 − ρ̂â†2σ̂− − ρ̂σ̂−â2 + ρ̂â2σ̂−)

+gTr(ρ̂σ̂−σ̂+â− ρ̂σ̂+âσ̂− − ρ̂σ̂−â†σ̂− + ρ̂â†σ̂2
−)

+
κ

2
Tr(2ρ̂â†σ̂−â− ρ̂σ̂−â†â− ρ̂â†âσ̂−)

=
ε

2
Tr
(
ρ̂â†[σ̂−, â

†] + ρ̂[σ̂−, â
†]â† + ρ̂â[â, σ̂−] + ρ̂[â, σ̂−]â

)
+gTr (ρ̂σ̂+[σ̂−, â] + ρ̂[σ̂−, σ̂+]â+ ρ̂â[σ̂−, σ̂−] + ρ̂[â, σ̂−]σ̂−)

+
κ

2
Tr
(
ρ[â†, σ̂−]â+ ρ̂â†[σ̂−, â]

)
. (2.2.4)

Employing Eq. (2.1.3) and assuming that the atomic and cavity mode operators

commute

[σ̂±, â
†] = 0, (2.2.5)

[σ̂±, â] = 0, (2.2.6)

[â†, σ̂±] = 0, (2.2.7)
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[â, σ̂±] = 0, (2.2.8)

we readily find that

d

dt
〈σ̂−〉 = −g 〈σ̂zâ〉 . (2.2.9)

Moreover, employing Eqs. (2.2.1) along with (2.1.9), we see that

d

dt
〈σ̂z〉 =

ε

2
Tr(â†2ρ̂σ̂z − ρ̂â†2σ̂z − â2ρ̂σ̂z + ρ̂â2σ̂z)

+gTr(σ̂+âρ̂σ̂z − ρ̂σ̂+âσ̂z − â†σ̂−ρ̂σ̂z + ρ̂â†σ̂−σ̂z)

+
κ

2
Tr(2âρ̂â†σ̂z − â†âρ̂σ̂z − ρ̂â†âσ̂z). (2.2.10)

Applying the cyclic properties of the trace operation together with the identities [4]

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ, (2.2.11)

we then see that

d

dt
〈σ̂z〉 =

ε

2
Tr(ρ̂σ̂zâ

†2 − ρ̂â†2σ̂z − ρ̂σ̂zâ2 + ρ̂â2σ̂z)

+gTr(ρ̂σ̂zσ̂+â− ρ̂σ̂+âσ̂z − ρ̂σ̂zâ†σ̂− + ρ̂â†σ̂−σ̂z)

+
κ

2
Tr(2ρ̂â†σ̂zâ− ρ̂σ̂zâ†â− ρ̂â†âσ̂z)

=
ε

2
Tr
(
ρ̂â†[σ̂z, â

†] + ρ̂[σ̂z, â
†]â† − ρ̂â[σ̂z, â]− ρ̂[σ̂z, â]â

)
+gTr

(
ρ̂σ̂+[σ̂z, â] + ρ̂[σ̂z, σ̂+]â− ρ̂â†[σ̂z, σ̂−]− ρ̂[σ̂z, â

†]σ̂−
)

+
κ

2
Tr
(
ρ̂σ̂z[â

†, â] + ρ̂[â†, σ̂z]â− ρ̂â†[σ̂z, â]− ρ̂[â†, â]σ̂z
)
. (2.2.12)

With the aid of Eq. (2.1.5), and assuming that the atomic and cavity mode operators

commute as

[σ̂z, â] = 0, (2.2.13)

[σ̂z, â
†] = 0, (2.2.14)
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[â†, σ̂z] = 0, (2.2.15)

one can easily write Eq. (2.2.14) as

d

dt
〈σ̂z〉 = 2g

(
〈σ̂+â〉+ 〈â†σ̂−〉

)
. (2.2.16)

2.3 The quantum Langevin equation

The dynamics of cavity mode coupled to a reservoir can also be described using the

quantum Langevin equation. We now seek to obtain the quantum Langevin equation

for the cavity mode applying the master equation. With the aid of the relation

described by Eq. (2.2.1), the expectation value of the annihilation operator for the

cavity mode evolves in time as

d

dt
〈â(t)〉 = Tr

(
dρ̂

dt
â(t)

)
(2.3.1)

Employing the master equation expressed in Eq. (2.1.9), we can write the above

relation as

d

dt
〈â(t)〉 =

ε

2
Tr(â†2ρ̂â− ρ̂â†2â− â2ρ̂â+ ρ̂â3)

+gTr(σ̂+âρ̂â− ρ̂σ̂+â
2 − â†σ̂−ρ̂â+ ρ̂â†σ̂−â)

+
κ

2
Tr(2âρ̂â†â− â†âρ̂â− ρ̂â†â2). (2.3.2)

Applying the cyclic property of trace operation, and taking Eqs. (2.2.3) and (2.2.11)

into account one can write Eq. (2.3.2) as

d

dt
〈â(t)〉 =

ε

2
Tr
(
ρ̂â†[â, â†] + ρ̂[â, â†]â†

)
+gTr

(
ρ̂σ̂+[â, â] + ρ̂[â, σ̂+]â− ρ̂â†[â, σ̂−]− ρ̂[â, â†]σ̂−

)
+
κ

2
Tr
(
ρ̂â†[â, â] + ρ̂[â†, â]â

)
. (2.3.3)
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With the aid of Eqs. (2.2.8) and the fact that

[â, â†] = 1, (2.3.4)

and

[â, â] = 0, (2.3.5)

one readily obtains

d

dt
〈â(t)〉 = −κ

2
〈â(t)〉+ ε〈â†(t)〉 − g〈σ̂−(t)〉. (2.3.6)

We now seek to obtain the evolution of expectation values of â2(t), â†(t)â(t) and

â(t)â†(t). With the aid of Eq. (2.2.1) along with the master equation, together with

the cyclic property of trace operation one obtains

d

dt
〈â2(t)〉 =

ε

2
Tr(ρ̂â2â†2 − ρ̂â†2â2) + gTr(ρ̂â2σ̂+â− ρ̂σ̂+â

3 − ρ̂â2â†σ̂− + ρ̂â†σ̂−â
2)

+
κ

2
Tr(ρ̂â†â3 − ρ̂â2â†â). (2.3.7)

Applying the property of commutation relation [3]

[ÂB̂, ĈD̂] = Â[B̂, ĈD̂] + [Â, ĈD̂]B̂, (2.3.8)

along with Eqs. (2.2.6), (2.2.8), (2.2.11), (2.3.4) and (2.3.5), one can write Eq. (2.3.7)

as

d

dt
〈â2(t)〉 = −κ〈â2(t)〉+ ε

(
〈â(t)â†(t)〉+ 〈â†(t)â(t)〉

)
−g (〈â(t)σ̂−(t) + 〈σ̂−(t)â(t)〉) . (2.3.9)

Moreover, on account of Eq. (2.2.1) along with Eq. (2.1.9), we see that

d

dt

〈
â†(t)â(t)

〉
=

ε

2
Tr(â†2ρ̂â†â− ρ̂â†2â†â− â2ρ̂â†â+ ρ̂â2â†â)

+gTr(σ̂+âρ̂â
†â− ρ̂σ̂+ââ

†â− â†σ̂−ρ̂â†â+ ρ̂â†σ̂−â
†â)

+
κ

2
Tr(2âρ̂â†2â− â†âρ̂â†â− ρ̂â†ââ†â), (2.3.10)
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Employing the cyclic property of trace operation, we have

d

dt
〈â†(t)â(t)〉 =

ε

2
Tr(ρ̂â†ââ†2 − ρ̂â†3â− ρ̂â†â3 + ρ̂â2â†â)

+gTr(ρ̂â†âσ̂+â− ρ̂σ̂+ââ
†â− ρ̂â†ââ†σ̂− + ρ̂â†σ̂−â

†â)

+
κ

2
Tr(2ρ̂â†2â2 − 2ρ̂â†ââ†â)

=
ε

2
Tr
(
ρ̂[â†â, â†2]− ρ̂[â†â, â2]

)
+gTr

(
ρ̂[â†â, σ̂+â]− ρ̂[â†â, â†σ̂−]

)
+κTr

(
ρ̂â†[ρ̂â†, â]â

)
. (2.3.11)

With the aid of Eq. (2.3.8) along with (2.2.11), (2.2.7), (2.2.8), (2.3.4), (2.3.5) and

using the commutation relation

[â†, â†] = 0, (2.3.12)

Eq. (2.3.11) can be expressed in the form

d

dt
〈â†(t)â(t)〉 = −κ〈â†(t)â(t)〉+ ε(〈â†2(t)〉+ 〈â2(t)〉)

−g(〈â†(t)σ̂−(t)〉+ 〈σ̂+(t)â(t)〉). (2.3.13)

Furthermore, following in a similar manner one readily obtains

d

dt
〈â(t)â†(t)〉 = −κ〈â(t)â†(t)〉+ κ+ ε(〈â†2(t)〉+ 〈â2(t)〉)

−g(〈â(t)σ̂+(t)〉+ 〈σ̂−(t)â†(t)〉). (2.3.14)

2.4 Correlation properties of noise operator

On the basis of Eq. (2.3.6) one can write

d

dt
â(t) = −κ

2
â(t) + εâ†(t)− gσ̂−(t) + F̂ (t). (2.4.1)
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This expression is called quantum Langevin equation of the atomic operator â. Where

F̂ (t) is a noise operator associated with the vacuum reservoir and whose correlation

properties remain to be determined. We note that Eq. (2.3.6) and the expectation

value of the expression (2.4.1) will have the same form if

〈F̂ (t)〉 = 0. (2.4.2)

Using Eq. (2.4.1) and its complex conjugate along with the relation [2]

d

dt

〈
â†(t)â(t)

〉
=

〈
dâ†(t)

dt
â(t)

〉
+

〈
â†(t)

d

dt
â(t)

〉
, (2.4.3)

we find

d

dt
〈â†(t)â(t)〉 = −κ〈â†(t)â(t)〉+ ε(〈â†2(t)〉+ 〈â2(t)〉)

−g(〈σ̂+(t)â(t)〉+ 〈â†(t)σ̂−(t)〉)

+〈F̂ †(t)â(t)〉+ 〈â†(t)F̂ (t)〉. (2.4.4)

Comparison of Eqs. (2.3.13) and (2.4.4) indicates that

〈F̂ †(t)â(t)〉+ 〈â†(t)F̂ (t)〉 = 0. (2.4.5)

A formal solution of Eq. (2.4.1) can be written as

â(t) = â(0)e−κt/2 +

∫ t

0

e−κ(t−t′)/2[εâ†(t′)− gσ̂−(t′) + F̂ (t′)]dt′. (2.4.6)

Multiplying this by F̂ †(t) from the left side and taking the expectation value, we get

〈F̂ †(t)â(t)〉 = 〈F̂ †(t)â(0)〉e−κt/2 +

∫ t

0

e−κ(t−t′)/2[ε〈F̂ †(t)â†(t′)〉

−g〈F̂ †(t)σ̂−(t′)〉+ 〈F̂ †(t)F̂ (t′)〉]dt′. (2.4.7)
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Since a noise operator at a certain time should not affect a cavity mode and atomic

operators at an earlier time, one can write

〈F̂ †(t)â(0)〉 = 〈F̂ †(t)〉〈â(0)〉 = 0. (2.4.8)

〈F̂ †(t)â†(t′)〉 = 〈F̂ †(t)〉〈â†(t′)〉 = 0. (2.4.9)

and

〈F̂ †(t)σ̂−(t′)〉 = 〈F̂ †(t)〉〈σ̂−(t′)〉 = 0. (2.4.10)

In view of Eqs. (2.4.8), (2.4.9) and (2.4.10), we see that Eq. (2.4.7) reduces to

〈F̂ †(t)â(t)〉 =

∫ t

0

e−κ(t−t′)/2〈F̂ †(t)F̂ (t′)〉dt′. (2.4.11)

Taking the complex conjugate of Eq. (2.4.6) and multiplying it by F̂ (t) from the

right and taking the expectation value of the resulting expression together with the

assertion that a noise force at a certain time should not affect a cavity mode and

atomic operators at an earlier time, one can get

〈â†(t)F̂ (t)〉 =

∫ t

0

e−κ(t−t′)/2〈F̂ †(t′)F̂ (t)〉dt′. (2.4.12)

Thus taking into account Eq. (2.4.5) along with (2.4.11) and (2.4.12), we see that∫ t

0

e−κ(t−t′)/2〈F̂ †(t)F̂ (t′)〉dt′ +
∫ t

0

e−κ(t−t′)/2〈F̂ †(t′)F̂ (t)〉dt′ = 0. (2.4.13)

and assuming that

〈F̂ †(t)F̂ (t′)〉 = 〈F̂ †(t′)F̂ (t)〉, (2.4.14)

we have ∫ t

0

e−κ(t−t′)/2〈F̂ †(t)F̂ (t′)〉dt′ = 0. (2.4.15)
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On the basis of the relation [2]∫ t

0

e−a(t−t′)/2〈F̂ (t)g(t′)〉dt′ = D, (2.4.16)

we assert that

〈F̂ (t)g(t′)〉 = 2Dδ(t− t′). (2.4.17)

where a is constant and D is constant or some function of time t. We then see that

〈F̂ †(t′)F̂ (t)〉 = 〈F̂ †(t)F̂ (t′)〉 = 0. (2.4.18)

Moreover, employing Eq. (2.4.1) and its complex conjugate along with the relation

d

dt

〈
â(t)â†(t)

〉
=

〈
dâ(t)

dt
â†(t)

〉
+

〈
â(t)

dâ†(t)

dt

〉
, (2.4.19)

one can easily establish that

d

dt
〈â(t)â†(t)〉 = −κ〈â(t)â†(t)〉+ ε(〈â†2(t)〉+ 〈â2(t)〉)

−g(〈â(t)σ̂+(t)〉+ 〈σ̂−(t)â†(t)〉)

+〈F̂ (t)â†(t)〉+ 〈â(t)F̂ †(t)〉. (2.4.20)

Comparison of Eqs. (2.3.14) and (2.4.20) indicates that

〈F̂ (t)â†(t)〉+ 〈â(t)F̂ †(t)〉 = κ. (2.4.21)

Multiplying the complex conjugate of Eq. (2.4.6) from the left by F̂ (t) and taking

the expectation value of the resulting expression together with the assertion that a

noise operator at a certain time should not affect the system variables at earlier time,

one obtains

〈F̂ (t)â†(t)〉 =

∫ t

0

e−κ(t−t′)/2〈F̂ (t)F̂ †(t′)〉dt′. (2.4.22)
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similarly one easily gets

〈â(t)F̂ †(t)〉 =

∫ t

0

e−κ(t−t′)/2〈F̂ (t′)F̂ †(t)〉dt′. (2.4.23)

On account of Eqs. (2.4.22) and (2.4.23), we then see that Eq. (2.4.21) can be written

as ∫ t

0

e−κ(t−t′)/2〈F̂ (t)F̂ †(t′)〉dt′ +
∫ t

0

e−κ(t−t′)/2〈F̂ (t′)F̂ †(t)〉dt′ = κ (2.4.24)

assuming that,

〈F̂ (t)F̂ †(t′)〉 = 〈F̂ (t′)F̂ †(t)〉, (2.4.25)

we have ∫ t

0

e−κ(t−t′)/2〈F̂ (t)F̂ †(t′)〉dt′ = κ

2
. (2.4.26)

On the basis of Eqs. (2.4.16) and (2.4.17), we then see that

〈F̂ (t)F̂ †(t′)〉 = 〈F̂ (t′)F̂ †(t)〉 = κδ(t− t′). (2.4.27)

Furthermore, employing the relation

d

dt

〈
â2(t)

〉
=

〈
dâ(t)

dt
â(t)

〉
+

〈
â(t)

dâ(t)

dt

〉
, (2.4.28)

along with Eq. (2.4.1), we obtain

d

dt
〈â2(t)〉 = −κ〈â2(t)〉+ ε(〈â(t)â†(t)〉+ 〈â†(t)â(t)〉)

+g(〈â(t)σ̂−(t)〉+ 〈σ̂−(t)â(t)〉)

+〈F̂ (t)â(t) + â(t)F̂ (t)〉. (2.4.29)

Comparison of Eqs. (2.3.9) and (2.4.29) shows that

〈F̂ (t)â(t)〉+ 〈â(t)F̂ (t)〉 = 0. (2.4.30)



15

In view of Eq. (2.4.6) and together with the assertion that the noise forces at a certain

time should not affect the system variables at earlier time, we have

〈F̂ (t)â(t)〉 =

∫ t

0

e−κ(t−t′)/2〈F̂ (t)F̂ (t′)〉dt′. (2.4.31)

and

〈â(t)F̂ (t)〉 =

∫ t

0

e−κ(t−t′)/2〈F̂ (t′)F̂ (t)〉dt′. (2.4.32)

Upon combining Eqs. (2.4.30), (2.4.31) and (2.4.32), we have∫ t

0

e−κ(t−t′)/2〈F̂ (t)F̂ (t′)〉dt′ +
∫ t

0

e−κ(t−t′)/2〈F̂ (t′)F̂ (t)〉dt′ = 0. (2.4.33)

assuming that

〈F̂ (t)F̂ (t′)〉 = 〈F̂ (t′)F̂ (t)〉. (2.4.34)

we see that

2

∫ t

0

e−κ(t−t′)/2〈F̂ (t)F̂ (t′)〉dt′ = 0. (2.4.35)

Now on the basis of this result, we assert that

〈F̂ (t)F̂ (t′)〉 = 〈F̂ (t′)F̂ (t)〉 = 0. (2.4.36)

Following a similar procedure, one can verify that

〈F̂ †(t)F̂ †(t′)〉 = 〈F̂ †(t′)F̂ †(t)〉 = 0. (2.4.37)

We would like to point out that the Eqs. (2.4.2), (2.4.18), (2.4.27), (2.4.36) and

(2.4.37) describe the correlation properties of the noise operators F̂ (t) and F̂ †(t).

Since Eqs. (2.2.9), (2.2.16) and (2.3.6) are nonlinear and coupled differential equa-

tions, it is not possible to obtain their exact solutions. We then seek to obtain the

solutions of these equations applying the large-time approximation scheme. In the
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large time approximation scheme, the cavity damping constant is much greater than

the cavity atomic decay rate. In this approximation scheme, the cavity mode vari-

ables decay faster than the atomic variables. We can then set the time derivatives

of the cavity mode variables equal to zero while keeping the zero-order atomic and

cavity mode variables at time t [2,3]. In view of this, from Eq. (2.4.1) we see that

â(t) =
2

κ

(
εâ†(t)− gσ̂−(t) + F̂ (t)

)
. (2.4.38)

and

â†(t) =
2

κ

(
εâ(t)− gσ̂+(t) + F̂ †(t)

)
. (2.4.39)

Substituting Eq. (2.4.39) into (2.4.38), we have

â(t) =
4ε

κ2
(εâ− gσ̂+ + F̂ †(t)) +

2

κ
(F̂ (t)− gσ̂−)

=
4ε2

κ2
â− 4ε

κ2
(gσ̂+ − F̂ †(t)) +

2

κ
(F̂ (t)− gσ̂−)

= − 4ε/κ2

1− 4ε2/κ2
(gσ̂+ − F̂ †(t)) +

2/κ

1− 4ε2/κ2
(F̂ (t)− gσ̂−)

=
−2κg

κ2 − 4ε2
σ̂− −

4gε

κ2 − 4ε2
σ̂+ +

4

κ2 − 4ε2
[
κ

2
F̂ (t) + εF̂ †(t)]. (2.4.40)

Introducing Eq. (2.4.38) into (2.4.39) one can easily obtain

â†(t) =
−2κg

κ2 − 4ε2
σ̂+ −

4gε

κ2 − 4ε2
σ̂− +

4

κ2 − 4ε2
[
κ

2
F̂ †(t) + εF̂ (t)]. (2.4.41)

Upon substituting Eq.(2.4.40) into (2.2.9), and the fact that

σ̂zσ̂± = ±σ̂±, (2.4.42)
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one readily obtains

d

dt
〈σ̂−〉 =

2κg2

κ2 − 4ε2
〈σ̂zσ̂−〉+

4g2ε/κ

κ2 − 4ε2
〈σ̂zσ̂+〉

− 4g

κ2 − 4ε2
(
κ

2
〈σ̂z(t)F̂ (t)〉+ ε〈σ̂z(t)F̂ †(t)〉)

=
−2κg2

κ2 − 4ε2
〈σ̂−〉+

4g2ε

κ2 − 4ε2
〈σ̂+〉

− 4g

κ2 − 4ε2
(
κ

2
〈σ̂z(t)F̂ (t)〉+ ε〈σ̂z(t)F̂ †(t)〉)

= − 2g2/κ

1− 4ε2/κ2
〈σ̂−〉+

4g2ε/κ2

1− 4ε2/κ2
〈σ̂+〉

− 4g

κ2 − 4ε2
(
κ

2
〈σ̂z(t)F̂ (t)〉+ ε〈σ̂z(t)F̂ †(t)〉). (2.4.43)

Introducing Eqs. (2.4.40) and (2.4.41) into (2.2.16) along with the fact that

σ̂2
+ = σ̂2

− = 0, (2.4.44)

we obtain

d

dt
〈σ̂z〉 = − 4g2κ

κ2 − 4ε2
〈σ̂+σ̂−〉+

8g

κ2 − 4ε2
[
κ

2
〈σ̂+(t)F̂ (t)〉+ ε〈σ̂+(t)F̂ †(t)]

− 4g2κ

κ2 − 4ε2
〈σ̂+σ̂−〉+

8g

κ2 − 4ε2
[
κ

2
〈F̂ †(t)σ̂−(t)〉+ ε〈F̂ (t)σ̂−(t)]

=
−8g2/κ

1− 4ε2/κ2
〈σ̂+σ̂−〉+

8g

κ2 − 4ε2
[
κ

2
(〈F̂ †(t)σ̂−(t)〉+ 〈σ̂+(t)F̂ (t)〉)

+ε(〈F̂ (t)σ̂−(t)〉+ 〈σ̂+(t)F̂ †(t)〉)]. (2.4.45)

one can easily write Eqs. (2.4.43) and (2.4.45) as

d

dt
〈σ̂−〉 = −η

2
〈σ̂−〉+

ηε

κ
〈σ̂+〉 −

4g

κ2 − 4ε2

(κ
2
〈σ̂z(t)F̂ (t)〉+ ε〈σ̂z(t)F̂ †(t)〉

)
. (2.4.46)

and

d

dt
〈σ̂z〉 = −2η〈σ̂+σ̂−〉+

8g

κ2 − 4ε2
[
κ

2
(〈F̂ †(t)σ̂−(t)〉

+〈σ̂+(t)F̂ (t)〉) + ε(〈F̂ (t)σ̂−(t)〉+ 〈σ̂+(t)F̂ †(t)〉)]. (2.4.47)
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where

η =
4g2/κ

1− 4ε2/κ2
(2.4.48)

We next proceed to find the expectation value of the products involving a noise

operator and atomic operator that appear in Eq. (2.4.46) and (2.4.47). Thus a

formal solution of Eq. (2.4.46) can be written as

〈σ̂−(t)〉 = 〈σ̂−(0)〉e−ηt/2 +

∫ t

0

e−η(t−t′)/2[η
ε

κ
〈σ̂+(t′)〉

− 4g

κ2 − 4ε2
(
κ

2
〈σ̂z(t′)F̂ (t′)〉+ ε〈σ̂z(t′)F̂ †(t′)〉)]dt′. (2.4.49)

We note that Eq. (2.4.46) is a well behaved solution provided that η > 0 is positive.

Thus will be the case if, ε/κ < 1/2 [3]. The quantum regression theorem states that

it is possible under certain conditions to evaluate a two time correlation function

employing the explicit form of a one time correlation function, obtained with the aid

of some equation of evolution such as the master equation [2]. In this theorem if

〈Â(t+ τ)〉 = G(τ)〈Â(t)〉 (2.4.50)

holds, then the relation

〈Â(t+ τ)B̂(t)〉 = G(τ)〈Â(t)B̂(t)〉 (2.4.51)

follows [2]. Then using this theorem to Eq. (2.4.49), we obtain

〈F̂ (t)σ̂−(t)〉 = 〈F̂ (t)σ̂−(0)〉e−ηt/2 +

∫ t

0

e−η(t−t′)/2[η(
ε

2
)〈F̂ (t)σ̂+(t′)〉

− 4g

κ2 − 4ε2
× (

κ

2
〈F̂ (t)σ̂z(t

′)F̂ (t′)〉

+ε〈F̂ (t)σ̂z(t
′)F̂ †(t′)〉)]dt′. (2.4.52)

It is not possible to evaluate the integral that appears in Eq. (2.4.52) as the explicit

form of σ̂z(t
′) is unknown yet. In order to proceed further, we need to adopt a certain
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approximation scheme [2, 3]. To this end, ignoring the non-commutativity of the

atomic and noise operators, we see that

〈F̂ (t)σ̂z(t
′)F̂ (t′)〉 = 〈σ̂z(t′)F̂ (t)F̂ (t′)〉. (2.4.53)

and

〈F̂ (t)σ̂z(t
′)F̂ †(t′)〉 = 〈σ̂z(t′)F̂ (t)F̂ †(t′)〉. (2.4.54)

Moreover, up on neglecting the correlation between σ̂z(t
′), F̂ (t)F̂ (t′) and F̂ (t)F̂ †(t′)

assumed to be considerably small, we can write the approximately valid relation

〈σ̂z(t′)F̂ (t)F̂ (t′)〉 = 〈σ̂z(t′)〉〈F̂ (t)F̂ (t′)〉, (2.4.55)

and

〈σ̂z(t′)F̂ (t)F̂ †(t′)〉 = 〈σ̂z(t′)〉〈F̂ (t)F̂ †(t′)〉. (2.4.56)

The approximation described by Eqs. (2.4.55) and (2.4.56) are referred to as the

operator decoupling approximation [2, 3]. Taking Eqs. (2.4.55) and (2.4.56) into

account and the fact that a noise operator F̂ (t) at a certain time t does not affect

the atomic variables at earlier time,

〈F̂ (t)σ̂−(0)〉 = 〈F̂ (t)〉〈σ̂−(0)〉 = 0. (2.4.57)

Then Eq. (2.4.52) can be put in the form

〈F̂ (t)σ̂−(t)〉 = − 4g

κ2 − 4ε2

∫ t

0

e−η(t−t′)/2[
κ

2
〈σ̂z(t′)〉〈F̂ (t)F̂ (t′)〉

+ε〈σ̂z(t′)〉〈F̂ (t)F̂ †(t′)〉]dt′. (2.4.58)

Therefore, with the aid of Eqs. (2.4.27) and (2.4.36) we see that,

〈F̂ (t)σ̂−(t)〉 = − 4gεκ

κ2 − 4ε2

∫ t

0

〈σ̂z(t′)〉e−η(t−t′)/2δ(t− t′)dt′

=
−2gε/κ

1− 4ε2/κ2
〈σ̂z(t)〉. (2.4.59)
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Applying the quantum regression theorem to the complex conjugate of Eq. (2.4.49),

one obtain

〈σ̂+(t)F̂ †(t)〉 = 〈σ̂+(0)F̂ †(t)〉e−ηt/2 +

∫ t

0

e−η(t−t′)/2[η(
ε

κ
)〈σ̂−(t′)F̂ †(t)〉

− 4g

κ2 − 4ε2
(
κ

2
〈σ̂z(t′)F̂ †(t′)F̂ †(t)〉

+ε〈σ̂z(t′)F̂ (t′)F̂ †(t))]dt′. (2.4.60)

On account of operator decoupling approximation, we can write

〈σ̂z(t′)F̂ †(t′)F̂ †(t)〉 = 〈σ̂z(t′)〉〈F̂ †(t′)F̂ †(t)〉 (2.4.61)

and

〈σ̂z(t′)F̂ (t′)F̂ †(t)〉 = 〈σ̂z(t′)〉〈F̂ (t′)F̂ †(t)〉. (2.4.62)

Upon substituting Eq. (2.4.61) and (2.4.62) into Eq. (2.4.60), and the noise operator

at a certain time should not affect the atomic variables at earlier time, we see that

〈σ̂+(t)F̂ †(t)〉 =
−4g

κ2 − 4ε2

∫ t

0

e−η(t−t′)/2[
κ

2
〈σ̂z(t′)〉〈F̂ †(t′)F̂ †(t)〉

+ε〈σ̂z(t′)〉〈F̂ (t′)F̂ †(t)〉]dt′. (2.4.63)

Hence in view of Eqs. (2.4.27) and (2.4.37) and performing the integration we imme-

diately notice that

〈σ̂+(t)F̂ †(t)〉 =
−2gε/κ

1− 4ε2/κ2
〈σ̂z(t)〉. (2.4.64)

one can also be readily established that

〈σ̂+(t)F̂ (t)〉 = 〈F̂ †(t)σ̂−(t)〉 = 0, (2.4.65)

and

〈σ̂−(t)F̂ (t)〉 = 〈F̂ †(t)σ̂+(t)〉 = 0. (2.4.66)
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Again using the quantum regression theorem to Eq. (2.4.49), and the assertion that

the noise forces at a certain time should not affect a light mode variable at an earlier

time and taking the operator decoupling approximation, we have

〈σ̂−(t)F̂ †(t)〉 =
−4g

κ2 − 4ε2

∫ t

0

e−η(t−t′)/2[
κ

2
σ̂z(t

′)〉〈F̂ (t′)F̂ †(t)〉

+ε〈σz(t′)〉〈F̂ †(t′)F̂ †(t)〉]dt′. (2.4.67)

On account of Eqs. (2.4.27) and (2.4.37), we see that

〈σ̂−(t)F̂ †(t)〉 =
−4g

κ2 − 4ε2
〈σ̂z(t)〉(

κ2

4
)

=
−g

1− 4ε2/κ2
〈σ̂z(t)〉. (2.4.68)

We also notice that

〈F̂ (t)σ̂+(t)〉 =
−g

1− 4ε2/κ2
〈σ̂z(t)〉. (2.4.69)

The formal solution of Eq. (2.4.47) can be written as

〈σ̂z(t)〉 = 〈σ̂+(0)σ̂−(0)〉e−2ηt +
8g

κ2 − 4ε2

∫ t

0

e−2η(t−t′)[
κ

2
(〈F̂ †(t′)σ̂−(t′)〉+ 〈σ̂+(t′)F̂ (t′)〉)

+ε(〈F̂ (t′)σ̂−(t′)〉+ 〈σ̂+(t′)F̂ †(t′)〉)]dt′, (2.4.70)

so that applying the quantum regression theorem to the above equation and taking

into account the decoupling approximation, we obtain

〈σ̂z(t)F̂ (t)〉 = 〈σ̂+(0)σ̂−(0)F̂ (t)〉e−2ηt

+
8g

κ2 − 4ε2

∫ t

0

e−2η(t−t′)[
κ

2
(〈σ̂−(t′)〉〈F̂ †(t′)F̂ (t)〉

+〈σ̂+(t′)〉〈F̂ (t′)F̂ (t)〉) + ε(〈σ̂−(t′)〉〈F̂ (t′)F̂ (t)〉

+〈σ̂+(t′)〉〈F̂ †(t′)F̂ (t)〉)]dt′. (2.4.71)
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Since the noise operator at a certain time does not affect the atomic variables at an

earlier time, then Eq. (2.4.71) can be written as

〈σ̂z(t)F̂ (t)〉 =
8g

κ2 − 4ε2

∫ t

0

e−2η(t−t′)[〈σ̂−(t′)〉κ
2

(〈F̂ †(t′)F̂ (t)〉+ ε〈F̂ (t′)F̂ (t)〉)

+〈σ̂+(t′)〉(κ
2
〈F̂ (t′)F̂ (t)〉+ ε〈F̂ †(t′)F̂ (t)〉)]. (2.4.72)

With the aid of Eq.(2.4.18) and (2.4.36), we obtain

〈σ̂z(t)F̂ (t)〉 = 0. (2.4.73)

Again applying the quantum regression theorem to Eq. (2.4.70) and in view of the

assertion that the noise operator at a certain time does not affect the atomic variables

at an earlier time, we see that

〈σ̂z(t)F̂ †(t)〉 =
8g

κ2 − 4ε2

∫ t

0

e−2η(t−t′)[〈σ̂−(t′)〉κ
2

(〈F̂ †(t′)F̂ †(t)〉+ ε〈F̂ (t′)F̂ †(t)〉)

+〈σ̂+(t′)〉(κ
2
〈F̂ (t′)F̂ †(t)〉+ ε〈F̂ †(t′)F̂ †(t)〉)], (2.4.74)

On account of Eqs. (2.4.27) and (2.4.37) and performing the integration one can

write Eq. (2.4.74) as

〈σ̂z(t)F̂ †(t)〉 =
4g/κ

1− 4ε2/κ2

(κ
2
〈σ̂+〉+ ε〈σ̂−〉

)
. (2.4.75)

Now upon substituting Eqs. (2.4.73) and (2.4.75) into (2.4.43), we obtain

d

dt
〈σ̂−〉 =

−2g2/κ

1− 4ε2/κ2
〈σ̂−〉+

4g2ε/κ2

1− 4ε2/κ2
〈σ̂+〉 −

4g

κ2 − 4ε2
×
[

4gε/κ

1− 4ε2/κ2
(
κ

2
〈σ̂+〉+ ε〈σ̂−〉)

]
=
−2g2/κ− 8g2ε2/κ3

(1− 4ε2/κ2)2
〈σ̂−〉 −

4g2ε/κ2 − 16g2ε3/κ4

(1− 4ε2/κ2)2
〈σ̂+〉

=
−1

2

[
(4g2/κ)(1 + 4ε2/κ2)

(1− 4ε2/κ2)2

]
〈σ̂−〉 −

ε

κ

[
4g2/κ(1 + 4ε2/κ2)

(1− 4ε2/κ2)2

]
〈σ̂+〉

= −Γ

2
〈σ̂−〉 −

εΓ

κ
〈σ̂+〉. (2.4.76)
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where

Γ =
(4g2/κ)(1 + 4ε2/κ2)

(1− 4ε2/κ2)2
. (2.4.77)

is the cavity atomic decay rate. Introducing Eqs. (2.4.59), (2.4.64) and (2.4.65) into

(2.4.45) along with the relation [2, 3]

〈σ̂+σ̂−〉 =
〈σ̂z〉+ 1

2
, (2.4.78)

We obtains

d

dt
〈σ̂z〉 =

−8g2/κ

1− 4ε2/κ2

(
〈σ̂z〉+ 1

2

)
+

8g/κ2

1− 4ε2/κ2

[
−4gε2/κ

1− 4ε2/κ2
〈σ̂z〉

]
=
−4g2/κ− 16ε2g2/κ3

(1− 4ε2/κ2)2
〈σ̂z〉 −

4g2/κ

1− 4ε2/κ2

=
(−4g2/κ)(1 + 4ε2/κ2)

(1− 4ε2/κ2)2
〈σ̂z〉 −

4g2/κ

1− 4ε2/κ2
. (2.4.79)

With the aid of Eqs. (2.4.48) and (2.4.77), one can write Eq. (2.4.79) as

d

dt
〈σ̂z〉 = −Γ〈σ̂z〉 − η. (2.4.80)

In view of the fact that 〈σ̂−(t)〉∗ = 〈σ̂+(t)〉 and 〈σ̂z(t)〉∗=〈σ̂z(t)〉, one can write Eq.

(2.4.76) as

d

dt
〈σ̂+〉 =

−Γ

2
〈σ̂+〉 −

ε

κ
Γ〈σ̂−〉, (2.4.81)

where

γc =
4g2

κ
. (2.4.82)

The parametric defined by Eq. (2.4.82) is called the stimulated emission decay con-

stant. Thus, we can write the atomic decay rate expressed in Eq. (2.4.77) as

Γ =
γc(1 + 4ε2

κ2
)

(1− 4ε2

κ2
)2
. (2.4.83)

It can be easily seen that the presence of the parametric amplifier enhance the cavity

atomic decay rate.



Chapter 3

Photon Statistics

The photon statistics of a light generated by a two-level atom is described by the mean

and variance of the photon number. It would be crucial to classify the photon statistics

of a light modes based on the relation between the mean and variance of the photon

number. Thus the photon statistics of a light mode for which (4n)2 = n is referred to

as Poissonian and the photon statistics of a light mode for which (4n)2 > n is called

Supper-Poissonian. Otherwise the photon statistics is said to be Sub-Poissonian [2].

To this end, we calculate the mean and variance of the photon number, the power

spectrum and the second order correlation function.

3.1 Mean photon number

In this section employing Eq. (2.3.13), we proceed to calculate the mean photon

number for a cavity mode and fluorescent light. First we find the second order cavity

mode variables in Eq. (2.3.13). Now multiplying Eq. (2.4.40) from the right by σ̂−(t)

24
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and taking the expectation value, we get

〈â(t)σ̂−(t)〉 =
−2κg

κ2 − 4ε2
〈σ̂−(t)σ̂−(t)〉 − 4gε

κ2 − 4ε2
〈σ̂+(t)σ̂−(t)〉

+
4

κ2 − 4ε2

(κ
2
〈F̂ (t)σ̂−(t)〉+ ε〈F̂ †(t)σ̂−(t)〉

)
. (3.1.1)

On account of Eqs. (2.4.44), (2.4.59) and (2.4.65) then Eq. (3.1.1) can be written as

〈â(t)σ̂−(t)〉 =
−4gε/κ2

1− 4ε2/κ2
〈σ̂+(t)σ̂−(t)〉+

4/κ2

1− 4ε2/κ2

(
κ

2
(
−2gε/κ

1− 4ε2/κ2
)〈σ̂z(t)〉

)
=

−4gε/κ2

1− 4ε2/κ2
〈σ̂+(t)σ̂−(t)〉 − 4gε/κ2

(1− 4ε2/κ2)2
〈σ̂z(t)〉. (3.1.2)

Again multiplying Eq. (2.4.40) from the left by σ̂−(t) and taking the expectation

value together, we obtain

〈σ̂−(t)â(t)〉 =
−2κg

κ2 − 4ε2
〈σ̂−(t)σ̂−(t)〉 − 4gε

κ2 − 4ε2
〈σ̂−(t)σ̂+(t)〉

+
4

κ2 − 4ε2

(κ
2
〈σ̂−(t)F̂ (t)〉+ ε〈σ̂−(t)F̂ †(t)〉

)
, (3.1.3)

Employing Eqs. (2.4.44), (2.4.66) and (2.4.68) one can write Eq. (3.1.3) as

〈σ̂−(t)â(t)〉 =
−4gε/κ2

1− 4ε2/κ2
〈σ̂−(t)σ̂+(t)〉 − 4gε/κ2

(1− 4ε2/κ2)2
〈σ̂z(t)〉. (3.1.4)

Following a similar procedure one obtain

〈σ̂+(t)â(t)〉 =
−2g/κ

1− 4ε2/κ2
〈σ̂+(t)σ̂−(t)〉 − 8gε2/κ3

(1− 4ε2/κ2)2
〈σ̂z(t)〉, (3.1.5)

and

〈â†(t)σ̂−(t)〉 =
−2g/κ

1− 4ε2/κ2
〈σ̂+(t)σ̂−(t)〉 − 8gε2/κ3

(1− 4ε2/κ2)2
〈σ̂z(t)〉. (3.1.6)

Upon substituting Eqs. (3.1.2) and (3.1.4) into (2.3.9), there follows

d

dt
〈â2(t)〉 = −κ〈â2(t)〉+ 2ε〈â†(t)â(t)〉+ ε

+
4g2ε/κ2

1− 4ε2/κ2
(〈σ̂+(t)σ̂−(t)〉+ 〈σ̂−(t)σ̂+(t)〉)

+
8g2ε/κ2

(1− 4ε2/κ2)2
〈σ̂z(t)〉. (3.1.7)
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Employing the relation

〈σ̂+(t)σ̂−(t)〉 = ρaa, (3.1.8)

〈σ̂−(t)σ̂+(t)〉 = ρbb, (3.1.9)

and

ρaa + ρbb = 1. (3.1.10)

One can easily write Eq. (3.1.7) as

d

dt
〈â2(t)〉 = −κ〈â2(t)〉+ 2ε〈â†(t)â(t)〉+ ε+

4g2ε/κ2

1− 4ε2/κ2

+
8g2ε/κ2

(1− 4ε2/κ2)2
〈σ̂z(t)〉. (3.1.11)

On account of Eq. (2.4.82) we see that the expression (3.1.11) can be written as

d

dt
〈â2(t)〉 = −κ〈â2(t)〉+ 2ε〈â†(t)â(t)〉+ ε+

γcε/κ

1− 4ε2/κ2

+
2γcε/κ

(1− 4ε2/κ2)2
〈σ̂z(t)〉. (3.1.12)

At a steady state this can be written as

〈â2(t)〉ss =
2ε

κ
〈â†(t)â(t)〉ss +

ε

κ
+

γcε/κ
2

1− 4ε2/κ2
+

2γcε/κ
3

1− 4ε2/κ2
〈σ̂z(t)〉ss. (3.1.13)

one can also easily obtain that

〈â†2(t)〉ss =
2ε

κ
〈â†(t)â(t)〉ss +

ε

κ
+

γcε/κ
2

1− 4ε2/κ2
+

2γcε/κ
3

1− 4ε2/κ2
〈σ̂z(t)〉ss. (3.1.14)

where ’ss’ is steady state and it can be defined as a solution after all transients have

died out [6]. But the steady state expectation value of σ̂z can be obtained from Eq.

(2.4.80). Taking the formal solution of this expression and up on performing the
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integration we see that

〈σ̂z(t)〉 = 〈σ̂z(0)〉e−Γt − ηe−Γt

∫ t

0

eΓt′dt′

= 〈σ̂z(0)〉e−Γt − η

Γ
e−Γt(eΓt − 1)

= 〈σ̂z(0)〉e−Γt − η

Γ
(1− e−Γt). (3.1.15)

One can write the the above equation at a steady state as

〈σ̂z(t)〉ss = − η
Γ
. (3.1.16)

It can also be shown that

(〈σ̂z(t)〉ss + 1)/2 =
Γ− η

2Γ
. (3.1.17)

In view of the relation [2, 3]

〈σ̂+(t)σ̂−(t)〉ss =
(〈σ̂z(t)〉ss + 1)

2
, (3.1.18)

we see that

〈σ̂+(t)σ̂−(t)〉ss =
Γ− η

2Γ
. (3.1.19)

In which from Eq. (2.4.48) and (2.4.77) follows that

η

Γ
=

1− 4ε2/κ2

1 + 4ε2/κ2
, (3.1.20)

and

Γ− η
2Γ

=
4ε2/κ2

1 + 4ε2/κ2
. (3.1.21)

Now substituting Eqs. (3.1.15) along with (3.1.20) into Eq. (3.1.13), we see that

〈â2(t)〉ss =
2ε

κ
〈â†(t)â(t)〉ss +

ε

κ
+

γcε/κ
2

1− 4ε2/κ2
− 2γcε/κ

2

(1 + 4ε2/κ2)(1− 4ε2/κ2)
. (3.1.22)
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In the same manner we have

〈â†2(t)〉ss =
2

κ
ε〈â†(t)â(t)〉ss +

ε

κ
+

γcε/κ
2

1− 4ε2/κ2
− 2γcε/κ

2

(1 + 4ε2/κ2)(1− 4ε2/κ2)
. (3.1.23)

Furthermore, substituting Eqs. (3.1.5), (3.1.6) and (2.4.82) into Eq. (2.3.13) we

obtain

d

dt
〈â†(t)â(t)〉 = −κ〈â†(t)â(t)〉+ ε(〈â†2(t)〉+ 〈â2(t))

+
γc/κ

1− 4ε2/κ2
〈σ̂+(t)σ̂−(t)〉+

4γcε
2/κ3

(1− 4ε2/κ2)2
〈σ̂z(t)〉. (3.1.24)

At a steady state one can write Eq. (3.1.24) as

〈â†(t)â(t)〉ss =
ε

κ
(〈â†2(t)〉ss + 〈â2(t)〉ss) +

γc/κ

1− 4ε2/κ2
〈σ̂+(t)σ̂−(t)〉ss

+
4γcε

2/κ3

(1− 4ε2/κ2)2
〈σ̂z〉ss. (3.1.25)

With aid of Eqs. (3.1.16) along with (3.1.20), and (3.1.19) along with (3.1.21) into

Eq. (3.1.25) we see that

〈â†(t)â(t)〉ss =
ε

κ
(〈â†2(t)〉ss + 〈â2(t)〉ss) +

γc/κ

1− 4ε2/κ2
(

4ε2/κ2

1 + 4ε2/κ2
)

− 4γcε
2/κ3

(1− 4ε2/κ2)2
(
1− 4ε2/κ2

1 + 4ε2/κ2
)

=
ε

κ
(〈â†2(t)〉ss + 〈â2(t)〉ss) +

4γcε
2/κ3

(1− 4ε2/κ2)(1 + 4ε2/κ2)

− 4γcε
2/κ3

(1− 4ε2/κ2)
1 + 4ε2/κ2

=
ε

κ
(〈â†2(t)〉ss + 〈â2(t)〉ss). (3.1.26)
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Finally, inserting Eqs. (3.1.22) and (3.1.23) into Eq. (3.1.26), the mean photon

number of cavity mode is found at a steady state to be

〈â†â〉ss = n̄ =
4ε2

κ2
〈â†â〉ss +

2ε2

κ2
+

2γcε
2/κ2

1− 4ε2/κ2
− 4γcε

2/κ3

(1− 4ε2/κ2)2(1 + 4ε2/κ2)

=
2ε2/κ2

1− 4ε2/κ2
− 4γcε

2/κ3

(1− 4ε2/κ2)2(1 + 4ε2/κ2)

+
(γc/2κ)(4ε2/κ2)

(1− 4ε2/κ2)2
. (3.1.27)

From Eq.(3.1.27), we see that the first term represents the mean photon number of the

signal light in the absence of the two-level atom (γc = 0), the second term corresponds

to the mean number of absorbed signal photons and the last term represents the mean

number of photons emitted by the two-level atom. Upon adding the last two terms

in Eq. (3.1.27) we see that

n̄ =
2ε2/κ2

1− 4ε2/κ2
− 2γcε

2/κ3 + 8γcε
4/κ5

(1− 4ε2/κ2)2(1 + 4ε2/κ2)

=
2ε2/κ2

1− 4ε2/κ2
− 2γcε

2/κ3

(1− 4ε2/κ2)(1 + 4ε2/κ2)
. (3.1.28)

Since the sum of the last two terms in Eq. (3.1.27) is negative, we conclude that the

mean number of photons absorbed by the two-level atom is greater than the mean

number of photons emitted by the atom. From Eq. (3.1.27) we note that the mean

photon number of the light emitted by the two-level atom, also called fluorescent

light, is

n̄f =
2γcε

2/κ3

(1− 4ε2/κ2)2
. (3.1.29)
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3.2 Variance of the photon number

The variance of the photon number for the cavity light can be expressed as

(∆n)2 = 〈n̂2〉 − 〈n̂〉2

= 〈(â†â)2〉 − 〈â†â〉2

= 〈(â†â)(â†â)〉 − 〈â†â〉2

= 〈â†â〉〈â†â〉+ 〈â†â†〉〈ââ〉+ 〈â†â〉〈ââ†〉 − 〈â†â〉2

= 〈â†â〉(1 + 〈â†â〉) + 〈â†2〉〈â2〉

= n̄(1 + n̄) + 〈â†2〉〈â2〉. (3.2.1)

From Eq. (3.1.22) and (3.1.23) we note that

〈â†2〉 = 〈â2〉. (3.2.2)

Therefore, Eq. (3.2.1) can also be written as

(∆n)2 = n̄(1 + n̄) + 〈â2〉2. (3.2.3)

From (3.2.3) we observe that the variance of the photon number is greater than the

mean photon number and hence the cavity light exhibits supper-Poissonian photon

statistics.

3.3 Power spectrum

3.3.1 Power spectrum of the fluorescent light

The power spectrum of the fluorescent light can be expressed as [2, 3]

S ′(ω) =
1

π
Re

∫ ∞
0

〈σ̂+(t)σ̂−(t+ τ)〉sseiωτdτ. (3.3.1)



31

Now we seek to obtain the steady state expectation value 〈σ̂+(t)σ̂−(t+ τ)〉 expressed

in Eq. (3.3.1). Introducing new variables defined by

z± = 〈σ̂−(t)〉 ± 〈σ̂+(t)〉, (3.3.2)

from Eq. (2.4.76) and (2.4.81) one obtains

d

dt
(〈σ̂−(t)〉+ 〈σ̂+(t)〉) = −Γ

2
〈σ̂−(t)〉 − εΓ

κ
〈σ̂+(t)〉 − Γ

2
〈σ̂+(t)〉 − εΓ

κ
〈σ̂−(t)〉

= −Γ

2
(〈σ̂−(t)〉+ 〈σ̂+(t)〉)− εΓ

κ
(〈σ̂−(t)〉+ 〈σ̂+(t)〉)

= −Γ(
1

2
+
ε

κ
)(〈σ̂−(t)〉+ 〈σ̂+(t)〉) (3.3.3)

In view of Eq. (3.3.2), we see that the expression of Eq. (3.3.3) can be written as

d

dt
z+ = −z+Γ(

1

2
+
ε

κ
)

= −λ+z+, (3.3.4)

In the same procedure one can easily write

d

dt
z− = −λ−z−. (3.3.5)

Combining Eqs. (3.3.4) and (3.3.5) we see that

d

dt
z± = −λ±z±, (3.3.6)

where

λ± = Γ(
1

2
± ε

κ
). (3.3.7)

The formal solution of Eq. (3.3.6) can be written as

z±(t+ τ) = z±(t)e−λ±τ . (3.3.8)
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From this expression we see that

z+(t+ τ) + z−(t+ τ) = z+(t)e−λ+τ + z−(t)e−λ−τ (3.3.9)

In view of Eq. (3.3.2) one can write Eq. (3.3.9) as

〈σ̂−(t+ τ)〉 =
1

2
(〈σ̂−(t)〉+ 〈σ̂+(t)〉)e−λ+τ +

1

2
(〈σ̂−(t)〉+ 〈σ̂+(t)〉)e−λ−τ

=
1

2
〈σ̂−(t)〉(e−λ+τ + e−λ−τ ) +

1

2
〈σ̂+(t)〉(e−λ+τ + e−λ−τ ). (3.3.10)

Applying the quantum regression theorem to Eq. (3.3.10) and taking into account

Eq. (2.4.44), one obtains

〈σ̂+(t)σ̂−(t+ τ)〉 =
1

2
〈σ̂+(t)σ̂−(t)〉(e−λ+τ + e−λ−τ ). (3.3.11)

Now substituting Eq. (3.1.19) into (3.3.11), we obtain

〈σ̂+(t)σ̂−(t+ τ)〉ss =
Γ− η

4Γ
(e−λ+τ + e−λ−τ ). (3.3.12)

On account of Eq. (3.3.12) the power spectrum specified by Eq. (3.3.1) takes the

form

S ′(ω) =

(
Γ− η
4πΓ

)
Re

∫ ∞
0

(e−(λ+−iω)τ + e−(λ−−iω)τ )dτ

=

(
Γ− η
4πΓ

)[
Re

∫ ∞
0

e−(λ+−iω)τdτ +Re

∫ ∞
0

e−(λ−−iω)τdτ

]
=

Γ− η
4πΓ

(
λ−

λ−
2 + ω2

+
λ+

λ+
2 + ω2

)
. (3.3.13)

The normalized power spectrum can be written as

S(ω) = NS ′(ω). (3.3.14)

where N is normalization constant, which can be determined from the relation∫ ∞
0

NS ′(ω)dω = 1. (3.3.15)



33

With the aid of Eq. (3.3.13) one can write Eq. (3.3.15) as

N

π

(
Γ− η

4Γ

)[∫ ∞
0

λ−

ω2 + λ−
2dω +

∫ ∞
0

λ+

ω2 + λ+
2dω

]
= 1, (3.3.16)

Carrying out the integration using the relation [2]∫ ∞
0

dω

(ω − ωo)2 + λ2
=
π

λ
, (3.3.17)

we find that

N

π

(
Γ− η

4Γ

)(
πλ−
λ−

+
πλ+

λ+

)
= 1

N =
2Γ

Γ− η
. (3.3.18)

Therefore, with the aid of Eqs. (3.3.13) and (3.3.18), the normalized power spectrum

of Eq. (3.3.14) is expressible as

S(ω) =

(
2Γ

Γ− η

)(
Γ− η
4πΓ

)(
λ+

λ+
2 + ω2

+
λ−

λ−
2 + ω2

)
=

1

2π

(
λ+

λ+
2 + ω2

+
λ−

λ−
2 + ω2

)
. (3.3.19)

Now in view of Eq. (3.3.7), we see that

S(ω) =
Γ
(

1
2

+ ε
κ

)
/2π

Γ2
(

1
2

+ ε
κ

)2
+ ω2

+
Γ
(

1
2
− ε

κ

)
/2π

Γ2
(

1
2
− ε

κ

)2
+ ω2

. (3.3.20)

We observe that the expression of Eq. (3.3.20) indicates that the power spectrum

of the fluorescent light is the sum of two Lorentzians centered at zero frequency and

having half width of Γ
(

1
2

+ ε
κ

)
and Γ

(
1
2
− ε

κ

)
. Thus Fig. 3.1, shows that the power

spectrum of the fluorescent light is a single peak centered at ω = 0. We have found

that the half width at half maximum of the power spectrum increases from 0.00165

to 0.0187 as ε/κ increases from 0.25 to 0.35 for the solid line. The power spectrum

in this case turns out to be a single peak.
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Figure 3.1: Plot of the power spectrum of the fluorescent light [Eq. (3.3.20)] versus
ω/κ for γc = 0.01, for ε/κ = 0.25 (solid curve) and for ε/κ = 0.35(dotted curve)

3.3.2 Power spectrum of the cavity mode

The power spectrum of the cavity mode can be expressed as [3, 7]

S ′(ω) =
1

π
Re

∫ ∞
0

〈â†(t)â(t+ τ)〉sseiωτdτ. (3.3.21)

Now we seek to find the steady state expectations value 〈â†(t)â(t+τ)〉 in Eq. (3.3.21).

Taking Eq. (2.3.5) along with its complex conjugate one can write

d

dt
(〈â〉+ 〈â†〉) = −κ

2

(
〈â〉+ 〈â†〉

)
+ ε(〈â〉+ 〈â†〉)− g(〈σ̂−〉+ 〈σ̂+〉)

= −κ(
1

2
− ε

κ
)(〈â〉+ 〈â†〉)− g(〈σ̂−〉+ 〈σ̂+〉) (3.3.22)

In view of Eq. (3.3.2) we see that

d

dt
(〈â〉+ 〈â†〉) = −κ(

1

2
− ε

κ
)(〈â〉+ 〈â†〉)− gz+. (3.3.23)

In a similar manner one can also obtain

d

dt
(〈â〉 − 〈â†〉) = −κ(

1

2
+
ε

κ
)(〈â〉 − 〈â†〉)− gz−. (3.3.24)
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We can also put (3.3.23) and (3.3.24) as

d

dt
α+ = −µ−α+ − gz+, (3.3.25)

and

d

dt
α− = −µ+α− − gz−, (3.3.26)

in which

µ∓ = κ(
1

2
∓ ε

κ
), (3.3.27)

and

α± = 〈â〉 ± 〈â†〉. (3.3.28)

From Eq. (3.3.25) and (3.3.26), we have

d

dt
α± = −µ∓α± − gz±, (3.3.29)

A formal solution of Eq. (3.3.29) can be written as

α±(t+ τ) = α±(t)e−µ∓τ − ge−µ∓τ
∫ τ

0

eµ∓τ
′
z±(t+ τ ′)dτ ′. (3.3.30)

In view of Eq. (3.3.8), we see that

α±(t+ τ) = α±(t)e−µ∓τ − ge−µ∓τ
∫ τ

0

eµ∓τ
′
z±(t)e−λ±τ

′
dτ ′

= α±(t)e−µ∓τ − gz±(t)e−µ∓τ
∫ τ

0

e−(λ±−µ∓)τ ′ , dτ ′ (3.3.31)

Upon performing the integration, we obtain

α±(t+ τ) = α±(t)e−µ∓τ +
gz±(t)e−µ∓τ

λ± − µ∓
[e−(λ±−µ∓)τ − 1]

= α±(t)e−µ∓τ +
gz±(t)

λ± − µ∓
(e−λ±τ − e−µ∓τ ), (3.3.32)
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On account of Eqs. (3.3.2) and (3.3.28), the above expression can be written as

〈â(t+ τ)〉 =
1

2
(〈â(t)〉 ± 〈â†(t)〉)e−µ∓τ +

g(〈σ̂−(t)〉 ± 〈σ̂+(t)〉)
2(λ± − µ∓)

(e−λ±τ − e−µ∓τ )

=
1

2
(〈â(t)〉+ 〈â†(t)〉)e−µ−τ +

1

2
(〈â(t)〉 − 〈â†(t)〉)e−µ+τ

+
g(〈σ̂−(t)〉+ 〈σ̂+(t)〉)

2(λ+ − µ−)
(e−λ+τ − e−µ−τ )

+
g(〈σ̂−(t)〉 − 〈σ̂+(t)〉)

2(λ− − µ+)
(e−λ−τ − e−µ+τ ). (3.3.33)

Applying the quantum regression theorem to Eq. (3.3.33) we see that

〈â†(t)â(t+ τ)〉ss =
1

2

[
〈â†(t)â(t)〉ss + 〈â†2(t)〉ss

]
e−µ−τ +

1

2

[
〈â†(t)â(t)〉ss − 〈a†2(t)〉ss

]
e−µ+τ

+
g
[
〈â†(t)σ̂−(t)〉ss + 〈â†(t)σ̂+(t)〉ss

]
2(λ+ − µ−)

[
e−λ+τ − e−µ−τ

]
+
g
[
〈â†(t)σ̂−(t)〉ss − 〈â†(t)σ̂+(t)〉ss

]
2(λ− − µ+)

[
e−λ−τ − e−µ+τ

]
=

1

2

[
〈â†(t)â(t)〉ss + 〈â†2(t)〉ss −

g(〈â†(t)σ̂−(t)〉ss + 〈â†(t)σ̂+(t)〉ss)
λ+ − µ−

]
e−µ−τ

+
1

2

[
〈â†(t)â(t)〉ss − 〈â†2(t)〉ss −

g(〈â†(t)σ̂−(t)〉ss − 〈â†(t)σ̂+(t)〉ss)
λ− − µ+

]
e−µ+τ

+
g
[
〈â†(t)σ̂−(t)〉ss + 〈â†(t)σ̂+(t)〉ss

]
2(λ+ − µ−)

e−λ+τ

+
g
[
〈â†(t)σ̂−(t)〉ss − 〈â†(t)σ̂+(t)〉ss

]
2(λ− − µ+)

e−λ−τ

= N1e
−µ−τ +N2e

−µ+τ +N3e
−λ+τ +N4e

−λ−τ , (3.3.34)

where,

N1 =
1

2

[
(〈â†(t)â(t)〉ss + 〈â†2(t)〉ss)−

g(〈â†(t)σ̂−(t)〉ss + 〈â†(t)σ̂+(t)〉ss)
λ+ − µ−

]
, (3.3.35)

N2 =
1

2

[
(〈â†(t)â(t)〉ss − 〈â†2(t)〉ss)−

g(〈â†(t)σ̂−(t)〉ss − 〈â†(t)σ̂+(t)〉ss)
λ− − µ+

]
, (3.3.36)

N3 =
g
[
〈â†(t)σ̂−(t)〉ss + 〈â†(t)σ̂+(t)〉ss

]
2(λ+ − µ−)

, (3.3.37)
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and

N4 =
g
[
〈â†(t)σ̂−(t)〉ss − 〈â†(t)σ̂+(t)〉ss

]
2(λ− − µ+)

. (3.3.38)

In view of Eq. (3.1.6) along with (3.1.16) and (3.1.19) at a steady state as

〈â†(t)σ̂−(t)〉ss =
−2g/κ

1− 4ε2/κ2
(
Γ− η

2Γ
) +

8gε2/κ3

(1− 4ε2/κ2)2
(
η

Γ
)

=
−2g/κ

1− 4ε2/κ2
(

4ε2/κ2

1 + 4ε2/κ2
) +

8gε2/κ3

(1− 4ε2/κ2)2
(
1− 4ε2/κ2

1 + 4ε2/κ2
)

= 0. (3.3.39)

Similarly one can verify that

〈â†(t)σ̂−(t)〉ss = 0. (3.3.40)

Therefore, employing Eqs. (3.3.39) and (3.3.40), we can rewrite Eqs. (3.3.35)-(3.3.38)

as follows

N1 =
1

2
[n̄+ 〈â†2(t)〉ss], (3.3.41)

N2 =
1

2
[n̄− 〈â†2(t)〉ss], (3.3.42)

and

N3 = N4 = 0. (3.3.43)

Now using Eq. (3.3.41) - (3.3.43) into (3.3.34), we obtain

〈â†(t)â(t+ τ)〉ss =
1

2
[n̄+ 〈â†2(t)〉ss]e−µ−τ +

1

2
[n̄− 〈â†2(t)〉ss]e−µ+τ . (3.3.44)

Inserting Eq. (3.3.44) into Eq. (3.3.21) and performing the integration, we see that

S ′(ω) =
1

2π
[n̄+ 〈â†2(t)〉ss]

µ−
µ2
− + ω2

+
1

2π
[n̄− 〈â†2(t)〉ss]

µ+

µ2
+ + ω2

. (3.3.45)

Upon using this result into Eq. (3.3.15) and performing the integration along with

Eq. (3.3.17), the normalized constant N can be put in the form

N =
1

n̄
. (3.3.46)
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On account of Eqs. (3.3.45) and (3.3.46) into (3.3.14), the normalized power spectrum

can be written as

S(ω) =
1

n̄

[
n̄

2π
(

µ−
µ2
− + ω2

+
µ+

µ2
+ + ω2

) +
〈â†2(t)〉ss

2π
(

µ−
µ2
− + ω2

− µ+

µ2
+ + ω2

)

]
, (3.3.47)

In view of Eq. (3.1.26), we have

S(ω) =
µ−/2π

µ2
− + ω2

+
µ+/2π

µ2
+ + ω2

+
〈â†2(t)〉ss

2ε
κ
〈â†2(t)〉ss

(
µ−/2π

µ2
− + ω2

− µ+/2π

µ2
+ + ω2

), (3.3.48)

Finally, inserting Eq. (3.3.27) into (3.3.48), we then see that

S(ω) =
κ(1

2
+ ε

κ
)/2π

κ2(1
2

+ ε
κ
)2 + ω2

+
κ(1

2
− ε

κ
)/2π

κ2(1
2
− ε

κ
)2 + ω2

+
κ( κ

2ε
− 1)/4π

κ2(1
2
− ε

κ
)2 + ω2

−
κ( κ

2ε
+ 1)/4π

κ2(1
2

+ ε
κ
)2 + ω2

. (3.3.49)

is the power spectrum of the cavity mode. Since the expression for the spectrum

does not contain γc, the presence of the two-level atom does not affect the width of

this spectrum. In fig 3.2, we plot the power spectrum of the cavity mode versus ω/κ

for different values of ε/κ. These plots show that the width of the power spectrum

increases with ε/κ increases. When the value of ε/κ increases from 0.25 to 0.35, the

half width increases from 0.0072 to 0.0108.

3.4 Second order correlation function

The second order correlation function for the light emitted by a two level atom in a

cavity in terms of the atomic operators is expressible by [2]

g(2)(τ) =
〈σ̂+(t)σ̂+(t+ τ)σ̂−(t+ τ)σ̂−(t)〉

〈σ̂+(t)σ̂−(t)〉2
. (3.4.1)

Now, we seek to obtain the expression 〈σ̂+(t+ τ)σ̂−(t+ τ)〉. We note that

〈σ̂+(t+ τ)σ̂−(t+ τ)〉 =
(〈σ̂z(t+ τ)〉+ 1)

2
, (3.4.2)
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Figure 3.2: Plot of the power spectrum of the cavity mode [Eq. (3.3.49)] versus ω/κ
for ε/κ = 0.25 (solid curve) and for ε/κ = 0.35 (dotted curve)

Upon substituting Eq. (3.1.15) into Eq. (3.4.2), one obtain

〈σ̂+(t+ τ)σ̂−(t+ τ)〉 =
〈σ̂z(t)〉e−Γτ − η

Γ
(1− e−Γτ ) + 1

2

=
1

2
〈σ̂z(t)〉e−Γτ − η

2Γ
+

η

2Γ
e−Γτ +

1

2

=
1

2
〈σ̂z(t)〉e−Γτ +

1

2
e−Γτ +

1

2
− 1

2
e−Γτ − η

2Γ
+

η

2Γ
e−Γτ

=
1

2
(〈σ̂z(t)〉+ 1)e−Γτ +

1

2
(1− e−Γτ )− η

2Γ
(1− e−Γτ )

=
1

2
(〈σ̂z(t)〉+ 1)e−Γτ +

Γ− η
2Γ

(1− e−Γτ ), (3.4.3)

In view of Eq. (2.4.78), one can write the above expression as

〈σ̂+(t+ τ)σ̂−(t+ τ)〉 = 〈σ̂+(t)σ̂−(t)〉e−Γτ +
Γ− η

2Γ
(1− e−Γτ ). (3.4.4)

Applying the quantum regression theorem to Eq. (3.4.4), one can write as

〈σ̂+(t)σ̂+(t+ τ)σ̂−(t+ τ)σ̂−(t)〉 = 〈σ̂2
+(t)σ̂2

−(t)〉e−Γτ +
Γ− η

2Γ
〈σ̂+(t)σ̂−(t)〉(1− e−Γτ )

=
Γ− η

2Γ
〈σ̂+(t)σ̂−(t)〉(1− e−Γτ ). (3.4.5)
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Combination of Eq. (3.4.1) and (3.4.5), yields

g(2)(τ) =
Γ−η
2Γ
〈σ̂+(t)σ̂−(t)〉(1− e−Γτ )

〈σ̂+(t)σ̂−(t)〉2

=
Γ−η
2Γ

(1− eΓτ )

〈σ̂+(t)σ̂−(t)〉
. (3.4.6)

Thus in view of Eq. (3.1.19), the steady state second order correlation function takes

the form

g(2)(τ) = 1− e−Γτ . (3.4.7)

We observe that

g(2)(0) = 0 (3.4.8)

For τ > 0,

g(2)(τ) > 0. (3.4.9)

Therefore, for τ > 0,

g(2)(τ) > g(2)(0). (3.4.10)

This shows that the Fluorescent light thus exhibits the phenomenon of photon an-

tibunching. This is due to the fact that a two-level atom cannot emit two or more

photons simultaneously. After each emission the atom returns to the lower level and

it must absorb a photon before another emission can take place. That is the photons

have a tendency to arrive at a detector separately rather than in pair. Fig. 3.3, indi-

cates that for relatively small values of τ the second-order correlation function is less

than unity which reflects the nonclassical feature of antibunching. We also observe

that as ε/κ increases g(2)(t) approaches unity at a faster rate. It is also interesting to

consider the dynamics of the two level atom. Thus upon replacing τ by t and t by 0

in Eq. (3.4.4), we see that

〈σ̂+(t)σ̂−(t)〉 = 〈σ̂+(0)σ̂−(0)〉e−Γt +
Γ− η

2Γ
(1− eΓt). (3.4.11)
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Figure 3.3: Plot of the second order correlation function [Eq. (3.4.7)] versus τ for
γc/κ = 0.01, for ε/κ = 0.25 (solid curve) and for ε/κ = 0.35 (dotted curve)

Using the relation

〈σ̂+(t)σ̂−(t)〉 = ρaa(t) =
σ̂z(t) + 1

2
, (3.4.12)

together with Eq. (3.1.21) the probability for the two level atom in the upper level

is found to be

ρaa(t) = ρaa(0)e−Γt +
4ε2/κ2

1 + 4ε2/κ2
(1− e−Γt). (3.4.13)

If the atom is initially in the upper level, then ρaa(0) = 1. Hence Eq. (3.4.13) takes

for this case the form

ρaa(t) = e−Γt +
4ε2/κ2

1 + 4ε2/κ2
(1− e−Γt)

=
e−Γt

1 + 4ε2/κ2
+

4ε2/κ2

1 + 4ε2/κ2
. (3.4.14)
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At a steady state solution one can write Eq. (3.4.14) as

ρaa =
4ε2/κ2

1 + 4ε2/κ2
. (3.4.15)

We see from Fig.3.4, that the probability for the atom to be in the upper level decays

Figure 3.4: Plot of [Eq. (3.4.14)] versus γct in the presence of parametric amplifier
with ε/κ = 0.3 (solid curve) and in the absence of the parametric amplifier, i.e for
ε = 0 (dotted curve)

exponentially in the absence of the parametric amplifier and approaches to zero at

steady state. However, in the presence of the parametric amplifier the steady state

probability for the atom to be in the upper level is different from zero. This is because

there are photons in the cavity that can be absorbed by the atom.



Chapter 4

The Quadrature Squeezing

In this section we seek to study the squeezing properties of light produced by degene-

rate sub-harmonic generation. To this end, we evaluate the quadrature variance for

the cavity mode and for the fluorescent light.

4.1 Quadrature variance for the cavity mode

The squeezing properties of a single mode light are described by two quadrature

operators defined by [2,7]

â+ = â† + â (4.1.1)

and

â− = i(â† − â) (4.1.2)

The operators are Hermitian and satisfy the commutation relation

[â+, â−] = 2i. (4.1.3)

On the basis of Eq. (4.1.3) the uncertainty relation for 4a+ and 4a− is

∆a+∆a− ≥
1

2
|〈[â+, â−]〉|

≥ 1. (4.1.4)
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The operators â+ and â− represents physical quantities called the plus and minus

quadrature respectively. A single mode light is said to be in a squeezed state if either

∆a+ < 1 or ∆a− < 1. Such that ∆a+∆a− ≥ 1. The plus quadrature variance for a

light beam in terms of the plus quadrature operator can be expressed as

(∆a+)2 = 〈â2
+〉 − 〈â+〉2, (4.1.5)

Hence on account of Eq. (4.1.1) one can verify Eq. (4.1.5) as

(∆a+)2 = 〈(â† + â)(â† + â)〉 − 〈(â† + â)〉2

= 〈â†2〉+ 〈â†â〉+ 〈ââ†〉+ 〈â2〉

−
(
〈â†〉2 + 〈â†〉〈â〉+ 〈â〉〈â†〉+ 〈â〉2

)
, (4.1.6)

In view of Eq. (3.3.10), we can write

〈σ̂−(t)〉 =
1

2
〈σ̂−(0)〉(e−λ+t + e−λ−t) +

1

2
〈σ̂+(0)〉(e−λ+t + e−λ−t), (4.1.7)

we then see that

〈σ̂−(0)〉 = 0. (4.1.8)

Similarly one obtain

〈σ̂+(0)〉 = 0. (4.1.9)

It then follows that

〈σ̂−(t)〉 = 〈σ̂+(t)〉 = 0. (4.1.10)

Taking these results into account, we notice from Eqs. (2.4.40) and (2.4.41) that

〈â(t)〉 = 0, (4.1.11)

and

〈â†(t)〉 = 0. (4.1.12)
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Thus one can write Eq. (4.1.6) as

(∆a+)2 = 〈â†2〉+ 〈â†â〉+ 〈ââ†〉+ 〈â2〉. (4.1.13)

We can write the expectation value of operator Â = ââ† in the normal order as â†â+1.

So that Eq. (4.1.13) can be written as

(∆a+)2 = 1 + 2〈â†â〉+ (〈â†2〉+ 〈â2〉). (4.1.14)

One can also establish in a similar manner that the variance of the minus quadrature

operator is expressible as

(∆a−)2 = 1 + 2〈â†â〉 − (〈â†2〉+ 〈â2〉). (4.1.15)

On the basis of Eqs. (4.1.14) and (4.1.15), the plus and minus quadrature variances

can be expressed as

(∆a±)2 = 1 + 2〈â†â〉 ± (〈â†2〉+ 〈â2〉. (4.1.16)

Taking Eq. (3.1.26) into account the plus and minus quadrature variance of the cavity

mode can be written as

(∆a±)2 = 1 + 2〈â†â〉 ± κ

ε
〈â†â〉

= 1± κ

ε
(1± 2ε

κ
)〈â†â〉. (4.1.17)

Therefore, on substituting Eq. (3.1.28) into Eq. (4.1.17) leads to

(∆a+)2 = 1 +
κ

ε
(1 +

2ε

κ
)[

2ε2/κ2

(1− 4ε2/κ2)
− 2γcε

2/κ3

(1− 4ε2/κ2)(1 + 4ε2/κ2)
]

= 1 +
κ

ε
(1 +

2ε

κ
)[

2ε2/κ2(1 + 4ε2/κ2)− 2γcε
2/κ3

(1 + 2ε/κ)(1− 2ε/κ)(1 + 4ε2/κ2)
]

= 1 +
2ε/κ+ 8ε3/κ3 − 2γcε/κ

2

= 1 +
2ε/κ(1− γc/κ) + 8ε3/κ3

(1− 2ε/κ)(1 + 4ε2/κ2)
. (4.1.18)
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In a similar manner one can also obtain the minus quadrature variance for the cavity

mode as

(∆a−)2 = 1− 2ε/κ(1− γc/κ) + 8ε3/κ3

(1 + 2ε/κ)(1 + 4ε2/κ2)
. (4.1.19)

From Eqs. (4.1.18) and (4.1.19) we see that (∆a+)2 > 1 and (∆a2
−) < 1. Therefore

we immediately notice that the cavity mode is in a squeezed state and the squeezing

occurs in the minus quadrature. In Fig.4.1, we plot Eq.(4.1.19) versus ε/κ. This plot

also shows that the cavity mode is in a squeezed state and the degree of squeezing

increases as ε/κ decreases.

Figure 4.1: Plot of the quadrature variance of the cavity mode [Eq. (4.1.19)] versus
ε/κ for γc/κ = 0.01
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4.2 Quadrature variance for the fluorescent light

Employing Eq. (3.1.29) in (4.1.17) the plus quadrature variance of the fluorescent

light can be expressed as

(∆a+)2
f = 1 +

2γcε/κ
2(1 + 2ε/κ)

(1 + 2ε/κ)(1− 2ε/κ)(1− 4ε2/κ2)

= 1 +
2γcε/κ

2

(1− 2ε/κ)(1− 4ε2/κ2)
. (4.2.1)

similarly the minus quadrature variance of the fluorescent light is

(∆a−)2
f = 1− 2γcε/κ

2

(1 + 2ε/κ)(1− 4ε2/κ2)
. (4.2.2)

From the expression (4.2.1) and (4.2.2) we note that the fluorescent light is in a

squeezed state and the squeezing occurs in the minus quadrature. Fig.4.2, indicates

Figure 4.2: Plot of the quadrature variance of the fluorescent light [Eq. (4.2.2)] versus
ε/κ for γc/κ = 0.01.

that the degree of squeezing of the fluorescent light is very small.



Chapter 5

Conclusion

In this project, we have considered degenerate parametric oscillator whose contains a

two-level atom. Employing the master equation for the system under consideration,

we have obtained the quantum Langevin equation, the equation of evolution for the

expectation values of the cavity mode and atomic operators. Applying the large-

time approximation scheme and the correlation properties of noise operators, we

have determined the mean and variance of photon number. We have found that the

photon statistics of the cavity light is supper-Poissonian. Moreover, we have obtained

the normalized power spectrum for the fluorescent light and for the cavity mode. We

have obtained the power spectrum in this case turns out to be a single peak at ω = 0.

It is found that the width of the spectrum increases with ε/κ. In addition, we have

determined the second-order correlation function for the fluorescent light emitted

by a two level atom and we have found that the photons in the fluorescent light

are antibunching. Finally, we have evaluated the quadrature variance for the cavity

mode and fluorescent light produced by two-level atom inside a parametric oscillator

coupled to a vacuum reservoir. We observed that the cavity mode is in a squeezed

state and the squeezing occurs in the minus quadrature.
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